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Reconstruction of Complex 
Directional Networks with Group 
Lasso Nonlinear Conditional 
Granger Causality
Guanxue Yang, Lin Wang & Xiaofan Wang

Reconstruction of networks underlying complex systems is one of the most crucial problems in 
many areas of engineering and science. In this paper, rather than identifying parameters of complex 
systems governed by pre-defined models or taking some polynomial and rational functions as a prior 
information for subsequent model selection, we put forward a general framework for nonlinear causal 
network reconstruction from time-series with limited observations. With obtaining multi-source 
datasets based on the data-fusion strategy, we propose a novel method to handle nonlinearity and 
directionality of complex networked systems, namely group lasso nonlinear conditional granger 
causality. Specially, our method can exploit different sets of radial basis functions to approximate 
the nonlinear interactions between each pair of nodes and integrate sparsity into grouped variables 
selection. The performance characteristic of our approach is firstly assessed with two types of simulated 
datasets from nonlinear vector autoregressive model and nonlinear dynamic models, and then verified 
based on the benchmark datasets from DREAM3 Challenge4. Effects of data size and noise intensity 
are also discussed. All of the results demonstrate that the proposed method performs better in terms of 
higher area under precision-recall curve.

In recent years, there has been an explosion of various datasets, which are collected in scientific, engineering, 
medical and social applications1, 2. They often contain information that represents a combination of different 
properties of the real world. Identifying causality or correlation among datasets3–7 is increasingly vital for effec-
tive policy and management recommendations on climate, epidemiology, neuroscience, economics and much 
else. With these rapid advances in the studies of causality and correlation, complex network reconstruction has 
become an outstanding and significant problem in interdisciplinary science8–12. As we know, numerous real net-
worked systems could be represented as network of interconnected nodes. But in lots of situations, network 
topology is fully unknown, which is hidden in the observations acquired from experiments. For complex systems, 
accompanied by the complexity of system dynamics, the limited observations with noisy measurements make the 
problem of network reconstruction even more challenging. An increased attention for network reconstruction is 
being attracted in the past few years13–19.

Among the developed methods, vector autoregressive model (VAR) is able to estimate the temporal depend-
encies of variables in multivariate model, which gains growing interest in recent years20–22. As one of the most 
prevalent VAR methods, Granger Causality (GC) can be efficiently applied in causal discovery23. Conditional 
Granger Causality (CGC) is put forward to differentiate direct interactions from indirect ones24. To extend the 
application of GC limited by linear dynamics, nonlinear GC is developed25–28, which is relatively less considered 
until now. Generally speaking, the application of these GC methods might get in trouble, especially when the size 
of samples is small and the number of variables is large. To conquer such problem, some composed methods are 
presented by integrating variable selection into CGC model, such as Lasso-CGC29, 30 and grouped lasso graphical 
granger31. Group lasso is also used in multivariate regression and multi-task learning32–36. Compressive sensing 
or sparse regression is popularly applied in the network reconstruction and system identification. However, most 
of these methods are confined to identify parameters of complex systems governed by pre-defined models18, 37, 38. 
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Moreover, some methods consider taking some polynomial and rational functions as a prior information which 
is usually difficult to obtain in advance, for subsequent model selection39, 40.

In this paper, we concern over inferring complex nonlinear causal networks from time-series and propose a 
new method termed as group lasso nonlinear conditional granger causality (GLasso-NCGC). Particularly, we 
establish a general data-driven framework for nonlinear network reconstruction from time-series with limited 
observations, which doesn’t require the pre-defined model or some polynomial and rational functions as a prior 
information. With obtaining multi-source datasets based on the data-fusion strategy introduced in recent high 
quality paper3, we first introduce the formulation of multivariate nonlinear conditional granger causality model 
(NCGC), and exploit different groups of radial basis functions (RBF) to approximate the nonlinear interactions 
between each pair of nodes respectively. Then we decompose the task of inferring the whole network into local 
neighborhood selections centered at each target node. Together with the natural sparsity of real complex net-
works, group lasso regression41 is utilized for each local structure recovery, where different RBF variables from 
different centers in each node should be either eliminated or selected as a group. Next, we obtain the candidate 
structure of the network by resolving the problem of group lasso regression. As a result, the final network can be 
judged by significance levels with Fisher statistic test for removing false existent links.

For the purpose of performance evaluations for our proposed method, simulated datasets from nonlin-
ear vector autoregressive model are firstly generated. Compared with CGC, Lasso-CGC and NCGC, we find 
GLasso-NCGC outperforms other methods in terms of Area Under Precision-Recall curve (AUPR) and 
Receiver-Operating-Characteristic curve (AUROC). Effects of data size and noise intensity are also investi-
gated. Besides, the simulation based on nonlinear dynamic models with network topology given in advance 
is carried out. We consider two classical nonlinear dynamic models which are used for modelling biochemical 
reaction networks40 and gene regulatory networks42 respectively. Especially for gene regulatory networks with 
Michaelis-Menten dynamics, we simulate gene regulatory model on random, small-world and scare-free net-
works. Then we explore the performance of these methods influenced by different average degrees, noise intensi-
ties and amounts of data simultaneously for these three types of networks. Based on the sub-challenge of Dialogue 
on Reverse Engineering Assessment and Methods (DREAM), we finally use the benchmark datasets of DREAM3 
Challenge4 for investigation. All of the results demonstrate the proposed method GLasso-NCGC executes best on 
the previous mentioned datasets, which is fully certified to be optimal and robust to noise.

Models and Methods
Multivariate conditional granger causality.  Consider N time-course variables {X, Y, Z1, Z2, …, ZN−2} 
in multivariate conditional granger causality model, the current value of Yt can be expressed by the past values 
of Y and Z1, Z2, …, ZN−2 in Equation (1). Meanwhile, Yt can be also written as the joint representation of the past 
values of Y, X and Z1, Z2, …, ZN−2 in Equation (2).
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where, ′ ′ ′a c a b c, , , ,i k i i i k i, ,  are the coefficients in VAR model, p is the model order, ε1 and ε2 are the noise terms. Let 
Z = {Z1, Z2, …, ZN−2}, then the CGC index can be shown as CGCIX→Y|Z = ln (var(ε1)/var(ε2)), which is used to 
analyze the conditional causal interaction between two temporal variables. If the variance var(ε1) is larger than 
the variance var(ε2), i.e. CGCIX→Y|Z > 0, X causes Y conditioned on the other sets of N − 2 variables Z. Generally, 
the statistic judgement of terminal results can be executed by significant levels with F-test.

Group lasso nonlinear conditional granger causality.  The unified framework of multivariate nonlin-
ear conditional granger causality (NCGC) model is proposed as shown in Equation (3).

= Φ +Y X A E( ) (3)

where, target variables = Y y y y[ ]N1 2 , coefficient matrix α α α= A [ ]N1 2 , noise terms ε ε ε= E [ ]N1 2 , Φ(X) 
is data matrix of nonlinear kernel functions. The detailed descriptions for all the elements above are given in 
Equation (4).

For each target variable yi ∈ Y, we can obtain N independent equations as follows.

α ε= Φ + = …i Ny X( ) , 1,2, , (4)i i i

where,
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N is the number of variables (time-series), T is the length of each time-series. The value of i-th variable xi(t) 
can be observed at time t. Here, the form of ϕρ X( )j

k  is taken as radial basis function. ∼ρ
ρ=X{ }j
n

1 is the set of n centers 
in the space of Xj, which can be acquired by k-means clustering methods. αi is the coefficient between target var-
iable yi and Φ(X). aij(n) is the coefficient corresponding to the function ϕ X( )n j

k .
Generally, we can use least square method to deal with Equation (4). But the solution procedure of Equation (4)  

may be problematic when the number of variables is relatively larger than the number of available samples. With 
the knowledge of sparsity in A, we can turn to regularization-based methods for help. In this case, it’s noteworthy 
that apparent groupings exist among variables. So variables belonging to the same group should be regarded as 

Figure 1.  Directed graph and true adjacency matrix of nonlinear VAR model.

Figure 2.  Networks inferred by CGC, Lasso-CGC, NCGC, GLasso-NCGC in nonlinear VAR simulation.
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a whole. Here, a series of RBF variables from the different centers in the same time-series should be either elim-
inated or selected as a group. Then group lasso is adopted to solve this problem of sparse regression as follows.

∑α α λ α= − Φ +
α =


‖ ‖ ‖ ‖y Xargmin( ( ) )
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In Equation (5), we take l2 norm as the intra-group penalty.
The detailed algorithm of Group Lasso Nonlinear Conditional Granger Causality is shown in Algorithm 1.
With small samples at hand, first-order vector autoregressive model is usually considered20, 21. Besides, in our 

consideration, model order is also set as p = 1, which is in accordance with the characteristics of dynamic systems 
governed by state-space equations. For the time-delayed dynamic systems, the implementation of higher-order 
vector autoregressive model can be straightly extended. In addition, we can use cross validation criterion for the 
selection of optimal parameters, such as the number of RBF centers n and the coefficient of penalty terms λi. 
Then we mainly describe the selection of λi as follows. We use two stages of refined selection which are similarly 
adopted by Khan et al.43. In the first stage, we set the coarse values of the search space λ ∈ {λ1, λ2, λ3, λ4, λ5}, which 
determines the neighborhood of the optimal λi. In the second stage, we obtain the neighborhood of the optimal 
λi for refined search, i.e. λ ∈ [0.5λi, 1.5λi], the interval Δλ = kλi (0 < k < 1). Here, λ1 = 10−4, λ2 = 10−3, λ3 = 10−2, 
λ4 = 10−1, λ5 = 1, k = 0.1. For example, if we choose λ3 = 10−2 in the first stage, we next confine the refined search 
in the range of λ ∈ [0.005, 0.015], where Δλ = 10−3. For large-scale networks, we can just take relatively larger k 
to reduce the range of search space and ensure the low computational cost.

Meanwhile, in order to ensure the variety of datasets, multiple measurements are often carried out under dif-
ferent conditions (adding perturbations or knocking out nodes et al.). As a result, the extension of Equation (3) 
can be written as the following formula.
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In Equation (6), m denotes the number of measurements. At m-th measurement, ∼Ym and ∼Xm are acquired for 
integrating them in Equation (6). Then Equation (6) can be also divided into N independent equations that would 
be solved by group lasso optimization with Equation (5). Finally, we execute nonlinear conditional granger cau-
sality with F-test in terms of the given significant level Pval. In our paper, we set Pval = 0.01 for all the statistic 
analysis.

Results
Nonlinear vector autoregressive model.  The first simulation is based on a nonlinear vector autoregres-
sive model with N = 10 nodes (variables), see Equation (7).
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Algorithm 1 Group Lasso Nonlinear Conditional Granger Causality

1: Input: Time-series data {xi(t)}, i = 1, 2, …, N; t = 1, 2, …, T. N is the number of variables. T is the length of each time-series.

2: According to model order p, form the data matrix X = [X1, X2, …, XN] and target matrix Y = [y1, y2, …, yN].

3: Formulize the data matrix X into Φ(X) based on radial basis functions as shown in Equation (4).

4: For each target variable yi ∈ Y

            • Execute group lasso:

            α α λ α= − Φ + ∑ .
α

=
‖ ‖ ‖ ‖Xargmin( y ( ) )i

i
i i i j

N
ij2

2
1 2

            �• �Obtain candidate variable sets Si for each yi according to α̂i. Rearrange data matrix Φ(X) with Si expressed as ΦSi and reform the 
expression of nonlinear conditional granger causality model.

            • Execute nonlinear conditional granger causality with F-test in terms of the given significant level Pval. Confirm the causal variables of yi.

     end

5: Output: Causal interactions among N variables, i.e. adjacency matrix  ×N N .
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The directed graph from Equation (7) together with true adjacency matrix are shown in Fig. 1. In Fig. 1(a), 
black lines are linear edges and blue lines are nonlinear edges. In Fig. 1(b), white points are existent edges among 
nodes, while black areas stand for nonexistent edges. Next, the synthetic datasets (M = 100 samples) are obtained 
based on the model of Equation (7), where ε is zero-mean uncorrelated gaussian noise terms with identical unit 
variance.

Networks inferred by CGC, Lasso-CGC, NCGC and GLasso-NCGC are shown in Fig. 2. According to the 
number of edges correctly recovered (True Positives), we can find that GLasso-NCGC almost captures all the 
existing edges except for the edges 2 → 2, 3 → 3, 3 → 8. Compared with GLasso-NCGC, NCGC additionally fails 
to recover two existing edges 6 → 8, 10 → 7. Due to neglect the nonlinear influences among nodes, both CGC and 
Lasso-CGC fail to find many existing edges, which leads to many edges falsely unrecovered (False Negatives).

For further measuring performance we plot ROC curves and PR curves. Figure 3 is PR and ROC curves 
generated by CGC, Lasso-CGC, NCGC, GLasso-NCGC respectively. Obviously, it can be seen from Fig. 3 that 
GLasso-NCGC outperforms its competitors with the highest score (AUROC and AUPR).

In the following section, the performance of robust estimation with different methods is explored. Firstly, 
multi-realizations are carried out, here the number of realizations is set as 100. Figure 4 demonstrates discovery 
rate matrixes from multi-realizations. Table 1 shows the comparison of discovery rate of true positives inferred 
by these methods. Discovery rate means the total number of each edge rightly discovered over multi-realizations. 
Compared with CGC, Table 1 summarizes Lasso-CGC improves the performance with relatively larger dis-
covery rate in true edges. However, due to neglecting the nonlinearity of modeling, they can’t manifest better 
performance than NCGC and GLasso-NCGC. In general, for nonlinear edges, we can discover GLasso-NCGC 
nearly outperforms other methods. Specially, for edges 1 → 6, 2 → 7, 3 → 8 and 4 → 9, GLasso-NCGC and NCGC 
greatly identify these true causal edges at large percentages of 100 independent realizations. For linear edges, both 
GLasso-NCGC and NCGC also maintain high discovery rate.

Relatively, GLasso-NCGC utilizes group lasso to promote the performance of NCGC by silencing many false 
positives and realize the best reconstruction of adjacency matrix at last. Average AUROC and Average AUPR of 
different methods over 100 realizations are calculated in Table 2.

Then, we explore the performance of CGC, Lasso-CGC, NCGC and GLasso-NCGC influenced by different 
number of samples. Given that the number of samples varies from 100 to 300, at each point, we get the Average 
AUROC and Average AUPR over 100 independent realizations respectively. From Fig. 5(a) and (b), we find the 
performance of these four methods improves as the number of samples increases. GLasso-NCGC scores highest 
in both Average AUROC and Average AUPR.

Next, given samples with M = 100, the performance of CGC, Lasso-CGC, NCGC and GLasso-NCGC influ-
enced by different noise intensities σ (0.1~1) is also compared as shown in Fig. 5(c) and (d). At each intensity 
of noise, the Average AUROC and Average AUPR over 100 independent realizations are computed respectively. 
GLasso-NCGC also wins the best score in both Average AUROC and Average AUPR.

Nonlinear dynamic model.  Consider the complex dynamic system of N variables (nodes) with the follow-
ing coupled nonlinear equations.

∑ ε= + +
= ≠
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Figure 3.  PR curves and ROC curves of CGC, Lasso-CGC, NCGC, GLasso-NCGC in nonlinear VAR 
simulation.
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where state vector x = [x1, x2, …, xN]T, the first term on the right-hand side of Equation (8) describes the 
self-dynamics of the i-th variable, while the second term describes the interactions between variable i and its 
interacting partners j. The nonlinear functions F(xi) and H(xi, xj) represent the dynamical laws that govern the 
variables of system. Let B be the adjacent matrix which describes the interactions among variables. bij ≠ 0 if the 
j-th variable connects to the i-th one; otherwise, bij = 0. εi is zero-mean uncorrelated gaussian noise with vari-
ance σ2. Indeed, these is no unified manner to establish the nonlinear framework for all the complex networked 
systems. But Equation (8) has the broad applications in many science domains. With an appropriate choice 
of F(xi) and H(xi, xj), Equation (8) is used to model various known systems, ranging from ecological systems, 
social systems and physical systems11, 18, 40, 42. Specifically, Equation (8) can be transformed into discrete-time 
expressions.

∑ ε= + + ++
= ≠

x t x t F x t b H x t x t t( ) ( ) ( ( )) ( ( ), ( )) ( )i k i k i k
j j i

N

ij i k j k i k1
1,

where, tk+1 − tk = 1. Here, the simulation systems are as follows.
S1: Biochemical reaction network (BRN).
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Figure 4.  Discovery rate matrixes inferred from 100 realizations in nonlinear VAR simulation.

CGC
Lasso-
CGC NCGC

GLasso-
NCGC

Nonlinear

1 → 6 41% 43% 92% 97%

2 → 2 8% 9% 28% 28%

2 → 7 57% 56% 100% 96%

3 → 3 9% 9% 11% 19%

3 → 8 20% 20% 46% 50%

4 → 9 26% 34% 69% 73%

6 → 8 16% 19% 33% 42%

8 → 10 58% 65% 37% 46%

9 → 6 78% 79% 100% 100%

10 → 7 33% 32% 36% 66%

Linear

1 → 1 99% 99% 97% 99%

7 → 4 100% 100% 100% 100%

7 → 9 100% 100% 100% 100%

8 → 5 100% 100% 100% 100%

Table 1.  Comparison of discovery rate of true positives extracted from true adjacency matrix of nonlinear VAR 
model.

Methods Aver-AUROC (SD) Aver-AUPR (SD)

CGC 0.8830 (0.0477) 0.6810 (0.0751)

Lasso-CGC 0.8837 (0.0448) 0.6967 (0.0673)

NCGC 0.9301 (0.0398) 0.7589 (0.0621)

GLasso-NCGC 0.9519 (0.0356) 0.8044 (0.0587)

Table 2.  Average AUPR and Average AUROC of different methods in nonlinear VAR simulation (standard 
deviation (SD) in parentheses). The values are obtained by averaging over 100 independent realizations.
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Here, x1, x2 and x3 are concentrations of the mRNA transcripts of genes 1,2,3 respectively; x4, x5 and x6 are con-
centrations of the proteins of genes 1,2,3 respectively; α1, α2, α3 are maximum promoter strength for the corre-
sponding gene; γ1, γ2, γ3 are mRNA decay rates; γ4, γ5, γ6 are protein decay rates; β1, β2, β3 are protein production 
rates; n1, n2, n3 are hill coefficients.

The parameters of Equation (9) are given as follows. α1 = 4, α2 = 3, α3 = 5; γ1 = 0.3, γ2 = 0.4, γ3 = 0.5; γ4 = 0.2, 
γ5 = 0.4, γ6 = 0.6; β1 = 1.4, β2 = 1.5, β3 = 1.6; n1 = n2 = n3 = 4. Meanwhile, we set the number of samples M = 50 
and noise ε ∼ .(0,0 1 )2 .

Based on the true network [Fig. 6(a)] derived from Equation (9), we can find GLasso-NCGC almost recover 
all of the real edges over 100 independent realizations as shown in Fig. 6(c). From Fig. 6(c), CGC, Lasso-CGC and 
NCGC can’t discover the entire true positives but result in lots of false positives. In detail, we next choose some 
representative edges for further analysis. The discovery rate of these representative edges are calculated in Table 3. 
Compared with CGC, Lasso-CGC and NCGC, GLasso-NCGC demonstrates a considerable advantage for both 
these true positives and false positives.

With the quantitative comparison of these methods in Fig. 6(b), we can observe GLasso-NCGC get the high-
est Average AUROC and Average AUPR with the smallest standard deviations (resp. 0.9905 (0.0234) and 0.9037 
(0.0235)).
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Figure 5.  Simulation of nonlinear VAR model. Average AUROC and Average AUPR of different methods 
acrossing samples (100~300), noise intensities σ (0.1~1) respectively. The values of points in these figures are 
computed by averaging over 100 independent realizations. (a,b) with noise (0,1), while (c,d) with samples 
M = 100.
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Here, we also explore the performance of robust estimation with different Granger Causality methods. 
Figure 7 demonstrates the curves of Average AUROC and Average AUPR of different methods acrossing samples 
(20~80) and noise intensities σ (0.1~1) respectively. The values are obtained by averaging over 100 independent 
realizations.

S2: Gene Regulatory Networks (GRN).
Suppose that gene interactions can be modeled by Michaelis-Menten equation as follows.

∑ ε= − +
+

+
= ≠

x x b
x

x 1 (10)
i i

f

j j i

N

ij
j
h

j
h i

1,

where, f = 1, h = 2.
We first construct adjacent matrix B with N nodes and simulate gene regulatory model with three classical 

types of networks, including random, small-world and scare-free networks (resp. RN, SW, SF). Then synthetic 
datasets of M samples are generated from the gene regulatory model of Equation (10). In order to reconstruct 
large-scale complex networks, multiple measurements from different conditions should be executed by adding 
perturbations in some different ways or with random initial values. Meanwhile, the outputs of model are sup-
posed to be contaminated by gaussian noise. The number of multiple measurements is set as m. T time points are 
obtained at each measurement. As a result, data matrix with M × N is collected (M = mT).

Here, we take size 100 SW network with average degree 〈k〉 = 5 for detailed analysis. We set gaussian noise 
intensity as 0.1 and generated 400 samples with 100 multi-measurements (each measurement with 4 time points). 

Figure 6.  Simulation of BRN. The number of multi-realizations is set as 100. (a) True network. (b) Average 
AUROC and Average AUPR with standard deviation over multi-realizations. (c) Discovery rate matrixes 
inferred from multi-realizations.

CGC
Lasso-
CGC NCGC

GLasso-
NCGC

True Positives

6 → 1 20% 27% 36% 83%

4 → 2 10% 12% 65% 80%

5 → 3 15% 18% 78% 83%

False Positives

4 → 1 93% 90% 81% 4%

5 → 2 86% 88% 82% 13%

6 → 3 84% 78% 44% 1%

Table 3.  Comparison of discovery rate of representative edges extracted from true adjacency matrix in BRN 
simulation.
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True SW network are given in Fig. 8(a) together with reconstructed networks which are inferred by different 
methods. From Fig. 8(a), we can observe that the network inferred by GLasso-NCGC is most similar to the true 
network. To some extent, both CGC and Lasso-CGC have similar structures compared with the true network. 
However, they generated lots of false positives. Meanwhile, it can be seen that NCGC almost failed in this case. 
Because there are more parameters involved in NCGC model and the ratio of the number of samples to the num-
ber of parameters is relatively smaller than that of CGC model. Actually, the best performance of GLasso-NCGC 
proves that regularization-based methods have superiority in the case of more parameters and relatively smaller 
samples. In Fig. 8(b), we plot PR curves and ROC curves of CGC, Lasso-CGC, NCGC and GLasso-NCGC. The 
almost perfect reconstruction is ensured by GLasso-NCGC. Furthermore, reconstructed values of elements in 
different inferred matrixes for size 100 SW network can be shown in Fig. 9(a). Red points are existent edges and 
green points are nonexistent edges. CGC, Lasso-CGC and NCGC cannot make a distinction between existent and 
nonexistent edges, because there are so many overlaps between red and green points without a certain threshold 
(Pval) for separation. However, GLasso-NCGC shows a vast and clear gap between existent and nonexistent edges. 
Based on the consideration of robustness, we next apply our method with respect to different intensities of noise 

.(0,0 3 )2  and .(0,0 5 )2  respectively. From Fig. 9(b), GLasso-NCGC also maintains a relatively good perfor-
mance with strong measurement noise.

Then we explore the performance of these methods influenced by different average degrees, noise intensities 
and amounts of data simultaneously for different types of networks. The detailed results are shown in Table 4. In 
general, all of the results demonstrate the optimality and robustness of GLasso-NCGC.

In order to compare the computational requirement by these methods, we simulate the SW and SF networks 
for comparison (N = 100, 〈k〉 = 5, M = 400). And we calculate the average computational time over 10 inde-
pendent realizations as shown in Table 5. The specifications of the computer used to run the simulations are as 
follows. Matlab version: R2013a (64 bit); Operating system: Windows 10 (64 bit); Processor: Intel(R) Core(TM) 
i7-4770 CPU @ 3.40GHZ 3.40GHZ; RAM: 16GB.

DREAM3 Challenge4.  Dialogue on Reverse Engineering Assessment and Methods (DREAM) projects 
establish the general framework for the verification of various algorithms, which have the broad applications in 
many areas of research (http://dreamchallenges.org/). There are so many challenges in DREAM projects. Here, 
DREAM3 Challenge4 is used for the further assessment. The aim of DREAM3 Challenge4 is to infer gene regula-
tory networks with multiple types of datasets.
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Figure 7.  Simulation of BRN. Average AUROC and Average AUPR acrossing samples (20~80), noise intensities 
σ (0.1~1) respectively. The values of points in these figures are computed by averaging over 100 independent 
realizations.
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DREAM3 Challenge4 has three sub-challenges corresponding to gene regulatory networks with size 10, size 
50 and size 100 nodes respectively. In our work, time-series of size 50 and size 100 are used, together with their 
gold standard networks. There are five sub-networks of Yeast or E. coli, all of which are with size 50 and size 
100 respectively. Meanwhile, time-series datasets of multiple measurements are acquired under some different 
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Figure 8.  Simulation of GRN model on SW network (N = 100, k  = 5, M = 400). (a) True network and 
reconstructed network inferred by different methods with noise .(0,0 1 )2 . (b) PR curves and ROC curves with 
noise .(0,0 1 )2 .
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conditions. For the networks of size 50 and size 100, the number of measurements are set as 23 and 46 respectively 
(each measurement with 21 time points).

To assess these results of different methods, we also calculate the AUROC and AUPR. We can discover 
that some methods get the highest AUROCs, while their AUPRs are pretty small. In many cases, good 
AUROC might accompany by a low precision because of a large ratio of FP/TP. Thus, AUPR is taken as the 
final evaluation metric. In Table 6, GLasso-NCGC gets the best AUPR in all the datasets only except for 
size 50 network of Yeast1. Furthermore, the average AUPRs of these methods are subsequently computed 
and plotted as shown in Fig. 10. Finally, GLasso-NCGC is also found to execute optimally with the highest 
average AUPR.

Conclusions
Reconstructing complex network is greatly useful for us to analyze and master the collective dynamics of inter-
acting nodes. In our work, with getting multi-source datasets based on the data-fusion strategy, the new method 
namely group lasso nonlinear coditional granger causality (GLasso-NCGC) is proposed for network recovery 
with time-series. The evaluations of performance address that GLasso-NCGC is superior to other mentioned 
methods. Effects of data size and noise intensity are also discussed. Although the models or applications we 
mainly focus on here are biochemical reaction network and gene regulatory network, our method can be also 
used to other complex networked systems, such as kuramoto oscillator network and mutualistic network40, 42. 
Here, it is also important to remember that we just adopt the model of first-order nonlinear conditional granger 

Type N 〈k〉 σ M

CGC Lasso-CGC NCGC GLasso-NCGC

Aver-AUROC/Aver-AUPR (SD/SD)

RN 100

5 0.1 400 0.6367/0.2257 0.8118/0.6441 0.5472/0.1369 0.9315/0.7719

(0.0290/0.0395) (0.0072/0.0181) (0.0112/0.0075) (0.0083/0.0227)

5 0.1 600 0.8022/0.4947 0.8989/0.7981 0.6321/0.2322 0.9755/0.9072

(0.0234/0.0405) (0.0102/0.0213) (0.0256/0.0317) (0.0036/0.0128)

5 0.3 400 0.6518/0.2563 0.7963/0.5994 0.5530/0.1389 0.9186/0.7476

(0.0180/0.0114) (0.0129/0.0320) (0.0132/0.0042) (0.0052/0.0102)

8 0.1 400 0.7394/0.3308 0.9281/0.8382 0.5966/0.1341 0.9714/0.8967

(0.0233/0.0319) (0.0104/0.0162) (0.0192/0.0188) (0.0034/0.0150)

SW 100

5 0.1 400 0.8648/0.4658 0.9769/0.8823 0.6065/0.0929 0.9996/0.9895

(0.0213/0.0503) (0.0044/0.0142) (0.0185/0.0140) (0.0001/0.0034)

5 0.1 600 0.8895/0.5384 0.9716/0.8826 0.6949/0.1684 0.9997/0.9919

(0.0311/0.0733) (0.0070/0.0275) (0.0279/0.0255) (0.0001/0.0027)

5 0.3 400 0.8527/0.4206 0.9643/0.8342 0.6072/0.0894 0.9975/0.9570

(0.0145/0.0312) (0.0073/0.0243) (0.0113/0.0093) (0.0004/0.0085)

8 0.1 400 0.6500/0.1970 0.9538/0.8791 0.5476/0.1030 0.9950/0.9312

(0.0325/0.0309) (0.0082/0.0196) (0.0180/0.0081) (0.0012/0.0118)

SF 100

5 0.1 400 0.8304/0.4703 0.9358/0.8377 0.7680/0.2798 0.9492/0.8812

(0.0128/0.0278) (0.0055/0.0082) (0.0217/0.0320) (0.0077/0.0174)

5 0.1 600 0.9216/0.6986 0.9498/0.8854 0.8939/0.5795 0.9638/0.9056

(0.0098/0.0183) (0.0025/0.0047) (0.0110/0.0515) (0.0050/0.0112)

5 0.3 400 0.8464/0.4595 0.9233/0.8026 0.6929/0.1941 0.9443/0.8415

(0.0198/0.0270) (0.0057/0.0099) (0.0166/0.0150) (0.0078/0.0100)

8 0.1 400 0.7144/0.3078 0.8322/0.6410 0.6409/0.1786 0.9095/0.7848

(0.0170/0.0206) (0.0086/0.0211) (0.0266/0.0279) (0.0072/0.0230)

Table 4.  The Average AUROC and Average AUPR with standard deviation in parentheses of different methods 
based on three types of networks, random (RN), small-world (SW) and scare-free (SF). The values are computed 
by averaging over 10 independent realizations. The results of different methods at different conditions are 
explored (type, N, 〈​k〉​, σ and M). Here, N is the size of network, 〈​k〉​ is average degree of network, σ is gaussian 
noise intensity, M is the number of samples. The highest scores of the Average AUROC and Average AUPR are 
highlighted.

Types CGC
Lasso-
CGC NCGC

GLasso-
NCGC

SW 12.7196 4.9657 30.0955 5.4432

SF 12.6883 4.0068 29.0900 6.0324

Table 5.  The average computational time (in sec.) of different methods over 10 independent realizations in the 
simulation of GRN model on SW and SF networks.
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causality (NCGC), which is in accordance with the characteristics of dynamic systems governed by state-space 
equations. For the time-delayed dynamic systems, such as coupled Mackey-Glass system28, the framework of 
our method can be flexibly extended to higher-order NCGC model with group lasso regression, which can be 
waited for the prospective researches. In the information era with explosive growth of data, our proposed method 
provides a general and effective data-driven framework for nonlinear network reconstruction, especially for the 
complex networked systems that can be turned into the form of Y = Φ(X)A.
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