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Abstract 

Background:  The three-dimensional (3D) architecture of the genome has a highly ordered and hierarchical nature, 
which influences the regulation of essential nuclear processes at the basis of gene expression, such as gene tran-
scription. While the hierarchical organization of heterochromatin and euchromatin can underlie differences in gene 
expression that determine evolutionary differences among species, the way 3D genome architecture is affected 
by evolutionary forces within major lineages remains unclear. Here, we report a comprehensive comparison of 3D 
genomes, using high resolution Hi-C data in fibroblast cells of fish, chickens, and 10 mammalian species.

Results:  This analysis shows a correlation between genome size and chromosome length that affects chromosome 
territory (CT) organization in the upper hierarchy of genome architecture, whereas lower hierarchical features, includ-
ing local transcriptional availability of DNA, are selected through the evolution of vertebrates. Furthermore, conser-
vation of topologically associating domains (TADs) appears strongly associated with the modularity of expression 
profiles across species. Additionally, LINE and SINE transposable elements likely contribute to heterochromatin and 
euchromatin organization, respectively, during the evolution of genome architecture.

Conclusions:  Our analysis uncovers organizational features that appear to determine the conservation and tran-
scriptional regulation of functional genes across species. These findings can guide ongoing investigations of genome 
evolution by extending our understanding of the mechanisms shaping genome architecture.
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Background
The evolution of gene regulation is considered to be a 
main driver of both speciation and adaptation [1]. A 
growing body of in  vivo evidence has shown that the 
eukaryotic genome forms a highly ordered, hierarchi-
cal structure in the interphase nucleus that is closely 

correlated with, and may even be causally linked to tran-
scriptional machinery that enables appropriate gene 
expression [2]. At the top of this hierarchy, each chro-
mosome occupies discrete regions, termed chromosome 
territories (CTs), in the nucleus [3]. At the sub-chromo-
somal level, the condensed heterochromatin and lightly 
packed euchromatin are separated into two compart-
ments [4] which may be further divided into smaller 
sub-compartments [5]. Within these compartments, the 
chromatin is organized into domain structures that may 
or may not be nested, such as the compartment domain 
[6], the loop domain [6], and topologically associating 
domains (TADs) [7], which range in length from several 
hundred kilobases to megabases. In particular, TADs 
have drawn considerable attention in recent studies in 
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which they have been delineated as largely invariant fea-
tures across cell types and species [8, 9]. Finally, distal 
chromatin loci, which can span hundreds of kilobases, 
may stably contact each other to form so-called chro-
matin loops [5]. Chromatin loops have been proposed as 
essential components of gene regulation by both facili-
tating and constraining promoter-enhancer interactions 
[10].

Transposable elements (TEs) have been found to com-
prise nearly half of some vertebrate genomes and are 
divided into two classes (Class I, or retrotransposons, 
which includes SINE, LINE, and LTR family TEs; and 
Class II, or DNA transposons) based on their mecha-
nism of transposition. TEs (especially active SINEs) have 
been reported to be involved in the spatial organization 
of chromatin in human, mouse, and Drosophila genomes, 
indicating a role in maintenance and/or reshaping of 
genome architecture [11]. TEs can mediate small-scale 
changes in linkage groups but can also lead to large, 
structural genomic variations, and have contributed to 
numerous changes in transcriptional regulation [12].

Efforts have been made to characterize the dynamics 
of genome architecture between cell types and during 
normal development and disease [13–15]. Nonetheless, 
differences in genome architecture among different spe-
cies have remained largely undefined and the elucidation 
of which could be informative towards understanding the 
evolution of regulatory mechanisms that drive speciation. 
This long-standing question motivated earlier studies to 
compare TAD structures across different species which 
revealed that individual TAD boundaries are largely con-
served within phylogenetic lineages [7]. A recent com-
parison among bird genomes suggested a strong natural 
selection pressure on vulnerability of TAD boundaries to 
DNA double-strand breaks [16], which further supported 
that likelihood that TADs represent ancient features 
and that are conserved against evolutionary disrup-
tion [9, 17–19]. Two methodological reports presenting 
inter-species comparisons of 3D genome organization 
have facilitated side-by-side genome-wide visualiza-
tion of contact maps between different species [20, 21]. 
However, to date, no such comparisons of 3D genome 
organization have simultaneously investigated the differ-
ences among 12 vertebrate species, including fish, birds, 
and mammals. In fact, the majority of previous genome 
architecture studies limited their analyses to evolutionar-
ily close (typically primate) species [21–23], or examined 
pairs or small numbers of species [5, 7, 18, 20], mainly 
focusing on one level of hierarchical organization (most 
frequently TADs).

To comprehensively explore the evolutionary princi-
ples governing 3D genome architecture and to assess the 
contributions of genome architecture to transcriptional 

regulation across species, we performed comparative 
analyses of high-throughput chromosome conforma-
tion capture (Hi-C) in fibroblast cells of 12 vertebrates 
(Fig.  1A). We selected 12 vertebrate species including 
human, the 4 important model animals (rhesus macaque, 
mouse, rat and zebrafish), the 5 agricultural animal spe-
cies with the highest stock numbers (i.e., pig, chicken, 
sheep, cow and rabbit), and the 2 major companion ani-
mals (i.e., cat and dog). The 10 mammal species cover 
almost all major evolutionary branches, including pri-
mates (i.e., human and rhesus), rodents (i.e., mouse and 
rat,), lagomorpha (i.e., rabbit), artiodactyla (i.e., pig, cow, 
and sheep), and carnivora (i.e., cat and dog). Chicken and 
zebrafish serve as relatively close- and distantly-related 
outgroups, respectively. The phylogenetic tree of the 12 
species (Fig. 1A) was retrieved from the TimeTree data-
base [24]. Our results showed that the genome size and 
chromosome lengths affect the overall features of 3D 
genome architecture, e.g., the layout of CTs, while the 
local features, e.g., the activity or insulation of genome 
fragments, were evolved with the speciation. These find-
ings illustrate the biophysical dynamics of chromosome 
distribution in the nucleus and suggested a conservation 
at the TAD level of the hierarchy of chromosome archi-
tecture. The data presented in this work can serve as a 
starting point for extended research into 3D genome evo-
lution in vertebrates and provide a rich resource for the 
genomic evolution research community.

Results
Initial characteristics of chromosomal conformation 
across species
In order to explore chromosomal conformation profiles 
of diverse vertebrates, we performed Hi-C experiments in 
25 fibroblasts from 11 vertebrates using 1 to 5 biological 
replicates (distinct cell lines or primary cells derived from 
different individuals) for each species [25] (Fig. 1A, Addi-
tional file 1: Table S1), which produced a total of ~ 5.75 
billion uniquely aligned contacts, with an average depth 
of ~ 230 million (M) contacts per library (ranging from 
~ 102 M for zebrafish, with a relatively small genome size 
of ~ 1.23 Gb, to ~ 442 M for mouse with a genome size of 
~ 2.73 Gb) (Additional file 1: Table S2). We also combined 
the publicly available Hi-C data of porcine fibroblasts 
derived from four individuals [26] and two mouse fibro-
blast cell lines [27] (Additional file  1: Table S1). Among 
a total of 31 Hi-C libraries, ~ 63.03% were intra-chro-
mosomal contacts, of which ~ 74.40% occurred within 
10 Mb (Additional file 1: Table S3, Additional file 2: Fig. 
S1A). After iterative correction and eigenvector decom-
position [28] and quantile normalization [29], we gener-
ated 31 Hi-C contact maps at 20-kb resolution (~ 83.12% 
of bins had at least 1000 intra-chromosomal contacts; 



Page 3 of 21Li et al. BMC Biology           (2022) 20:99 	

Fig. 1  Chromosome lengths may affect overall chromosomal architecture across vertebrates. A Summary of the reference genomes of 12 
vertebrates. Left panel: The divergence times (million years ago, MYA) and phylogenetic topology of the 12 species. Right panel: N50 values of 
the genome assemblies were calculated using fragments longer than 500 bp. Species were empirically classified into three groups based on their 
phylogeny relationship and intra-chromosomal long-range contact frequency decay profile along chromosomal distance. B Estimated similarities of 
intra-chromosomal contact maps between biological replicates for each species at 20 kb resolution using the pairwise stratum-adjusted correlation 
coefficient (SCC). Data are presented as mean ± SD. The dots on the bars represent the replicates. CP(s) curves (at 100 kb resolution) averaged across 
all autosomes in the genome of each species. D–G Correlations between autosome length and D the fitted slope of long-range contact frequency, 
E the spatial distance (s = 7-Mb), F the stretchiness, and G condensation across species. H Examples of 3D chromosome conformations in the 
nucleus of chicken cells
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Additional file 1: Table S4) [5], which were highly repro-
ducible between biological replicates (median stratum-
adjusted correlation coefficient, SCC > 0.905; Fig. 1B).

We plotted curves of the dependence of contact prob-
ability (P) for the genomic distance (s), P(s). Based on 
these P(s) curves, we were able to classify these 12 species 
into three distinct groups (euarchontoglires, boreoeuthe-
rian, and non-mammals) (Fig. 1A). We observed a strong 
decrease in contact probability with an increase in the 
distance between loci. The interaction patterns were 
found different between mammals and non-mammals, 
i.e., a remarkably high frequency long-range (1–10 Mb) 
contact was observed in non-mammals, indicated by a 
steeper decay in P(s) curves among mammals (ranging 
from s−0.348 for cattle to s−0.441 for mice) compared to that 
of chicken (s−0.234) and zebrafish (s−0.266) (Fig. 1C).

Notably, we observed a universally negative correla-
tion (Spearman’s r = − 0.498, P < 2.2 × 10−16) between 
the slops of P(s) curves and average length of autosomes 
across species (Fig. 1D). For example, the long-range con-
tact frequency of the chicken and zebrafish, which have 
relatively shorter chromosome lengths, is 1.408-fold 
higher than that of rabbit, human, rat, and mouse (Wil-
coxon rank sum test, P < 2.2 × 10–16; Additional file 2: Fig. 
S1B). Another example is dog, which had a genome size 
comparable to other mammals, but a considerably higher 
chromosome number, and consequently, also had the 
shortest single chromosomes of the 10 mammals exam-
ined here. Thus, we observed the highest long-range con-
tact frequency in the dog genome compared with that 
in the other mammals (Fig. 1C). These results suggested 
that the lower long-range contact probability in mam-
mals was most likely attributable to their relatively longer 
chromosomes.

We next asked whether the relatively low frequency 
of long-range contacts in mammals reflected more 
stretched CTs compared to those in birds and fish. Using 
in silico modeling [30], we found that the spatial dis-
tances predicted between long-range loci were negatively 
correlated with chromosome length (Fig. 1E, Additional 
file 2: Fig. S1C). We used VSR−1 and VpM−1 to evaluate 
the stretchiness and condensation of CTs, respectively. 
The stretchiness and condensation are negatively and 
positively correlated with chromosome length, respec-
tively (Fig. 1F, G). Which indicated that longer chromo-
somes are less stretched and more condensed compared 
with these shorter chromosomes. These observations 
are consistent with previous reports that showed smaller 
chromosomes are gene-richer and more active [25, 31, 
32], indicating more open and stretched CTs. For exam-
ple, in chickens, chr. 1 (196.20 Mb) is 5.53 and 17.75 
times respectively longer than chr. 6 (35.47 Mb) and 
chr. 18 (11.05 Mb); but the stretchiness for these three 

chromosomes are 3.85, 4.41, and 4.81, respectively; and 
the condensation are 71.95, 23.19, and 8.70, respectively 
(Fig.  1H). These results further supported the possibil-
ity that chromosome length generally affects the over-
all chromosomal architecture across vertebrates, with 
longer chromosomes having a generally lower frequency 
of long-range contact, less stretched and more condensed 
CTs.

Inter‑chromosomal interactome across species
We next asked whether chromosomal length could affect 
the distribution of CTs in the nucleus. To compare the 
relative distribution of CTs across species, we gener-
ated an inter-chromosomal contact matrix at 500 kb 
resolution, i.e., ~ 99.32% of bins had at least 1000 high 
confidence inter-chromosomal reads (q-value < 10–6), 
and subsequently constructed bin interaction networks 
(BINs) for each species [33, 34] (Additional file  2: Fig. 
S2A). We analyzed the basic network properties (includ-
ing network variance, clustering coefficient, average 
degree, and characteristic path length) of 31 fibroblasts 
and compared these properties to corresponding ran-
dom perturbations. In total, the network variances were 
~ 278.52-fold higher in these observed networks com-
pared with the randomly shuffled controls, suggesting a 
strongly non-random distribution of CTs. We observed 
that all BINs exhibited power law degree distribution 
(slopes ranged from − 0.82 to − 1.59; Additional file  2: 
Fig. S2B), where the network topology was dominated by 
a few highly interactive bins, with most bins exhibiting 
low contact frequency (Additional file 2: Fig. S2C). These 
results suggested that the overall distribution of CTs was 
robust to random perturbations [35].

Furthermore, we found that chromosomes with similar 
lengths were spatially clustered in each sample (Addi-
tional file 2: Fig. S3A). That is, the closer the similarity in 
length between a given pair of chromosomes, the more 
frequently they interacted with each other, evident in all 
species examined here by the observation that the prob-
ability of contacts between chromosomes was negatively 
correlated with the differences in their lengths (Pearson’s 
r values are ranged from − 0.18 to − 0.75; Fig. 2A).

We next asked whether substantial divergences 
occurred between species in their inter-chromosomal 
contact profile, i.e., how much the chromosomes may 
contact to each other. To infer the inter-chromosomal 
contact profiles, we calculated the degree to which the 
loci in a network tend to cluster together, or cluster-
ing coefficient (CC), and the number of neighbors per 
locus in the network, or average degree (AD). Because 
the BINs were directly constructed from Hi-C contacts, 
which were cross-linked at scale by formaldehyde fixa-
tion, the CC and AD of contacts should roughly reflect 
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the physical proximity between the contacting chro-
mosomes. Compared to chicken and zebrafish, mam-
mals exhibited relatively weaker inter-chromosomal 
connectivity (non-mammals in group 1: CC = 0.25, 

AD = 15.90; mammals in groups 2 and 3 (CC = 0.121 and 
0.06, respectively, and AD = 8.08 and 5.03, respectively) 
(Fig.  2B, C). Given the influence of genome size on the 
overall genome architecture shown above (Fig.  1C), we 

Fig. 2  Comparison of the inter-chromosomal interactome across species. A Correlation between chromosome length variance and contact 
probability between each two chromosomes. B Differences in clustering coefficients among the three groups of species. C Average degree of 
difference among three groups of species. Two outlier samples (DF1 in chicken and AB.9 in zebrafish) with extremely low clustering coefficients 
were excluded in (B) and (C). D, E Correlation between genome size and two trans network parameters (left panel: clustering coefficient, defined as 
the degree to which the nodes in a network tended to cluster together; right panel: average degree, defined as the average number of neighbors 
per node) for 12 species (D) and 10 mammals (E). F Inter-species comparison of inter-chromosomal gene-gene contacts. The Spearman’s r between 
contact frequencies of 4,853 single-copy orthologous genes across 12 species. G Pearson’s r between the inter-species similarity of gene-gene 
interaction frequency and their divergence time. For (A–C), data are presented as mean ± SD. P values in (B) and (C) were calculated using 
two-sided Wilcoxon rank-sum test
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next sought to determine if genome size was also associ-
ated with these differences in inter-chromosomal contact 
profiles between species. We found that, indeed, genome 
sizes were negatively correlated with CC (Spearman’s 
r = –0.523, P = 0.0015) and AD (Spearman’s r = –0.627, 
P = 8 × 10–5) values across 12 vertebrates (Fig. 2D). This 
negative correlation remained statistically significant 
even after removal of the huge difference in genome size 
between mammals and non-mammals by restricting the 
analysis to ten mammals with comparable genome sizes 
(CC: Spearman’s r = –0.460, P = 0.011; AD: Spearman’s 
r = –0.366, P = 0.036; Fig. 2E).

To examine whether the inter-chromosomal contacts 
were functional or not, we scrutinized a subnetwork of 
the BINs that contained protein coding genes. We then 
generated GINs (gene interaction networks) based on 
the propensity of genes to form inter-chromosomal 
contacts, and then conducted pairwise comparisons 
between species for orthologous genes. The hierarchi-
cal clustering tree based on the similarities identified in 
these subnetworks roughly mimicked the phylogenetic 
tree reconstructed for the 12 species (Fig.  1A) and also 
showed that evolutionarily close species shared a similar 
propensity for gene-gene contact (Pearson’s r = − 0.903, 
P < 2.2 × 10–16; Fig.  2F-G). Similar results were found 
by restricting the analysis to 11 species or 10 mammals 
(Additional file 2: Fig. S3B, C).

The local spatial context is largely conserved in ten 
mammals
We observed that known features of the A and B com-
partments in all species, at 20 kb resolution (Additional 
file 2: Figs. S4A), provided an opportunity to explore the 
evolutionary patterns of compartmentalization. Given 
that only a minute proportion of the human genome (for 
reference) is homologous with those of the 11 (2.07%; 
excluding zebrafish) and 12 (0.31%) total species, we 
instead focused on regions of the human genome that 
shared homology with the ten mammals (27.44%). To this 
end, we separated the mammalian homologous regions 
into 84,974 bins, of which 6.52% (or 5,541 bins) carried 

at least one protein coding gene (hereafter referred to 
as “gene bins”). The overall similarity of the A/B com-
partments (Fig.  3A, Additional file  2: Fig. S4B), and the 
insulation scores (IS) (Fig.  3B, Additional file  2: Fig. 
S4C) among mammals largely agreed with relationships 
illustrated by their phylogenetic tree, as well as that of 
the single copy orthologous gene expression-based tree 
(Additional file 2: Fig. S4D). As expected, we observed a 
negative correlation between divergence time and simi-
larities of AB index (Fig. 3A, Additional file 2: Fig. S4B) 
and IS (Fig.  3B, Additional file  2: Fig. S4C), which thus 
suggested that evolutionarily closer species shared higher 
similarity in their patterns of local spatial context. As we 
only studied the conserved portions of each genome, our 
conclusions are strictly limited to these regions (from 
25.97% of rattus to 32.51% of pig).

We next identified the local regions with conserved or 
species-specific states that exhibited differences in spa-
tial context and subsequently estimated the probability 
of divergence in AB index and IS across the ten mam-
mals using the phylogenetic hidden Markov Gaussian 
processes (Phylo-HMGP) model [36]. We classified the 
30 states (determined by K-means clustering; Additional 
file  2: Fig. S5A, B) into three groups based on their AB 
indexes, i.e., conserved compartment A (CA), conserved 
compartment B (CB), and non-conserved compart-
ment (NC). Similarly, the 30 states were also classified 
into three groups based on IS, i.e., conserved high IS 
(CHI), conserved low IS (CLI) and ambiguous IS (AI) 
(Fig. 3C, D). We found that the majority of homologous 
regions (849.74 Mb, 27.44% of human genome) had con-
served compartment states across the ten mammals (CA: 
272.99 Mb, 32.12%; CB: 333.02 Mb, 39.21%), and only 
243.73 Mb (~ 28.68%) were assigned to the NC group. 
In addition, nearly half of these regions had conserved 
insulation score states (CHI: 184.80 Mb, or 21.75%; CLI: 
183.77 Mb, or 21.63%) (Fig. 3C).

Strikingly, those regions with evolutionarily con-
served compartments and IS were also prone to main-
tain their compartment and IS states in other tissue 
or cell types. Using publicly available Hi-C data from 

(See figure on next page.)
Fig. 3  Mammalian A/B compartment phylogenies. A, B Left panels show Hierarchical Clustering Trees of AB index (A) and IS (B) for all aligned 
bins based on cosine similarity of 10 mammals, respectively; right panels represent the Pearson’s correlation of similarity in AB index (A) and IS (B) 
for each pair of mammalian species and their divergence time, respectively. C The conserved compartment and insulation groups were clustered 
using cosine similarity (R ≥ 0.85 for any two states in the same group). Thirty states could be grouped into conserved compartment A (CA) and 
conserved compartment B (CB), the remaining states were classified as not conserved (NC) (left panel). Conserved high IS (CHI), conserved low IS 
(CLI), and ambiguous IS (AI) were also classified (right panel). The percentage of each state is shown on the right. Red and blue indicate positive or 
negative values, respectively. D Examples of AB index (state 9: CB; state 13: CA; state 6: NC) and IS (state 22: CLI; state 11: CHI; state 5: AI) distributions 
for states with different patterns of conservation. The internal line indicates the median, the box limits indicate the upper and lower quartiles and 
the whiskers extend to 1.5 IQR from the quartiles. E Comparison of predicted patterns of compartment (top panel) and insulation (bottom panel) 
conservation with correlated regions identified across 21 human tissues or cell lines. F The percentage of CA, CB and NC in each IS group. The CHI 
group harbors more bins with CA (50.85%) than CB (14.98%) states. G Correlation between AB index and Insulation Score (IS) for 84,974 bins aligned 
across the 10 mammalian species
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human subjects [37], we found that ~ 56–67% and 
69–87% of the bins with respectively conserved A and 
B compartments in human fibroblast cells retained the 

same compartment status in 14 other tissues or 7 other 
cell types (Fig. 3E), compared with randomized controls 
(~ 41–52% and 48–58% of the bins with conserved A and 

Fig. 3  (See legend on previous page.)
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B compartments; P < 3.7 × 10–12, Wilcoxon rank sum 
test). Similar values of ~ 77–93% were observed for CHI 
and 65–79% for CLI (Fig. 3E), compared with the rand-
omized controls (~ 52–60% for CHI and 39–48% for CLI; 
P < 3.7 × 10–12, Wilcoxon rank sum test).

Notably, the bins with conserved A and B compartment 
status were found prone to have high and low ISs, respec-
tively (Fig. 3F), leading to a moderate correlation between 
IS and AB indexes (Pearson’s r  = 0.21, P < 2.2 × 10–16; 
Fig.  3G, Additional file  2: Fig. S5C, D). These findings 
implied a certain level of co-occurrence between closed 
and insulated chromatin architecture.

Last, we asked whether genes embedded in the NC 
regions were enriched with any species-specific func-
tions. Using Metascape [38], we identified several inter-
esting functional groups (Additional file  2: Figs. S6 and 
S7). For example, genes embedded in human-specific 
compartment B regions (Phylo-HMGP state 7) were 
mainly involved in the processes of “development of male 
gonad and sensory organ” and “renin secretion,” whereas 
genes embedded in the rat- and mouse-specific com-
partment A regions (Phylo-HMGP state 20) were mainly 
involved in the processes of “response to chemokine” 
and “oxidoreductase activity”. Moreover, genes embed-
ded in the pig-specific compartment A regions (Phylo-
HMGP state 26) were mainly involved in the processes 
of “metalloexopeptidase activity” and “regulation of 
cellular response to stress” (Additional file  2: Fig. S6A). 
These results suggested that regions with species-specific 
evolutionary patterns may contain genes with distinct 
functions corresponding to phenotypic diversity across 
species.

The TADs are evolutionarily conserved gene expression 
regulatory units
To further explore conservation of TAD profiles across 
species, we partitioned the genomes of 12 vertebrates 
into topologically associating domains (TADs) at 20 kb 
resolution using the directionality index (DI) algorithm 
in DomainCaller [7] (Additional file  2: Fig. S8A). We 
observed known TAD boundary signatures around our 
boundary calls for each species, such as enrichment for 

transcription start sites (TSSs) of protein coding genes 
(especially highly transcribed housekeeping genes) at the 
center of their boundaries in mammals, chickens, and 
zebrafish (Additional file  2: Fig. S8B). The larger mam-
malian genomes had more and longer TADs (Fig.  4A–
C). Regarding the molecular mechanisms leading to the 
conservation of 3D genome organization, we examined 
whether the binding sites of CTCF underwent selection 
during vertebrate evolution. By scanning the consensus 
binding motif of CTCF, we found the 3DR values [39] 
in all 12 vertebrate species are significantly higher than 
1 (Fig. 4D). Interestingly, the lowest observed 3DR value 
was found in the GC-poor zebrafish genome (GC con-
tent is 36.54% compared to the highest value of 46.76% 
found in chicken) [39]. This suggests GC content might 
contribute to loop formation. We then restrict this anal-
ysis to the TAD borders, and found strikingly high 3DR 
values (ranging from 2.51 in zebrafish to 19.67 in sheep) 
in all 12 species (Fig. 4E). These results suggest that con-
vergent CTCF poses a strong evolutionary constraint to 
3D genome organization that is encoded in the genome. 
In addition, both TAD similarity and 3DR results (Addi-
tional file 2: Fig. S8C, D) indicate genome version has a 
limited effect on 3D genome organization analyses, as 
previously suggested [39].

To explore whether TADs were evolutionarily con-
served in gene expression regulation, we examined the 
distribution of high confidence (phastCons ≥0.95) and 
extended (> 200 bp) conserved non-coding elements 
(CNEs) as phylogenetic markers around the TADs. The 
results of this analysis showed that CNEs were enriched 
within the TADs but depleted at TAD boundaries 
(Fig.  4F). Moreover, the depletion of CNEs was asym-
metric in regions flanking the boundaries, and the high-
est degree of CNE depletion was observed in boundary 
regions compared with the interior TAD regions (0.867 
average CNEs per bin in boundary regions and 1.132 
average within TADs). We also compared the linear posi-
tions of single copy orthologous genes between species 
[40] and found that intra-TAD conservation was stronger 
than inter-TAD conservation (Fig. 4G), which suggested 
an evolutionary restriction of intra-TAD co-localization 

Fig. 4  TADs are conserved units of genome organization. A Genome size (top panel), average length (middle panel) and number of TADs (bottom 
panel) in 12 species. B, C Spearman’s correlation between genome size and TAD number (B) or TAD size (C) in 12 species. D 3DR values computed 
from the 12 genome assemblies. The colored and white boxes represent “convergent ‘→ ←’ and “divergent ‘← →’” contiguous CTCF motifs. E 3DR 
values of 12 species when accounting for TAD borders. TAD borders were defined as the extended 20 kb regions around the center of each TAD 
boundary (on each side, 40 kb in total). We only kept CTCF motifs belonging to TAD borders when calculating the 3DR values in the TAD borders. 
F Distribution of CNEs (conserved non-coding elements) in TADs. G Plot showing the mean intra- and inter-TAD conservation scores in pairwise 
comparisons between species. H Barplot of the percentage of correlated gene pairs (Pearson’s r > 0.9) (slashed color bars) within the same TADs 
compared to all gene pairs (blank color bars) based on expression data of fibroblasts from 7 species with at least 3 replicates. The tested gene pairs 
were stratified based on the number of genes by which they were spatially separated. Distances are indicated underneath the barplot. For (D) 
and (E), the internal line indicates the median, the box limits indicate the upper and lower quartiles and the whiskers extend to 1.5 IQR from the 
quartiles. P values were calculated using two-sided Wilcoxon rank-sum test. For (G) and (H), data are presented as mean ± SD

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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for these genes. We next asked whether the conserva-
tion of TAD structure had any functional implications. 
As expected, these correlated co-expressed gene pairs 
were significantly enriched in intra-TADs (Fig. 4H). The 
restrictive influence of TAD structure on gene regulation 
may be a conserved evolutionary feature.

Luo et  al. (2021) reported ~ 55% (n = 1513) of the 
TAD boundaries were conserved across human, rhesus, 
and mouse, with ~ 14% (n = 385) of the TAD bounda-
ries being specifically gained in humans [41]. Using the 
same definition, we identified conserved and gained/
lost TAD boundaries in this study. Briefly, a TAD bound-
ary was considered lost in species A if the region could 
be “liftovered” and aligned from human to most species 
but not to species A. A TAD boundary was consider 
gained in species A if it was not found in any other spe-
cies. This allowed us to identify 247 conserved and 29 
human gained TAD boundaries across 10 mammal spe-
cies (Fig. 5A). We compared the insulation scores (IS) in 
conserved and gained/lost TAD boundaries. As a result, 
we found the conserved TAD boundaries had stronger 
insulation than those that were gained (Fig. 5B), indicat-
ing the stability of conserved TADs during evolution. We 
performed a Gene Ontology (GO) enrichment analysis 
in each of TAD category, and found genes in the mam-
malian conserved TAD boundaries are involved in the 
metabolic process and growth, in particular the regula-
tion of responses to DNA damage (Fig. 5C). In contrast, 
TAD boundaries gained in humans were associated with 
the immune system (Fig. 5D). One example is the human 
gained TAD boundary containing the TRIB1, a gene that 
is involved in leukocyte differentiation and response to 
bacterium (Fig.  5E). This implies a close association to 
human tumor and cellular immune response [42]. As a 
blood and tissue biomarker of chronic antibody-medi-
ated rejection, this gene plays a key role in transplanta-
tion [43]. We found an increased expression in humans 
than in most other mammal species considered, with 
the exception of mouse (Fig. 5F). Another example is the 
human gained TAD boundary containing the GPM6A, 
a gene that is involved in neuronal differentiation and 
migration of neuronal stem cells [44] (Additional file  2: 
Fig. S9A). We also showed a primate gained TAD bound-
ary containing the gene GRM5, a promising target for 
the treatment of cognitive deficits in schizophrenia [45], 
which may be involved in the regulation of neural net-
work activity and synaptic plasticity [46] (Additional 
file 2: Fig. S9B).

Some TEs appear highly correlated with chromatin 
interactions
Transposable elements (TEs) exhibited high diversified 
proportion among zebrafish, chickens, and mammals 

[47]. We found that TEs comprised ~ 36.32–47.92% of 
the assembled genomes of 12 vertebrates (Additional 
file 2: Fig. S10A, B). We subsequently found that some TE 
families were either enriched (SINE) or depleted (LINE, 
DNA, and LTR) in the TAD boundaries (Additional file 2: 
Fig. S10C). The exceptions were found in cow, sheep, and 
non-mammalian genomes, although this finding may 
be attributable to poor genome assembly [48]. Then, we 
analyzed the correlation between TE coverage and AB 
index for TE families, and found rather weak, but signifi-
cantly positive and negative respective correlations for 
SINE and LINE, respectively (Fig.  6A, Additional file  1: 
Table  S5). This result was in agreement with a recent 
imaging study which showed that LINE elements are 
more enriched in heterochromatin in mice [49].

To further explore the potential roles of TEs in chro-
matin organization across species, we compared the dis-
tribution of intra-TAD contact frequencies for the four 
major TE families. The results revealed a clear trend in 
mammals in which the proportion of SINE and DNA 
transposons were positively correlated with the contact 
frequency, while the LTR and LINE proportion showed 
a negative relationship (Fig.  6B). However, it warrants 
mention that these correlations were weak. By contrast, 
in the chicken genome, the DNA transposons were found 
to be negatively correlated with contact frequency; in 
zebrafish, all TE families examined here showed a posi-
tive correlation with contact frequency.

Given the limited number of non-mammalian samples 
in this study, TE distribution merits further investiga-
tion in the non-mammals. Furthermore, we found that 
the degree of correlations with contact frequency was 
almost always higher for SINEs and LINEs than for DNA 
transposons and LTRs in all 10 mammals (Fig. 6B), which 
suggested that the SINEs and LINEs provided a greater 
contribution to genome organization than the other 
TE families. Indeed, comparisons of TE family enrich-
ment revealed that SINEs were consistently enriched 
in enhancer regions for mammals, whereas LINEs were 
consistently depleted (Fig. 6C). Notably, we were unable 
to detect any consistent patterns for DNA transposons 
and LTRs in mammals, nor any patterns for any of the TE 
families in non-mammals (Fig. 6C). Last, we found that 
evolutionarily close species shared a higher similarity in 
their TE coverage in the enhancer regions of these sin-
gle-copy orthologous genes in the 10, 11 and 12 species 
(Fig. 6D, Additional file 2: Fig. S10D).

Discussion
In the present work, we found that genome size is the 
dominant characteristic that governs differences in the 
overall spatial conformation of chromosomes between 
species. It was reported previously that the short and 
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Fig. 5  TAD gain and loss. A Proportion of conserved and gained/lost TAD boundaries in each target genome (left panel). “Human as query” 
indicates the human TAD boundaries that were taken as query using the UCSC liftover tool compared to other genomes. The TAD boundaries 
classified as conserved, gained/lost, or unknown, were determined by the distance to the nearest TAD boundary in the reference genome 
(conserved: < 40 kb, or 2 bins; non-conserved: > 100 kb, or 5 bins; otherwise, unknown). The number of mammalian conserved and human gained 
boundaries (right panel). B The average insulation score profiles in ±300 kb regions around the mammalian conserved and human gained TAD 
boundaries. C GO enriched terms for genes in conserved human TAD boundary regions. D GO enriched terms for genes in gained TAD boundary 
regions in the human genome. E Hi-C contact maps of human gained TAD boundaries correlate with the single-copy orthologue gene TRIB1 in 10 
mammal species. Gene ID of TRIB1 in each species was marked in red. F Normalized mean expression levels of the gene TRIB1 in 10 mammal species
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long chromosomes are spatially distributed differently 
throughout the nucleus [50]. A recent study discovered 
that genome architecture can be classified into two cat-
egories (Type-I includes the three Rabl-like features; and 
Type-II includes only chromosome territories) across the 
tree of life [51]. The 12 vertebrates’ genome architectures 
in this study can be classified to the type-II, and we dis-
cussed more detailed patterns of genome organization 
(especially compartment and TAD). Our findings high-
lighted the biophysical dynamics governing the physical 
properties of the nucleus and indicated some universality 
or conservation of these properties across vertebrates. In 
line with these findings, genome size has previously been 
associated with the size of the cell and nucleus [52]. Thus, 
when dealing with chromosomal macro features, such as 
CT, extensive caution and rigor are necessary for accu-
rate data interpretation.

Previous studies have suggested that the overall 
arrangement of CTs is a conserved feature, with short 
and long chromosomes prone to localization in the inner 
nucleus and periphery of nucleus, respectively [31, 53]. 
In our study, we extended this evolutionarily ubiqui-
tous feature by showing that the main characteristics of 
inter-chromosomal contacts are also largely conserved 
across vertebrate 3D genomes. The similar gene-gene 
contact profile in closely related species indicating a gen-
eral spacial structural foundation for gene co-regulation 
in vertebrates [54–56]. However, substantial divergence 
in specific inter-chromosomal contacts occurred at the 
species level, implying species-specific genomic reor-
ganization. As many studies have shown that the genome 
is subject to modularization by functional constrains 
[57–61], future study will help determine how this mod-
ularization process may be associated with species level 
reorganization of inter-chromosomal arrangement dur-
ing the evolution.

It has already been reported that TAD boundaries are 
evolutionarily conserved [7, 9, 16–19, 22]. Consider the 
histone sequences and combination of histone modi-
fications are conserved across many species [62], how 
epigenetic features involve in 3D genome organization 
is also worthy of attention. Consistent with CTCF and 
H3K4me1 were detected as the first and second informa-
tive histone marks for predicting TAD boundaries [63], 
our study also showed a strikingly high 3DR values of 

CTCF for TAD borders in all 12 species. Furthermore, 
chromatin domains with high contact frequencies were 
found correlate with histone marks associated with inac-
tive chromatin such as H3K9me3 and H4K20me3 [62]. 
H3K4me3-rich regions are associated with active chro-
matin in an open conformation [62]. In addition, break-
points enriched at TAD boundaries from mammals to 
birds, indicating a strong natural selection pressure on 
maintaining regulatory domain integrity [9, 16, 64]. Avian 
genome is approximately 3-times smaller than mamma-
lian, consistently fewer number of TADs were observed. 
This might be caused by less SINE and LINE elements, 
which has been shown tightly linked to genome archi-
tecture [65] presented in avian genomes (5.94–6.24 % 
in chicken and fish versus 24.84–39.57% in mammals). 
However, the underlying mechanism of which effect 
shall be exported in the further. Moreover, due to the 
difficulty of defining conserved TAD structures and the 
limited number of orthologous genomic regions across 
vertebrates, the processes of TAD birth and death have 
not yet been explored. The increased availability of ances-
tral genomes and their spatial architecture will facilitate 
the resolution of some complicated research topics, such 
as whether large, ancestral TADs were split into smaller 
domains during the evolution of mammals or if some 
TADs were lost during avian and fish evolution [66]. 
Thus, the internal structures of TADs, i.e., sub-TADs and 
loop webs, warrant further, refined investigation. In total, 
this study provides Hi-C data for 12 species (including 
fish, chickens, and mammals), which can serve as a valu-
able resource to establish a standard for inferring TADs, 
or for assessment of the evolutionary conservation of 
TADs across species.

The finding that some TEs are enriched (SINE) or 
depleted (LINE, DNA, and LTR) in TAD boundaries 
provides an indication of the roles of TEs in TAD organi-
zation, which was largely consistent with recently pub-
lished imaging data in mice [49]. Notably, the relatively 
weaker correlations we detected in chicken could be at 
least partially explained by the smaller proportion of TEs 
in the chicken genome, suggesting a different potential 
mechanism for the formation of closed or open chroma-
tin structures. Although, the generic trends we reported 
here hinted at significant roles that SINEs and LINEs 
may play in the evolution of chromatin structure, the 

Fig. 6  TE and Chromatin architecture in the 12 vertebrate genomes. A Correlation between AB index and TE coverage for 12 species. The species 
associated with the fitted slope are labeled on the right. B Correlation between proportion of four TEs and chromatin contact frequency. C 
Enrichment of four TE types in enhancer and non-enhancer (all the other regions) regions of the genome in each species. D Spearman’s correlation 
of TE coverage in enhancer regions among 12 species (upper panels); and correlation between similarity of TE coverage in enhancer regions and 
evolutionary divergence time in 12 vertebrates (bottom panels)

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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detailed evolutionary dynamics that the TEs may con-
tribute to determining chromatin architecture remains to 
be explored. This study may thus serve as a starting point 
for addressing several questions that were only initially 
touched upon in our analyses. For example, it remains 
unclear activity by TEs may alter TADs, and in turn affect 
regulatory circuits in recent evolutionary and develop-
mental advances. Furthermore, what phenotypic conse-
quences may result from those hypothetical TE-mediated 
alterations to TADs? Large scale population level data is 
thus needed to further explore these genomic evolution-
ary questions.

In addition, there are still some methodological and 
analytical limitations in this study. First, the Hi-C data 
were generated by dilution Hi-C, which contains more 
noise and lower resolution than in situ Hi-C. Second, we 
have not used the most recent updates for some genome 
assemblies due to limited time and resources. However, 
we note that this is highly unlikely to substantially alter 
our main results and conclusions. Third, the discussed 
TAD boundary gain and loss only addressed pairwise 
comparisons between humans and other mammal spe-
cies. Hence, further comprehensive evolutionary analysis 
in the future should be implemented with novel methods.

Conclusions
Here, we compare the 3D genome architecture of 12 ver-
tebrates, including 10 mammals from four distinct line-
ages, and uncover organizational features that appear to 
determine the conservation and transcriptional regula-
tion of functional genes across species. We identified a 
correlation between genome size/chromosome length 
and long-distance contacts. Genome size and chromo-
some length were found to be affecting factors in the 
organization of chromosomal territories (CTs) in the 
upper hierarchy of genome architecture. Lower hierar-
chical features, including local transcriptional availability 
of DNA, were revealed to be selected through speciation 
processes. The conservation of topologically associating 
domains (TADs) appears strongly associated with the 
modularity of expression profiles across species. LINE 
and SINE transposable elements likely contribute to het-
erochromatin and euchromatin organization, respec-
tively, during the evolution of genome architecture.

Methods
Collection of fibroblasts, Hi‑C experiments, and data 
generation
We collected 25 fibroblast lines from 11 vertebrate spe-
cies, of which 13 are primary cells (derived from the same 
tissue in different individuals) and 12 are commercial 
cell lines (Additional file  1: Table  S1). All animal proto-
cols were approved by the Institutional Animal Care and 

Use Committee of the Institute of Animal Genetics and 
Breeding (protocol number YCS-B20151604). The meth-
ods were carried out in accordance with the approved 
guidelines.

Most of the fibroblasts were grown in Dulbecco’s Mod-
ified Eagle Medium (DMEM, 11995-065, Gibco) contain-
ing 10% Fetal Bovine Serum (FBS, 10099-141, Gibco) 
and 1× penicillin/streptomycin (P/S, 15140-122, Gibco), 
incubated at 37 °C in 5% CO2. Dilution Hi-C were per-
formed as in previous a study [25]. Briefly, approximately 
20 to 25 million cells were cross-linked with 2% formal-
dehyde for 10 min at room temperature (20–25 °C), and 
then glycine was used to quench the formaldehyde in a 
final concentration of 0.25 M at room temperature for 
5 min. Subsequently, cross-linked cells were incubated on 
ice for 15 min. Nuclei were permeabilized by a Dounce 
homogenizer in the presence of cold lysis buffer (10 mM 
Tris-HCl, pH 8.0, 10 mM NaCl, 0.2% IGEPAL CA-630, 
and 1× protease inhibitor solution). DNA was digested 
with 400 units of HindIII, and the ends of restriction frag-
ments were labeled using biotinylated nucleotides and 
ligated in a small volume (8 mL). After reversal of cross-
links, ligated DNA was purified and prepped for Illumina 
sequencing.

All paired-end (150 bp in read length) sequence data 
were generated using Illumina Hiseq X Ten platform by 
Novogene Bioinformatics Technology Co. Ltd.

Raw sequence quality checking and filtering (processing 
raw data to clean data)
We also downloaded the publicly available Hi-C data of 
four porcine fibroblasts [26] and two mouse fibroblasts 
[27] (Additional file 1: Table S1) for analysis. Together, we 
processed Hi-C data of 31 fibroblasts from 12 species. To 
avoid reads with artificial bias, we removed the following 
types of reads: reads with ≥ 10% unidentified nucleotides 
(N); reads with > 10 nt aligned to the adapter, allowing ≤ 
10% mismatches; reads with > 50% bases having phred 
quality < 5. Consequently, after quality checking 4.82 Tb 
of raw data, we obtained 4.58 Tb of high-quality paired-
end reads, including 95.18% and 89.57% nucleotides 
with phred quality ≥ Q20 (with an accuracy of 99.0%) 
and ≥ Q30 (with an accuracy of 99.9%), respectively.

Mapping and filtering of Hi‑C reads
Read mapping and filtering of the initial Hi-C data anal-
yses were conducted by Hiclib [28]. The high quality 
paired-end reads of the 12 species were mapped to their 
own reference genomes by Bowtie2 [67] (--very--sensi-
tive) through iterative mapping. Mapped reads were fil-
tered using Hiclib with default parameters, discarding 
the invalid self-ligated and un-ligated fragments, as well 
as PCR artifacts. To avoid the effects of X chromosome 
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inactivation, subsequent analyses excluded sex chro-
mosomes (i.e., only Hi-C contact statistics contain sex 
chromosomes). The reference genome assemblies for 12 
species included: Human (GRCh38.p10), Rhesus (rhe-
Mac8), Mouse (GRCm38.p6), Rat (Rnor6.0), Rabbit (Ory-
Cun2.0), Cow (bosTau7), Sheep (oviAri3), Pig (susScr11), 
Cat (felCat8), Dog (canFam3), Chicken (Gallus_gal-
lus-5.0), and Zebrafish (danRer10) respectively.

Generation and normalization of contact matrices
We generated contact matrices using varying bin sizes 
(with 20 kb, 100 kb, 500 kb, and 1 Mb resolution). For 
example, to calculate the contact matrix, we divided the 
linear genome into 20 kb bins and counted the number 
of contacts we observed between each pair of bins. The 
number of contacts observed between locus i and locus 
j is denoted Mij. We normalized the Hi-C matrices as 
previously described by Imakaev et  al. [28]. Normaliza-
tion reduced the differences in interactions within bio-
logical replicates and among samples. Normalization 
also homogenized interactions in different samples at the 
same distance without disturbing interaction frequency 
decay as genomic distance increased. After normaliza-
tion, we obtained the corrected interaction matrix for 
each whole genome.

Correlation among cells in the same species by observed 
matrix
We calculated the correlations between Hi-C replicates 
in the same species on a per chromosome basis using 
HiCRep [68] with 100 kb resolution data. This method 
calculated correlations by considering two dominant 
spatial features of Hi-C data: distance dependence and 
domain structure. The method first smoothed the given 
Hi-C matrices to help capture domain structures and 
reduced stochastic noise caused by insufficient sampling. 
It then addressed the distance-dependence effect by 
stratifying Hi-C data according to genomic distance.

Physical models of chromosomes
Physical models of each chromosome in each sample 
were calculated at 100 kb cis and 1 Mb trans resolution 
using miniMDS [30]. Volume and surface areas of the 
simulated chromosomal territories were calculated using 
convex hull (https://​docs.​scipy.​org/​doc/​scipy/​refer​ence/​
gener​ated/​scipy.​spati​al.​Conve​xHull.​html). We first com-
puted volume and superficial area for each chromosome. 
Volume to surface area ratio (VSR) and volume per Mb in 
sequence (VpM) were calculated to measure the plasticity 
of all CTs. For any given volume, the sphere contains the 
minimal surface while the stretched territory is expected 
to have the larger surface. Hence, higher VSR−1 indicates 
more stretch. Higher VpM−1 indicates more condense 

chromatin state. The structural models were inferred 
using multidimensional scaling (MDS) analysis provided 
in the Python package miniMDS [30] and visualized with 
PyMOL [69]. Surface reconstructions were performed by 
Meshlab [70] with the original point cloud data (only the 
point cloud group with XYZ 3D coordinates) generated 
by miniMDS.

Evolutionary conservation of the inter‑chromosomal 
interactome
Statistical confidence of inter‑chromosomal interactions
We binned the reference genomes into 500 kb segments, 
which yielded sufficient read coverage for each inter-
chromosomal interaction bin pair. As described in Kauf-
mann et  al. [33], we calculated the p-values for contact 
significance for each inter-chromosomal interaction bin 
pair, and this calculation was performed separately for 
each pair of chromosomes.

Here, bina and binb are two 500 kb bins, mnorm is the 
average interaction probability of all pairs of fragments 
from bina and binb (dividing the product of fragment 
numbers in bina and binb by the product of fragment 
numbers in the two chromosomes containing bina and 
binb). K is the number of read pairs representing con-
tacts between bina and binb, and n is the total number of 
read pairs representing contacts between the two chro-
mosomes containing bina and binb. The p-value indicates 
the significance of interactions between two inter-chro-
mosomal bins, as the probability that the number of read 
pairs representing an interaction is larger than (or as high 
as) our observation, based on the background probability 
depicting Hi-C biases.

Benjamini and Hochberg-based false discovery rates 
were further calculated. To remove bias, we also normal-
ized the q-values against chromosome length. In brief, a 
normalization factor was calculated by dividing the prod-
uct of lengths for the two chromosomes containing bina 
and binb by the product of lengths for the two longest 
chromosomes. The q-values were normalized by multi-
plying the respective normalization factor.

Inter‑chromosomal bin interaction networks (BINs) 
and randomization
We generated binary interaction relationships for 500 kb 
genome segments based on a q-value cutoff, which were 
further converted into inter-chromosomal bin interac-
tion networks (BINs). In brief, genomic 500 kb bins were 
considered nodes, while high confidence interaction rela-
tionships between pairs of inter-chromosomal segments 
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were regarded as edges (nodes are the bins and the edges 
are the inter-chromosomal contacts). As described by 
Witten and Noble [71], we first generated a basic random 
network by randomly distributing segments in a unicube 
and extracting edges between the x closest pairs based 
on Euclidean distance, with x representing the number 
of edges observed in the original network. Using the 
approach described by Kruse et al. [34], we permuted the 
set of edges (E) 10 x |E| times and then switched edges 
between neighbors if the change increased transitivity 
in the random network to better simulate the clustering 
characteristics of the original network.

Basic network properties analysis
We visualized the networks using Cytoscape [72] and 
employed its analytical tools to calculate the follow-
ing basic network statistics (network variance, cluster-
ing coefficient, average degree, and characteristic path 
length) as previously described [33]. The network vari-
ance is a parameter that measures the variance of the 
bin interaction network, and its conformity to the Pois-
son distribution is taken by dividing the variance by the 
mean.

where n is the number of nodes, xi is the degree of 
each node, xd is the mean of degree, Sd is the variance of 
degree. The network variance is close to 1 in randomized 
networks, and greater than 1 when the network deviates 
from random expectations [33].

Clustering coefficient indicates the degree to which the 
nodes in a network tend to cluster together [33], which is 
calculated for each node as:

where n, en, and kn represent a node in the network, the 
number of connected pairs between all neighbors of node 
n, and the number of neighbors of node n, respectively.

A network’s clustering coefficient represents the aver-
age clustering coefficient of all nodes, where nodes con-
taining less than two neighbors are set to Cn = 0 in order 
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to avoid an overestimation of clustering in the presence 
of many singletons.

Profiling evolutionary dynamics of inter‑chromosomal 
contacts
For each 500 kb genomic bin, we estimated the inter-
chromosomal contact ratio by dividing the inter-
chromosomal contacts by the sum of intra- and 
inter-chromosomal contacts aligned to their respec-
tive bins. We further calculated Spearman’s correlations 
between samples from different species, and summa-
rized the between-species correlations using the aver-
age of biological replicates. Moreover, we compared the 
between-species divergence time and summarized cor-
relation, and estimated their agreement using Pearson’s 
correlation.

Identification of A/B compartments
Compartments A/B were identified using both princi-
pal component analysis (PCA; eigenvector decomposi-
tion) and AB index, as previously described [73]. Briefly, 
a Pearson correlation matrix at 100 kb resolution was 
generated using the “cor” function in R. PCA was per-
formed on the correlation matrix using the “prcomp” 
function in R. The first 3 PCs were then obtained. Bins 
at 100 kb resolution with a positive Spearman’s correla-
tion between PC1 values and gene density were defined 
as compartment A (at 100 kb resolution). The other bins 
were classified as compartment B (at 100 kb resolution). 
Subsequently, the AB index was calculated at 20 kb res-
olution, which represents the relative likelihood of a 
sequence interacting with either A or B defined at 100 kb 
resolution. The 20 kb bins with positive AB index values 
(more association with A) were classified as compart-
ment A, while those with negative AB index values (more 
association with B) were classified as compartment B.

RNA‑sequencing
Total RNA was isolated from fibroblasts using the stand-
ard TRIzol method (Invitrogen). RNA-seq libraries were 
sequenced on an Illumina HiSeq X Ten. Paired-end reads 
were aligned to reference genomes using STAR (2.6.0c) 
[74]. Transcript quantification was conducted with 
kallisto (0.44.0) [75].

We first used gene expression values estimated by 
RNA-seq in the twelve different vertebrate species. We 
restricted the analyses to the set of 7846/6322/4881 pro-
tein-coding genes that could be identified as single-copy 
orthologous genes across the 10/11/12 species, respec-
tively, and used log2-transformed expression values 
(TPM + 1) for genes with > 0.5 TPM. For across species 
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RNA-Seq data comparison, we normalized these expres-
sion values in the way described in a previous study [76].

Characteristics (GC content, RNA expression, 
and proportion of TEs) for compartments A/B
We divided the genomes of each species into 20 kb com-
partment A/B bins according to the AB index values of 
each bin, then calculated the GC content of each bin, 
and calculated the proportion of each TE type in each 
20 kb bin based on the four classified TE types (SINE, 
LINE, DNA, and LTR). For the levels of gene expres-
sion of each individual in the 20 kb window, for a single 
gene in the 20 kb window (i.e., the TSS was in this bin), 
the log2(TPM + 1) of this gene was used as the expression 
level for this 20 kb bin; if the 20 kb bin contained multiple 
genes, the after log2(average TPM + 1) of these genes was 
used as the expression level for this 20 kb bin.

Continuous‑trait probabilistic model for comparing 
multi‑species AB index and insulation score data
To obtain AB index values in the orthologous genome 
regions across the ten mammalian species, we collected 
the AB index and insulation score values for each 10 kb 
bin of the human genome and its orthologous regions 
in each of the other species. First, the genome assem-
blies (Human (GRCm38.p3), Mouse (GRCm38.p4), Rat 
(Rnor6.0), Rabbit (OryCun2.0), Rhesus (MMUL_1.0), 
Cow (UMD3.1), Sheep (Oar_v3.1), Pig (sscrofa10.2), 
Cat (Felis_catus_6.2), and Dog (CanFam3.1)) were 
downloaded from the UCSC genome browser (http://​
genome.​ucsc.​edu/). Second, we used the human genome 
(GRCm38.p3) as the reference and divided the reference 
genome into 10 kb bins. We then aligned each bin in the 
human genome to each of the other species with recipro-
cal mapping using liftOver (https://​genome.​ucsc.​edu/​cgi-​
bin/​hgLif​tOver) to obtain the orthologous regions.

We further applied Phylo-HMGP [36], a probabilistic 
model-based approach for phylogenetic hidden Markov 
Gaussian processes, that enables classification of the 
genomic regions into a predefined number of states, tak-
ing into consideration both spatial dependencies along 
the entire genome as well as temporal dependencies 
across species in the phylogeny.

In order to confirm conservation of compartment A/B 
and insulation condition in other tissues and cell lines, 
we downloaded human Hi-C data [37] obtained from 14 
tissues and 7 cell types (GSE87112). We first calculated a 
consistent compartment A/B or IS ratio in these 21 tis-
sues or cell types, compared with the previously classi-
fied Conserved A/B compartments (CA and CB) or IS. 
Second, we randomly assigned the true A/B indices or 
insulation scores of these 21 tissues or cell types to the 
whole genome; then, we also calculated a consistent 

compartment A/B or IS ratio. Wilcoxon rank-sum test 
was used to determine the significance of consistency 
between our classified conserved compartments or IS 
and real compartment or IS states in other tissue or cell 
types.

Identification of topologically associated domains (TAD)
The normalized contact matrix was used as input to 
perform TAD identification as previously reported 
[7]. Directionality index (DI) was calculated to 2 Mb 
upstream and 2 Mb downstream along the center of 
each bin at 20 kb resolution and hidden Markov model 
(HMM) was then used to predict the states of DI for final 
TAD generation.

We used the same criteria for 400 kb resolution (dis-
tance between the two adjacent TADs) to distinguish 
unorganized chromatin from topological boundaries, 
that is the topological boundaries were less than 400 kb 
and the unorganized chromatin was greater than 400 kb 
[7].

Transcriptional start site (TSS) enrichment analysis
We downloaded the GTF files of our selected 12 spe-
cies from the Ensemble Database (http://​asia.​ensem​bl.​
org/​index.​html) and extracted the TSS information for 
protein coding genes from GTF files by custom python 
scripts. For enrichment analysis, we identified the mid-
point of each boundary region and calculated the density 
of transcription factors in 10 kb bins for +/− 500 kb from 
the mid-point.

A list of human housekeeping genes was downloaded 
from http://​www.​tau.​ac.​il/​~elieis/​HKG/. To obtain 
housekeeping genes of other species, we used the gene 
symbols for human genes to identify the corresponding 
genes in other species.

CTCF motif calling and calculation of 3DR
We used the vertebrate CTCF motif position frequency 
matrix MA0139.1 from the JASPAR database (http://jas-
par. gener​eg.​net/). We scanned CTCF binding sites on 
the following genome assemblies: bosTau8, canFam3, fel-
Cat5, galGal5, mm10, oryCun2, danRer10, oviAri3, hg38, 
rheMac8, rn6, susScr11.1. For this purpose, we used 
MEME FIMO program with default parameters (http://​
meme-​suite.​org/​doc/​fimo.​html). A quantile of 70% was 
used as a threshold for further analyses.

We estimated the following ratio 3DR:

that was the ratio of two medians: the median of the 
distances between two contiguous motifs in conver-
gent orientation (noted “→ ←”) and the median of the 

3DR = median(d→←)/median(d←→)

http://genome.ucsc.edu/
http://genome.ucsc.edu/
https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/cgi-bin/hgLiftOver
http://asia.ensembl.org/index.html
http://asia.ensembl.org/index.html
http://www.tau.ac.il/~elieis/HKG/
http://genereg.net
http://meme-suite.org/doc/fimo.html
http://meme-suite.org/doc/fimo.html
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distances between two contiguous motifs in divergent 
orientation (noted “← →”) [39]. A 3DR significantly 
greater than one reflects CTCF looping in the genome.

Conserved non‑coding element (CNEs) distributions 
in TADs
The CNE information for our selected 12 species was 
downloaded from CEGA database (https://​cega.​ezlab.​
org/) [77]. We screened the CNEs using phastCons with a 
cut-off of ≥ 0.95 and length > 200 bp. We then calculated 
the CNE distributions in TADs as follows: we enlarged 
TAD regions by 50% of their total length on each side, 
then subdivided the TAD regions into 20 equal-sized bins 
and computed the number of overlapping CNEs.

TAD conservation across 12 species
We introduced conservation scores to quantify the con-
servation of TADs across species, which were deter-
mined by the position of orthologous genes within TADs 
between species [40]. We used each species genome as a 
target and other genomes as the query. Only the single 
copy orthologous genes between any two species were 
used to compute conservation scores.

If a TAD in the target (reference) genome contained 
one or more conserved gene pairs, we counted this as 
intra-TAD conservation. When inter-TAD gene pairs 
occurred together in the reference species on the same 
chromosome as in target species, we counted this as 
inter-TAD conservation. Both intra- and inter-TAD con-
servation scores were calculated as the percentage of 
TADs in which they occurred.

Co‑expression of intra‑TAD genes
To determine whether genes in the same TAD had a 
higher probability of co-expression, we calculated the 
Pearson correlation coefficient for all neighboring genes 
on a chromosome. We then selected gene pairs that had 
a correlation coefficient > 0.9 and stratified the gene pairs 
based on whether they were found in the same TAD or 
not. We scored the correlation coefficients at different 
distances, where d = 0 representing immediately adjacent 
genes, d = 1 for gene pairs with one gene in between, et 
cetera. We performed our analysis separately on seven 
species (human, mouse, rabbit, sheep, pig, dog, and 
chicken) with at least three biological replicates.

Compiling TEs, correlation analysis between TEs and other 
chromatin characters
The coordinates of TEs in each genome of the 12 species 
were downloaded from the UCSC (http://​genome.​ucsc.​
edu) database. Based on the classification, we divided all 
TEs into four major types (LINE, SINE, LTR, and DNA) 

and discarded the TEs with uncertain categories. The 
proportion of certain TE types or TE families was defined 
as the number of nucleotides in the chromatin interac-
tion bin-pairs using the length and annotation of TEs.

To further explore the role of TEs in distal regula-
tion in vertebrate genomes, we then compiled the Hi-C 
data and TE annotation for the 31 fibroblasts to con-
duct correlation analysis. We used the mean frequency 
of inter-domain CI (chromatin interaction) frequency 
as the lower threshold for each cell line and discarded 
all the bin-pairs whose CI frequencies were lower than 
the threshold in all cell lines (assuming they were non-
informative or background noise). We then calculated the 
number of bin-pairs to be filtered out by setting upstream 
thresholds, and finally removed the CI frequencies with 
less than 100 bin-pairs by 1 in successive steps (to ensure 
there were enough bin pairs to evaluate mean proportion 
of TE). After applying the upper thresholds in each cell 
line, the removed bin-pairs only occupied from ~ 0.02% 
in rhesus to ~ 0.27% in chicken fibroblasts. Finally, we 
were able to retain ~ 1,044,957 bin-pairs for chicken to 
~ 5,112,162 bin-pairs for human.

The Pearson correlation coefficient (PCC) between the 
proportion of different TE families and the CI frequen-
cies in each bin-pair were calculated. Finally, combining 
the AB index value of each sample for every 20 kb bin, the 
PCC between AB index and the proportion of TEs (SINE, 
LINE, DNA and LTR) was calculated using the ‘cor’ func-
tion in R.

Identification of putative enhancer regions
We identified the putative enhancer regions by PSYCHIC 
[78]. The 20 kb normalized contact matrix was split into 
a smaller matrix (20 Mb × 20 Mb) with 10 Mb steps of 
overlapping length, and we analyzed the resultant matrix 
in PSYCHIC. Subsequently, overrepresented interac-
tions were identified by PSYCHIC at default parameters 
with promoter regions. Promoter regions were defined as 
2000 bp upstream to 500 bp downstream of the TSS site. 
When at least one non-promoter region was in either one 
of the two bins involved in a chromatin interaction and 
one promoter in the other, this interaction was desig-
nated as a putative promoter-enhancer interaction (PEI). 
The genome coordinates of PEIs in each split were then 
adjusted into the initial position by housing-scripts. We 
then kept the high confidence PEIs with FDR values ≤ 
0.01 and interaction distance ≥ 20 kb. The non-promoter 
region in these high confidence PEIs were defined as 
putative enhancers.
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