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1  | INTRODUC TION

Inflammation is associated with the development of many diseases 
including cancer.1,2 Under normal physiological conditions, the im‐
mune system eliminates pathogens and unwanted cells such as those 
that are damaged, senescent, or immature. However, cancer hijacks 
this system to ensure tumor survival and long‐term growth. Cancer 
cells recruit immune cells such as macrophages, neutrophils, and 
MDSC to form a microenvironment known as a “niche.”3 Cancer cells 
and their niche cells produce various cytokines, chemokines, growth 
factors, ECM proteins, and proteases that promote tumor growth 
and metastasis.

C‐C motif chemokine 2 (CCL2, also known as monocyte che‐
moattractant protein 1) and its receptor CCR2 have attracted much 

interest in recent years because of their relation to cancer progres‐
sion.4,5 Although CCL2 was first described as a cytokine with a 
physiological role in the regulation of inflammation,6,7 more recent 
studies have shown a protumorigenic function of CCL2 in the pro‐
motion of cancer development and metastasis (Figure 1). Binding of 
CCL2 to CCR2, a G protein‐coupled receptor, triggers intracellular 
signaling in cancer and other cell types. CCL2‐CCR2 signaling pro‐
motes cancer progression by supporting cancer cell proliferation and 
survival, inducing cancer cell migration and invasion, and stimulat‐
ing inflammation and angiogenesis.8 CCL2 is secreted by many cell 
types including endothelial cells, fibroblasts, monocytes, and can‐
cer cells, whereas CCR2 is expressed at a high level in inflammatory 
monocytes, dendritic cells, and natural killer cells as well as at a low 
level in neutrophils and T and B lymphocytes. In the early stages 
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Abstract
Inflammation plays an essential role in the development and progression of most 
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ganogermanium compound that is given for the treatment of hepatitis B in Japan and 
which inhibits the CCL2‐CCR2 signaling pathway. Herein, we review the importance 
of the CCL2‐CCR2 axis as a target in cancer treatment as shown by studies in mice 
and humans with pharmacological agents including propagermanium.
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of metastasis, CCL2 guides tumor cell migration by interacting with 
CCR2 expressed on the surface of cancer cells.9,10 CCL2 also induces 
expression of MMP2 and MMP9 in cancer cells, both of which facili‐
tate cancer cell invasion,11,12 and it promotes the intra‐ and extrava‐
sation of cancer cells by attracting TAM.13 TAM and MDSC recruited 
by CCL2 trigger an angiogenic switch14,15 and suppress immune‐me‐
diated attack of cancer cells.16 In addition, CCL2 attracts cancer cells 
to future sites of metastasis and supports their proliferation and sur‐
vival at such premetastatic niches.17

Increased levels of CCL2 in tumor cells or serum have been 
detected in individuals with melanoma or with breast, prostate, 

colorectal, gastric, or ovarian cancer, and they are frequently as‐
sociated with disease progression, tumor grade, or metastasis, 
suggestive of the clinical importance of the CCL2‐CCR2 signal‐
ing pathway.18‐27 These observations also suggest that targeting 
of the CCL2‐CCR2 axis might be an effective strategy for cancer 
treatment.

Herein, we review currently available agents that target the 
CCL2‐CCR2 axis and studies of their efficacy for cancer treatment. 
Among such agents, we focus on an organogermanium compound, 
PGe (3‐oxygermylpropionic acid polymer), that has been shown to 
act as a blocker of CCR2 signaling.

F I G U R E  1   Role of chemokine C‐C motif chemokine 2–C‐C chemokine receptor type 2 (CCL2‐CCR2) signaling in cancer progression. 
CCL2 is secreted by cancer cells and surrounding stromal cells. It induces tumor cell proliferation at the primary tumor site, and CCR2+ 
myeloid cells attracted by CCL2 suppress immune‐mediated killing of tumor cells. CCL2 also promotes tumor cell migration and invasion 
into the surrounding ECM followed by tumor cell intravasation into the circulation. The subsequent dissemination of cancer cells is directed 
by a chemotactic gradient of CCL2 toward potential sites of metastasis. CCL2 and CCR2+ cells then promote tumor cell extravasation and 
colonization and growth at such metastatic sites
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2  | INHIBITORS OF THE CCL2‐ CCR 2 A XIS

2.1 | Antibodies to CCL2 and CCR2

Experimental studies and clinical information have implicated the 
CCL2‐CCR2 axis in tumor promotion and suggested that its inhibition 
might be of therapeutic value. One approach to inhibition of this axis 
is the administration of neutralizing antibodies to CCL2, which has 
been shown to suppress the growth of tumors formed by transplanted 
human prostate,28,29 breast,30 or pancreatic31 cancer cells in mice as 
well as to attenuate macrophage infiltration in breast cancer. This 
strategy was also found to inhibit metastatic seeding in the lung and 
to prolong survival in mice with tumors formed by transplanted human 
breast cancer cells32or mouse melanoma cells.33 Administration 
effects of antibodies to CCL2 were associated with inhibition of the 
recruitment to the tumors of CCR2+ inflammatory monocytes.

Antibodies to human CCL2 have been evaluated for safety, 
pharmacokinetic‐pharmacodynamic profile, and antitumor activ‐
ity in cancer patients. Phase 1 clinical trials (NCT00537368 and 
NCT01204996) and a phase 2 study (NCT00992186) for a mAb to 
human CCL2 (CNTO888, carlumab)34‐36 showed that it induced a 
transient decrease in the concentration of CCL2 in serum, but that 
this decrease was followed by an increase to levels higher than pre‐
treatment baseline values. Pharmacodynamics analysis indicated 
that, in contrast to its high affinity for CCL2 (dissociation constant 
of 15 pmol/L) in vitro, the affinity of CNTO888 for CCL2 was much 
higher (dissociation constant of 2.4 nmol/L) in patients, suggestive of 
a reduced capacity to inhibit CCL2 in vivo.34

Another phase 2 clinical trial (NCT01015560) with a humanized 
mAb to CCR2 (MLN1202, plozalizumab) was conducted with regard 
to treatment of bone metastasis of unspecified tumors.37 MLN1202 
was given to 44 patients with bone metastasis to evaluate its effects 
on tumor cell proliferation, monocyte‐macrophage trafficking, and 
osteoclast maturation. Urinary concentration of N‐telopeptide, a 
biomarker of bone turnover, was decreased in 14% of the treated pa‐
tients, and serious adverse events developed in 7% of the patients. 
A phase 1 clinical trial (NCT02723006) of MLN1202 in combination 
with the immune‐checkpoint inhibitor nivolumab for patients with 
advanced melanoma was terminated as a result of the emergence 
of serious adverse events. Together, these results suggest that anti‐
bodies to CCL2 and CCR2 have limited potential for cancer therapy.

2.2 | Small‐molecule compounds

As an alternative to neutralizing antibodies, chemical agents 
have been shown to restrain cancer progression by inhibiting 
the CCL2‐CCR2 axis. Treatment with one such small‐molecule 
antagonist of CCR2 (PF‐04136309) alone or in combination with 
gemcitabine slowed tumor progression and reduced the number 
of infiltrating TAM in mice subjected to orthotopic transplantation 
of established PDAC tumors.38 Similar results were obtained when 
PF‐04136309 was combined with FOLFIRINOX chemotherapy 
in mice.39 PF‐04136309 in combination with gemcitabine also 

completely inhibited metastasis of pancreatic cancer cells injected 
into mice through the tail vein.40 In addition, PF‐04136309 
treatment significantly attenuated lung metastasis of lung squamous 
carcinomas cells injected i.v. in mice.41 Giving CCX872‐B, another 
small‐molecule antagonist of CCR2, prolonged overall survival in a 
mouse model of breast cancer, although it neither extended tumor‐
free survival nor suppressed tumor growth.42

On the basis of the preclinical findings for the potential of 
PF‐04136309 for treatment of pancreatic cancer, a phase 1 clinical 
trial (NCT01413022) was conducted for this agent in combination 
with FOLFIRINOX in patients with nonmetastatic PDAC.43 Incidence 
of adverse events of grade 3 or higher in patients treated with 
FOLFIRINOX plus PF‐04136309 was similar to that in those who re‐
ceived FOLFIRINOX alone. Treatment with PF‐04136309 prevented 
the PDAC‐mediated mobilization of bone marrow‐derived CCR2+ 
monocytes into the peripheral circulation, resulting in a decrease 
in the number of TAM. Approximately half of the patients treated 
with FOLFIRINOX plus PF‐04136309 achieved an objective tumor 
response, suggesting that such therapy is both effective and tolera‐
ble. A phase 1b/2 clinical study of PF‐04136309 in combination with 
nab‐paclitaxel and gemcitabine in patients with metastatic PDAC 
(NCT02732938) was terminated as a business‐related decision by 
Pfizer. Clinical trials of small‐molecule CCR2 blockers for patients 
with other inflammatory diseases such as insulin resistance, multi‐
ple sclerosis, nonalcoholic steatohepatitis, and rheumatoid arthritis 
have also been conducted (Table 1).

3  | CHEMIC AL AND PHARMACOLOGIC AL 
PROPERTIES OF PROPAGERMANIUM

Organogermanium compounds manifest various biological actions 
including antibacterial and antioxidant effects, effects on the 
blood circulation system, and anticancer activities. PGe, with the 
formula (C3H5GeO3.5)n, is the only approved medicine among such 
compounds. It was discovered in 1979 together with other organic 
germanium polymers, and it was approved for the treatment of 
chronic hepatitis B in Japan in 1994, having now been given to 
such patients for 25 years. PGe has the same essential formula as 
RGe (or Ge‐132), poly‐trans‐[(2‐carboxyethyl) germasesquioxane] 
or (C18H30Ge6O21)n, although the physicochemical properties of 
the two compounds are distinct.44 PGe is thus more susceptible 
to hydrolysis by water than is RGe. At low concentrations, PGe 
and RGe are hydrolyzed to the same monomer species. At high 
concentrations, however, whereas RGe is hydrolyzed to the same 
monomer, PGe is hydrolyzed to GeSP (Figure 2).

PGe exerts immunomodulatory effects through interaction with 
glycosylphosphatidylinositol‐anchored proteins associated with 
CCR2. It thus interrupts the CCL2‐CCR2 signaling pathway and 
thereby suppresses the chemotaxis of monocytes‐macrophages 
without disrupting the receptor‐ligand interaction.45 Inhibition 
of such signaling by treatment with PGe promotes retention of all 
leukocyte subsets—in particular, inflammatory monocytes—in bone 
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marrow, resulting in a reciprocal reduction in the number of these 
cells in peripheral blood and consistent with the suppressive effect 
of PGe on a range of chronic inflammatory conditions mediated pri‐
marily by inflammatory monocytes and macrophages.

A double‐blind controlled trial of PGe was conducted with HBV 
antigen‐positive chronic hepatitis in the late 1980s.46 Titers of an‐
tibodies to HBV were significantly increased after treatment in the 
PGe group, whereas HBV antigen titers were significantly lower in 
the PGe group than in the placebo group. Serum HBV antigen levels 
and serum (ALT levels were significantly lower in the PGe group than 
in the control group at 12 and 16 weeks after treatment onset. PGe is 
also effective for the treatment of other types of liver injury in mice. 
Giving oral PGe thus inhibited the development of liver injury in‐
duced by injection of concanavalin A or lipopolysaccharide injection, 
Corynebacterium parvum infection or genetic deletion of fumarylac‐
etoacetate hydrolase.47‐49 PGe also has therapeutic effects in other 
inflammatory diseases such as atherosclerosis,50,51 fibrosis,52‐54 and 
obesity induced by a high‐fat diet.55‐57

4  | PROPAGERMANIUM FOR TRE ATMENT 
OF C ANCER

Recent studies have shown that interference with key mediators of 
metastatic development is a promising alternative strategy for cancer 
treatment. The CCL2‐CCR2 signaling pathway is an attractive thera‐
peutic target in such an approach, given its key functions in metastasis 
described above. We previously showed that Fbxw7 (also known as 

Fbw7, Sel‐10, hCdc4, or hAgo), a receptor protein of SCF (Skp1‐Cul1‐F‐
box protein)‐type ubiquitin ligases, suppresses cancer metastasis by 
inhibition of CCL2‐dependent inflammation.58 A low level of Fbxw7 in 
tumor cells and peripheral blood is associated with poor prognosis in 
cancer patients. Moreover, mice in which Fbxw7 is specifically ablated 
in bone marrow (Fbxw7bmΔ/Δ mice) manifest enhanced metastasis of 
melanoma, lung carcinoma, and breast adenocarcinoma. Serum level 
of CCL2 was also increased in Fbxw7bmΔ/Δ mice compared with control 
mice both before and after orthotopic transplantation of breast cancer 
cells. In addition, the numbers of Ly6C+ Mo‐MDSC and F4/80+ mac‐
rophages were increased in peripheral blood and at sites of metastasis 
in Fbxw7bmΔ/Δ mice (Figure 3).

Giving PGe significantly attenuated metastasis of melanoma 
cells and breast cancer cells in Fbxw7bmΔ/Δ mice, with the size of 
metastatic nodules of breast adenocarcinoma in the lungs being 
reduced.58 Such treatment also reduced the number of Ly6C+ Mo‐
MDSC found in the lungs of Fbxw7bmΔ/Δ mice after transplantation 
of breast cancer cells (Figure 3).

Treatment with PGe in a mouse model of colon carcinogenesis 
reduced the number and size of tumors as well as the number of 
TAM, and it attenuated adenocarcinomatous changes in the colon tu‐
mors.59 A phase 2 clinical trial (UMIN000017123) is underway to as‐
sess the efficacy of PGe in 15 patients with untreatable advanced or 
metastatic gastric cancer. Another study found that PGe treatment 
in 10 multiple myeloma patients resulted in complete remission in 
two patients, partial remission in two patients, stable disease in four 
patients, and progressive disease in two patients.60 After discon‐
tinuation of PGe, the multiple myeloma progressed in two patients 

F I G U R E  2   Solid and water‐soluble 
forms of propagermanium (PGe) and 
repagermanium (RGe). GeSP, germanium 
straight‐chain polymer
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who had achieved stable disease and in the two patients who had 
achieved partial remission. Phase 1 studies are also ongoing to eval‐
uate the safety and effectiveness of PGe for patients with breast 
cancer (UMIN000022494), pancreatic cancer (UMIN000017715), 
and colorectal cancer (UMIN000022129).

5  | CONCLUSIONS

The CCL2‐CCR2 signaling pathway plays a central role in inflammatory 
diseases including cancer metastasis. Treatment targeted to CCR2 such 
as that with PGe alleviates pathological phenotypes associated with 
these diseases. PGe has been approved for the treatment of hepatitis B 

in Japan, and its bioavailability and safety have been established. Drug 
repositioning, which aims to identify new indications for existing drugs, 
has been gaining popularity as an approach to drug discovery. PGe is 
thus a candidate for drug repositioning with regard to its suppressive 
effect on cancer metastasis. Further studies will determine whether 
this agent is truly effective for the treatment of cancer.
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F I G U R E  3   Model for the promotion of cancer metastasis by loss of Fbxw7 in the host environment and its suppression by treatment with 
propagermanium (PGe). Excessive signaling by Notch1 due to the impairment of its degradation as a result of Fbxw7 ablation gives rise to 
increased production of chemokine C‐C motif chemokine 2 (CCL2). Consequent recruitment of monocytic myeloid‐derived suppressor cells 
(Mo‐MDSC) and tumor‐associated macrophages (TAM) facilitates metastatic tumor growth. PGe suppresses CCL2‐dependent recruitment of 
Mo‐MDSC and TAM and thereby attenuates cancer metastasis. CCR2, C‐C chemokine receptor type 2
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