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Abstract

Causal analysis (CA) is a strong quantitative approach whose mechanisms have

climatic predictions. In this study, we studied the patterns of causality (PC) on the

effect of rainfall (ER) using climatic series collected from 170 stations for the

period 1975e2014 in Iran. Next, we predicted the causal relationships of climatic

variables using causal models, including first-generation techniques (FGT),

second-generation techniques (SGT), third-generation techniques (TGT), and

causal hybrid techniques (CHT). Then, we estimated the causal models using

partial squares algorithms (PSA), mechanical equations modeling algorithms

(MEMA) such as exploratory and confirmatory methods, and spatial variability

methods such as geostatistics and spatial statistical methods. Finally, we evaluated

the quality of the methods using the goodness of fit indices, including absolute fit

indices (AFI), comparative fit indices (CFI), and parsimonious fit indices (PFI).

The results showed that CHT algorithm more suitably predicted the climatic

spatiotemporal effect variability (SEV) by extracting direct, indirect, and total

effects of climatic variables. Based on the CHT algorithm, the highest and lowest

effect values were observed in total effects of winter rainfall (0.98) and summer

rainfall variables (0.1), respectively. The SEV ranged from 0.8 to 0.98 for the

winter rainfall total effects of CHT in Iran. Using CHT, most of the predicted

SEV, particularly the rainfall series, displayed SEV varying from 80% to 98% of
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the winter rainfall total effects to the annual rainfall in Iran. Similarly, based on the

CHT, the highest and lowest SEV values were in western, eastern, and southern

regions and in central regions, respectively. In addition, the SEV varied within

the range of 0.6e0.74 (varying from 60% to 74% for the autumn rainfall total

effects of the annual rainfall in Iran) for the autumn rainfall total effects in Iran.

Finally, the SEV of this type of analytical pattern as well as designated subject of

CA applications in the atmospheric science and environmental science are discussed.

Keywords: Atmospheric science, Environmental science

1. Introduction

Climatic effect variability (CEV) can represent itself as a direct or indirect technique

for pattern scheming of causality made based on the climatic factors and variables

(Javari, 2017b). Reproduction of CEV is the important process in climatic variables

effect evaluated with the suggested CPSRM, PLS and GIS algorithms in climate

(Zheng et al., 2017). In the climatic CPSRM process, rainfall variability is the initial

cause of the analysis of climatic effect variability (CEV) at time phases (Javari,

2017f; L€aderach et al., 2017). The climate effect differs in various temporal and

spatial models. All the climatic models predict that the relationships between cli-

matic factors and variables in different areas are studied to be simulated. Therefore,

various models to predict effect variability of climatic factors and variables are used

(Cui et al., 2017; Javari, 2017a; L€aderach et al., 2017; Li et al., 2017). In recent years,

various CPSRM have been applied in analyzing effect of climatic factors and vari-

ables on spatiotemporal levels checking numerous effects in the climate system

(Javari, 2017d; Azari et al., 2017; Untenecker et al., 2017; Ciervo et al., 2017;

Wang et al., 2017a). However, there are studying facts displaying that climatic vari-

ables and suitable factors were not studied (Wang et al., 2017a,b; Hermwille et al.,

2017; Frankel et al., 2009; Howarth et al., 2017). In addition, climatologists consid-

ered their causal and non-causal effect short time in the past (Wang et al., 2017a),

and the application of causal and non-causal effect methods to predict the climatic

temporal-spatial variability such as rainfall, temperature and humidity in various re-

gions (Javari, 2017b; Mostafaeipour et al., 2017; Li et al., 2017). The number of

causal and non-causal effect models applications in climatic CPSRM changes, and

the progress of causal models is well used by various climatic disciplines to some

exceptional studies (Hewitt et al., 2017) such as that of Hewitt et al. (2017). How-

ever, the subject of causal models such as CPSRM, PLS and GIS has considered

only partial application in the climatic CPSRM thus far, thereby diminishing to apply

causality models to its detailed ability in its effect to predict the climatic effect vari-

ability (CEV) (Hewitt et al., 2017; B€uhlmann et al., 2014; Javari, 2017b). Climatic

effect variability (CEV) is structured as a multi-effect level according to CPSRM,
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PLS, and GIS models on climate, and FGT has been formulated a mono-sided anal-

ysis pattern on analysis of climatic changes (Tenenhaus et al., 2005). FGT models

include the measurement scheme (MS), controlling climate, and effect patterns

(EP) (Drton and Maathuis, 2017). Mechanical-causal models (SCM) manages

climate and effect patterns (EP). In addition, climatic effect variability (CEV) is

structured as a multi-causal level according to CPSRM, PLS and GIS models on

climate, and SGT has originated from a monophonic-sided examination pattern on

studying climatic changes. SGT models include the reflective technique (RM) and

formative technique (FT) controlling climatic latent variables (CLV), and the effect

scheme is produced by its own climatic manifest variables (CMS) (Cui et al., 2017).

SGT measurement and mechanical-causal models (SCM) manage climate, and effect

variability spatially and temporally. The difference between the RM and the FT is the

one in the formative technique, and it is considered that the CLV is produced by its

particular CMS, while in the reflective technique, it is measured that CMS is formed

by its specific CLV (Temme et al., 2006; Henseler and Fassott, 2010). In this study,

by referring to “mechanical-causal models of effect”, covariance-based analysis or

causal processes and mechanical relations (CPSRM) is a generalized exploratory

and confirmatory causal technique (Lomax and Schumacker, 2012), as it is mainly

suitable to analyze climatic effect variability (CEV) and systematic relationships of

variables in climate (Javari, 2017d). Patterns of partial least squares (PLS) in climatic

CPSRM are developed, and the applications of PLS are well applied by some climate

disciplines (Javari, 2017b). On the other hand, the subject of PLS statistical applica-

tions has been established only to analyze RM and FT applications (Javari et al.,

2016; Tenenhaus et al., 2005). Patterns of partial least squares mechanical equation

modeling (PLS-CPSRM) in climatic CPSRM are combined, and applications of

PLS-CPSRM are well used by some climate subjects. Patterns of PLS-CPSRM in

climatic CPSRM are combined to predict direct effects as well as indirect effects

and total effects, being well employed by path diagrams and path coefficients in

the climate analysis (Javari, 2017b). In analyzing PLS-CPSRM models, factors

are the latent variables separated as linear patterns of the observed variables. In

one climatic PLS-CPSRM modeling, PLS algorithms (i.e., inner models as phase

among path coefficients, total effect coefficients, and indirect effect coefficients,

outer models as a sequence of path coefficients and path loadings and constructs

as R-square coefficients) consider some essential components. In one climatic

CPSRM modeling, CPSRM algorithms (i.e., measurement models as phase among

path coefficients, total effect coefficients, and indirect effect coefficients, mechanical

models as a sequence of path coefficients and R-square coefficients) consider some

essential components. The third scenario has a special method to analyze effect and

causality. This method determined a GIS-based spatial modeling of climatic vari-

ables using geostatistical techniques as GIS algorithms. The GIS algorithms were

also used in the GIS tools in Iran to predict the climatic effect variability (CEV)

based on several synthetic maps of the effect spatial variability of climatic variables
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such as that of Cai et al. (2017). Finally, based on the methods and models in the

hybrid algorithm to analyze effect and causality multi-spectral analysis as Compre-

hensive algorithm, the article objective to reveal how to predict a climatic effect vari-

ability (CEV) to simulate the climatic effect spatiotemporal variability aiming at

optimizing climatic classification. The purposes of this study are to (1) examine

the PLS algorithms properties of climatic variables in Iran, (2) analyze the CPSRM

algorithms properties of climatic variables in Iran, (3) explore the GIS algorithms

properties of climatic variables in Iran, (4) investigate the hybrid algorithm proper-

ties of climatic variables in Iran, and (5) review the results concluding the paper.
2. Materials & methods

2.1. Study area and data analyses

Iran is located in the southwest of Asia with a 25� 30e39� 470 N latitude and 44�

50e63� 180E longitude, and it is a mainly diverse landforms realm where two major

landforms, the mountainous (highlands) realm and the lowlands (plains) realm (has

an elevation range from �26 to 5671 m) (Javari, 2016b), separate different climatic

zones (relatively wet climate to dry climate) (Alizadeh-Choobari and Najafi, 2017).

Climatic data series during the period from 1975 to 2014 collected from the Meteo-

rological Organization of Iran (http://www.irimo.ir) were employed to predict the

climatic effect variability (CEV). In this study, there are 170 climatology and

synoptic stations, and data quality control was performed using various methods

such as normality, linearity, homogeneity, outliers, and lacking or missing data. As

all the series were complete, no reproduced method was required. For each station,

data series statistical properties were studied to analyze the CEV properties such as

normality, linearity, homogeneity, and outliers. First, various generalized first-

generation statistical parameters of data series were estimated for each station for

the organized period. Various climatic variables in different stations are used to

analyze the CEV in Iran. In this study, the selected data series include climatic vari-

ables and factors (annual temperature average, minimum temperature average,

maximum temperature average, dew point temperature, daily temperature, annual

precipitation, daily precipitation average, monthly precipitation, seasonal precipita-

tion, relative humidity average, maximum relative humidity, minimum relative hu-

midity, saturation ratio, wind speed, cloudiness, vapor pressure, saturation vapor

pressure, average pressure, maximum pressure, minimum pressure, and elevation).
2.2. Methods

2.2.1. An analysis for understanding causality procedures

First-generation techniques (FGT)falling within the group of statistical methods

(descriptive and inferential) theoretically could be used for a class of objectives,
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but here, the important object is suitable recognition of the performance of latent cli-

matic variables using regression, factor, cluster, correlation, and causal processes

and mechanical relations (CPSRM) methods (Lomax and Schumacker, 2012).

From a technical viewpoint, these hidden climatic variables are independent vari-

ables, like the response (answer) variables, that were directed at the origin of

cross-products relating to the response variables (Sorooshian, 2017). While hidden

climatic variables may be considered CPSRM-based modeling variables, these

CPSRM modeling variables analyze their direct, indirect and total causal effects

in the climate system. From a climatic viewpoint, only the observed variables would

be considered the climatic effect variability (CEV). CPSRM is a statistical method to

assess effects between climatic observed (indicator or manifest) and hidden variables

(unobserved variables or factors) (Driver et al., 2017). A FGT define a component-

based approach using a type of principal components analysis to construct hidden

variables to series analyzed under a specific climatic effect variability (CEV).

Furthermore, for climatologists, climatic hidden variables are in contrast to the estab-

lished CPSRM using a type of ordinary factor analysis to produce climatic hidden

variables. However, this background has classified two types of variables: the hidden

climatic variables obtained in conceptual models, and the observed variables located

in the data series. The CPSRM methods obviously combine a specific climatic type

of variable (Lomax and Schumacker, 2012). In this context, the climatic components

in the climatic-constructed CPSRM, and the combinations in multiple-climatic

causal processes and mechanical relations are collected and analyzed as “multiple-

climatic variables” (Javari, 2017b), and well-defined as climatic effect variables

(CEVs) used for climatic effect variability (CEV). Climatic-constructed CPSRM

and multiple-climatic CPSRM use climatic variables, factors or multiple-climatic

variables to predict the effect and causal patterns. These patterns reflect different as-

sumptions (Westland, 2015) concerning the relationship between climatic observed

and hidden variables in a data series. Hidden variables reflected in CPSRM can

represent a wide variety of climatic relationships in a data series. Similarly, the cli-

matic observed-hidden spatiotemporal distinction also provides a way to take the

explanation of effect score reliability. Therefore, in addition to the essential statisti-

cal differences between the one-track-climatic-based and complex-climatic based

methods for climatic effect variability (CEV), there is an important path modeling

similarity (Javari, 2017d; Lomax and Schumacker, 2012). In addition, many basic

properties of CPSRM patterns were used in this CPSRM to follow the two main

aims: the investigation to recognize patterns of correlations in a climatic data series,

and to analyze the data variance as much as possible with the pattern used by the

climatologist to understand the causal processes and mechanical relations (CPSRM)

(Drton and Maathuis, 2017). The between-group relationships considered within a

CPSRM construction (Siied Abaszadeh et al., 2012) are adjusted using forecasted

influence to explain a CPSRM model based on experimental conditions to which

patterns are spatiotemporally assigned (Nainggolan et al., 2018). In the CPSRM,
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hidden variables analyzed in CPSRM are usually adopted to be continuous

(Westland, 2015). There are various procedures employed in analyzing effect

models in the climatic categorical hidden variables. The levels of a multi-hidden var-

iable are named “climatic causal patterns”, and they are a combination of climatic

sub-classes suggested from the data series (Hewitt et al., 2017). In other words,

this analysis pattern detects quality and type of hidden climatic causal patterns. Anal-

ysis of hidden climatic patterns is causal analysis, but for composite observed and

latent climatic variables (B€uhlmann et al., 2014). A different type of hidden climatic

causal pattern representing the change from one of the two different states such as

from an interactive relation or common effect to extractive or individual effect of

a capacity, is a hidden transition climatic causal pattern (Drton and Maathuis,

2017). Analysis of CPSRM models includes two types of effect analysis for the

observed composite and hidden climatic variables. Indirect effects analysis is statis-

tically estimated as the result of direct effects (as path coefficients), either standard-

ized or unstandardized (Javari, 2017g; Markus, 2012). Total effects are the sum of all

direct and indirect effects of one variable on another. Total standardized effects are

also explained as path coefficients, and unstandardized estimates of total effects are

determined similarly, but with unstandardized coefficients (Drton and Maathuis,

2017; Kline, 2015). In the application of first-generation techniques, multivariate

normality, the univariate outlier, linearity, homoscedasticity, missing observations,

multicollinearity, reliability and validity properties CHT be considered to analyze

the specific climatic effect variability (CEV) (Javari, 2017d). In this study, the cli-

matic components in the CPSRM-constructed model and the combinations in the cli-

matic multiple-variables model are analyzed as confirmatory-based analysis (CBA)

and exploratory-based analysis (EBA). In CPSRM, they (Javari, 2017b) are consid-

ered as climatic effect variables (CEVs) based on the measurement models (the re-

lationships between observed variables or indicators) and hidden variables or

climatic factors as mechanical models (the relationships between hidden variables)

for climatic effect variability (CEV). In addition, in this study, the climatic compo-

nents in the climatic-constructed CPSRM and the method in the multiple-climatic

CPSRM are used as maximum likelihood-based analysis. In the climatology, clima-

tologists use endogenous and exogenous variables. Exogenous hidden variables are

synonymous with independent variables; they “cause” variations in the values of

other latent variables in the model. They are reflected to be influenced by other fac-

tors external to the model. Endogenous hidden variables are synonymous with

dependent variables and therefore are influenced by the exogenous variables in

the model, either directly or indirectly (Sageghpour and Moradi, 2009). Measure-

ment and mechanical models are the term used to describe a situation in CPSRM

(Javari, 2017b). Partial least squares (PLS) analysis is used as an SGT to predict

the climatic effect variability (CEV) with independent and response variables

(Temme et al., 2006). PLS is a composite-based CPSRM, and a component-based

CPSRM (Henseler and Fassott, 2010; Keller et al., 2014), in comparison to CPSRM,
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using a set of independent variables to multiple response variables to predict the cli-

matic effect variability (CEV). PLS is two types of mechanical modeling being well-

defined as climatic effect variables (CEVs) dealing specifically with reflective mod-

elsdthat is, in the path, diagram arrows go from the hidden variable to the measured

indicator variables or climatic factorsdas formative components that is, the arrows

go from the observed measures to the hidden variables in the climatic effect vari-

ability (CEV). Partial least squares regression is an extension of the multiple linear

regression model. The standard algorithm to compute PLS components (i.e., factors)

is considered as nonlinear iterative partial least squares (NIPALS). Many variants of

the NIPALS algorithm exist, which normalize or do not normalize certain vectors. A

different assessment method for partial least squares regression factors is the

SIMPLS algorithm. To study the climatic effect variability (CEV) in Iran, we

used two broad types of measurement specification: reflective and formative mea-

surement models. The reflective measurement model has an extended method in

the climatology, and is directly based on standard test hypothesis whose amounts

represent effects of a causal hypothesis. As a result, causality is from the paradigm

to its amounts. In comparing, formative measurement models (confirmatory and

exploratory) are based on the method presented in the climatology that the indicators

produce the construct (Temme et al., 2006). To analyze the climatic effect variability

(CEV) in Iran, we used combined types of patterns: reflective and formative mea-

surement models (as a hybrid model). The PLS-CPSRM algorithm (hybrid model)

assesses all unknown patterns in the PLS path model in the climatic effect variability

(CEV) in Iran. After estimating the pattern scores by the algorithm, the scores are

used to estimate each PLS model in the path model (Henseler and Fassott, 2010).

As a result, we obtain the estimates for all relationships in the measurement and

the mechanical models (Hair, 2017). All PLS models are estimated by the PLS-

CPSRM algorithms, including two phases. In the first phase, the construct (hypoth-

esis) scores are calculated. Next, in the second phase, final calculators of the outer

CHT and loadings (path coefficients and the determination coefficient values) are

estimated (Drton and Maathuis, 2017; Hair, 2017). In using PLS- CPSRM, it is valu-

able to identify that the fit has different values in the frameworks of CPSRM and

PLS- CPSRM (Tenenhaus et al., 2005). Fit indicators for PLS-CPSRM are obtained

from the difference between the observed and the model-suggested covariance ma-

trix, hidden variables values and values calculated by the suggested model (Markus,

2012; Javari, 2017b). With the considerable change in the scientific technology in

climate, new technologies such as GIS has a considerable impact on climatic ser-

vices and climatic predictions. This article presents a broad GIS-based technology

suitable for climatic effect variability (CEV) analysis with different types of applica-

tions. The basic functions of the GIS-based technology include geostatistics, spatial

statistics, spatial analysis and layer production of maps (Xu and Zhang, 2013). The

analysis and forecast of climatic effect variability (CEV) are presented based on the

maps of FGT, GSHT, and TGT types. The monitoring CEV patterns control CPSRM
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models, PLS models, PLS-CPSRM models, and GIS-based PLS- CPSRM models

types using ArcGIS. Basic GIS-based PLS-CPSRM models, extracting the maps

of climatic effect variability (CEV), were then predicted in point data form using

the geostatistical methods using ArcGIS10.5 software (Zheng et al., 2017). We esti-

mated climatic effect spatial variability by ArcGIS10.5 using Geostatistical Analyst.

Since we were required to provide patterns of the climatic effect spatial variability

(CEPV) in Iran, we needed to predict the effect patterns of the climatic variables

(Javari, 2017c). Geostatistical method is a branch of statistics focusing on spatial

or spatiotemporal climatic series. Finally, we predicted the spatial variability of cli-

matic series effect (Armstrong and Champigny, 1989). Geostatistical techniques

depend on statistical patterns and methods based on the random function concept

to simulate the uncertainty combined with spatial prediction and estimation

(Honarkhah and Caers, 2010). Use of GIS-based PLS-CPSRM techniques such as

ordinary kriging (OK) and kriging interpolation techniques are some geostatistical

analytical tools in ArcGIS10.5 essential for climatic effect spatial variability

(CEPV). To understand climatic effect spatial variability (CEPV), perfect measur-

able methods such as GIS-based modeling (Javari, 2017d) and climatic data are

needed (Suryabhagavan, 2017). CEPV over the study area was characterized using

a set of techniques constructed by a GIS-based PLS-CPSRM project. The GIS-based

PLS-CPSRM project focuses on effect patterns spatially and temporally, such as the

elevation impact on rainfall (Javari, 2017b). The climatic data series nature assess-

ment was controlled by GIS-based modeling indicators (Westland, 2015). GIS-

based PLS-CPSRM project was organized to estimate 20 (absolute fit indices,

comparative fit indices, and parsimonious fit indices) indicators to estimate the

spatial variability in climatic effect patterns (CEP) over the study period (Javari,

2017g; Schumacker and Lomax, 2004).
2.2.2. Data quality assessment and FGT applications

Climatic data series (annual average temperature, average minimum temperature,

average maximum temperature, dew point temperature, daily temperature, annual to-

tal precipitation, daily average precipitation, monthly precipitation, seasonal precip-

itation (winter, spring, summer, and autumn), average relative humidity, maximum

relative humidity, minimum relative humidity, saturation ratio, wind speed, cloudi-

ness, vapor pressure, saturation vapor pressure, average pressure, maximum pres-

sure, minimum pressure, and elevation) from 170 stations belonging to the

Meteorological Organization (MO) of Iran for GIS-based PLS-CPSRM project anal-

ysis (GPMA) were used in Iran. All of the 170 climatology and synoptic stations

were collected for analysis based on the long-term data (40 years) and quality

with missing data for less than 5 percent. Various climatic variables at various sta-

tions were used to analyze the CEV in Iran. In this study, the selected data series

included climatic variables and factors. Statistical properties of the data series
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were analyzed using descriptive statistics through descriptive statistics such as coef-

ficient of variations (CV) to predict the statistical indications to classify extreme

changes in the data statistical distribution.
2.2.3. Causal processes-based modeling

Causal processes-based modeling, as a causal processes and mechanical relations

model (CPSRM), was initially established by Wold (1982) for casual analysis

(Nitzl, 2016). CPSRM is a statistical method to estimate relationships between cli-

matic variables (observed and hidden). To provide the CPSRM-based modeling

(Mclntosh and Gonzalez-Lima, 1994; Sorooshian, 2017), we represent climatic vari-

ables and components in climatic constructed CPSRM in Iran. The climatic con-

structed CPSRM divides the measurement model into climatic series and

mechanical modeling based on hidden variables (Westland, 2015). The models

are constructed, and the components of causal variability for climate classification

in Iran are represented. Each path model is depicted by the direct effect of manifest

variables to hidden variables and indirect effect of manifest variables to manifest and

hidden variables, and total effects for manifest variables to hidden variables and

manifest variables. Causal models in CPSRM-based modeling are essentially inte-

grated as climatic variables and components constructed for the causal processes-

based project of temporally daily, monthly, seasonal and annual data employed to

predict the climatic effect variability (CEV) in Iran. The aim of the CPSRM-based

modeling is to predict the effect patterns (EP) of employing three patterns in Iran.

Effect patterns (EP) of the climatic variables impacts are controlled by casual

models, that is, climatic effect variability model (CEVM) in Iran. This indicates

that the observed or hidden variables of the effect patterns (EP) can be defined as

either independent variables or dependent variables based on a confirmatory method.

However, CPSRM-based modeling in the climatic effect variability (CEV) combines

path models and confirmatory factor models. In other words, CPSRM-based models

include both climatic hidden and observed variables (Shook et al., 2004; Markus,

2012). A CPSRM-based model takes the relation of the effect direction of data series

in the modeling as a relative pattern for the independent variable in period causes

dependent variable in the next period. In addition to CPSRM-based model con-

straints, the direction of their relationship is also revealed by direct or indirect,

and total effects (Pakpahan et al., 2017). To depict the directions and their relation-

ship, we use variance and covariance values to predict the causal relations in the

model. Furthermore, to define the covariance without causal variability, we use

covariance functions. Climatic CPSRM-based modeling is a technique to explore

and confirm a climatic series of relationships and to design a measurable pattern

for each one based on the covariance among the climatic series (Richter et al.,

2016; Javari, 2017d). Climatic CPSRM-based modeling is basically the contempo-

rary scheming of multiple effect pattern based on predicting a series of parameter
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estimates such as path coefficients, and direct, indirect and total effects analyzing the

climatic effect variability (CEV) between the covariance schemed by the theoretical

model, and the covariance monitored among the climatic series (Javari, 2017b; Tan

et al., 2017). In this study, CPSRM-based different effect techniques, including

maximum likelihood (ML), climatic effect patterns (CEP), and first-generation tech-

niques (FGT) have been employed for climatic effect variability (CEV). Maximum

likelihood (ML) produces climatic effect patterns (CEP) predicted to expand the pos-

sibility that the climatic observed series extract from a set of climatic series with the

constructed conceptual model. In this study, the maximum likelihood (ML) is used.

Climatic effect patterns (CEP) make direct, indirect and total effects to predict the

effect observed patterns from a set climatic series with the considered theoretical

model (Newsom, 2015; Temme et al., 2006). Forty years (1975e2014) of estimated

climatic data series for Iran were used. A climatic CPSRM-based modeling is repre-

sented by two sub-models: (1) the measurement model or external model connecting

the manifest variables based on the hidden variables, and (2) the mechanical model

or internal model selected based on the relationships between the hidden variables

(Villeneuve et al., 2018). To estimate agencies in the CPSRM-based modeling,

the examined matrix to be predicted must include estimate means and intercepts

(i.e., standardized loadings, score coefficient matrix and the model fitting), either

by including an effect direction among variables when the mechanical coefficients

are input or by estimating the two types of considered relationships: (l) the mechan-

ical effects of endogenous on other endogenous variables (b); and (2) the mechanical

effects of exogenous on endogenous variables ðgÞ that can be estimated. A general

CPSRM-based model estimation (path or mechanical coefficient) is required to pre-

dict the effect models with path structures to describe first-generation techniques

(FGT). Effect paths (direct, indirect, and total effects) are typically estimated by a

general CPSRM-based model based on analyzing effect and causality (PEC). The

causal effect paths techniques (CEPT) are defined in three stages and three mechan-

ical equation calculations as follows:

yGEPTð1Þ ¼ b01 þ g11X1 þ ε1

yGEPTð2Þ ¼ b02 þ b21yGEPTð1Þ þ g21X1 þ ε2

yGEPTð2Þ ¼ b03 þ b31yGEPTð1Þ þ b32yGEPTð2Þ þ g31X1 þ ε3

where bi shows the mechanical intercept value related to each endogenous variable

(yGEPTðiÞ), bii is the path coefficient in the endogenous variable (yGEPTðiÞ), on endog-

enous variables, and gii is the path coefficient in the endogenous variable (yGEPTðiÞ)
on exogenous (Xj) variables, related to an endogenous variable, respectively. In this

study, CPSRM-based modeling was organized in four causal effect patterns in Iran.

The effect patterns in Iran included path analytical models (PAM), factor analysis
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models (FAM), mechanical analytical models (MAM), and hidden analytical model

(HAM). The four effect patterns in Iran included temperature variables effect on

precipitation pattern, humidity variables on precipitation pattern, pressures variables

on precipitation pattern, and climatic variables of precipitation pattern in Iran. The

path analytical model (PAM) is a paradigm based on assessing the climatic vari-

ability, thereby representing the direct measurement of a climatic observed variable,

and indirect measurement of a climatic hidden variable (i.e., the original hypothe-

sis) in a long-term series (Javari, 2015; Drton and Maathuis, 2017). Hidden analyt-

ical model (HAM) is a technique based on analyzing the climatic variability,

thereby representing the pattern of path constitution among the climatic hidden vari-

ables; it includes both a measurement model and a mechanical model: the measure-

ment model describing the relations between the climatic hidden variables and their

observed measures, and the mechanical model showing the relations among the cli-

matic hidden variables themselves (Tenenhaus et al., 2005; Drton and Maathuis,

2017). Factor analysis models (FAM) are the oldest and best-known statistical tech-

nique based on investigating relations between sets of climatic observed and hidden

variables as a technique constructed for the condition analysis of the unknown re-

lations between the climatic observed and hidden variables. In addition, confirma-

tory factor analysis (CFA) as a method is constructed for condition analysis of the

relationships of the primary hidden variable structure (Kline, 2015). To calculate

four generalized effect patterns (GEP) for each climatic series, the selective data

were assessed with the goodness of fit indices in Iran.
2.2.4. PLS- based modeling

The PLS-algorithms-based modeling (PABM) classically as a causal method (anal-

ysis of the covariance matrix of the contents of the manifest variables the “effect

project”, a factor analysis type of the model) (Krepper et al., 2017), was developed

by Wold suggested (in 1984) (Wold et al., 1984) for climatic effect patterns analysis

(CEPA). Manifest variables are observable variables constructed to transfer data se-

ries on the performance of hidden variables, being essential for the climatic effect. In

this study, climatic effect factor models (CEFM) (Hanisch, 2017) are the causal

method most commonly employed to analyze the second-generation techniques

(SGT) between climatic hidden and observed variables. To present the PLS-

algorithms-based modeling, we represent climatic construction and estimation to

predict the validation and interpretation of factor loadings and climatic hidden vari-

ables in climatic-formed PLS in Iran. The effect project of the explanatory patterns is

a combination of climatic effect patterns (CEP), and PLS-algorithms-based

modeling varies for GIS-based PLS-CPSRM project of each of the climatic series

in the optimization methods for high-dimensional patterns (Javari, 2017b). The

PLS-algorithms-based modeling (PABM) divides a mechanical model (inner model

in the perspective of PLS-CPSRM) into the climatic series representing the
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constructs in which the mechanical model also displays the relationships (paths) be-

tween the constructs and the measurement model (outer models in perspective of

PLS-CPSRM) of the constructs showing the relationships between the constructs

and the observed variables (Javari, 2017g). In this study, the PLS-CPSRM-based

modeling includes two different constructed patterns; one for exogenous hidden var-

iables and one for endogenous hidden variables, for each of 24 main manifest vari-

ables. The PLS-CPSRM-based modeling, is considered the measurement models of

exogenous and endogenous hidden variables and in this causal processes, uses the

hybrid model for specific hidden variables. The models are characterized by PLS-

CPSRM-based modeling, different effects as a reflective model or formative model

for manifest variables to hidden variables. Effect patterns in PLS-CPSRM-based

modeling are effectively combined with both reflective measurement and formative

measurement (Agarwal and Osiyevskyy, 2017) constructed for the PLS-CPSRM-

based project of temporally various data series used to analyze the climatic effect

variability (CEV) in Iran. In the PLS-CPSRM-based modeling, mechanical model

shows how the hidden variables are related to each other to predict the effect patterns

(EP) of utilizing the three models (reflective, formative, and hybrid models) in Iran.

In the PLS-CPSRM-based modeling is controlled the hidden variables operate only

as independent variables; they are called exogenous hidden variables, and when hid-

den variables provide only dependent variables, they are called endogenous hidden

variables. However, PLS-CPSRM-based model is used for climatic effect variability

(CEV) in Iran. The PLS-CPSRM-based model is an ordinary least squares-based

method employed to estimate the path relationships in the model for climatic effect

variability (CEV) (Hair et al., 2016). Climatic PLS-CPSRM-based modeling (as the

variance-based PLS-CPSRM algorithm) is an algorithm to design based on the

reflective, formative, and hybrid methods in the climatic series relations and

scheming a quantitative pattern for each one based on the variance in the climatic

series (Shook et al., 2004; Markus, 2012; Tenenhaus et al., 2005). To estimate three

second-generation techniques (SGT), unlike CPSRM-based modeling, for each cli-

matic series, the selective patterns were evaluated with a set of nonparametric valu-

ation conditions (such as bootstrapping and blindfolding) in Iran (Tenenhaus et al.,

2005). In this study, the reliability and validity of the construct (Hulland, 1999;

Gupta and Arora, 2017) procedures were used to evaluate the three second-

generation techniques (SGT) based on the composite reliability (Cataldo et al.,

2017), indicator reliability, convergent validity (Mojtahedi and Oo, 2017), discrim-

inant validity indicators for reflective measurement models (Pappu and Quester,

2017), the convergent validity, collinearity among indicators (Low et al., 2017), sig-

nificance and relevance of outer CHT for formative measurements models (Avkiran,

2017), coefficients of determination (R2), predictive relevance (Q2), size and signif-

icance of path coefficients (Choshin and Ghaffari, 2017), and effect size functions for

mechanical model in the climatic PLS-CPSRM-based modeling in Iran. The PLS-

CPSRM-based modeling algorithm is statistically similar to CPSRM-based
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modeling algorithm, but it includes the original value of a variable and the value pre-

dicted by a modeling algorithm. The effect-based modeling algorithm is briefly

analyzed: Firstly, the differences between original value of a variable and the value

predicted were estimated and considered on different scales temporally and spatially

as estimated error. Then, reliability and validity of the construct are employed to es-

timate the effect-based modeling. According to the internal consistency reliability

explanation, using a different indicator of internal consistency reliability, which is

suggested as composite reliability (different outer loadings of the observed vari-

ables), is presented as follows:

Cr ¼
 X

i

SOLi

!2," X
i

SOLi

!2

þ
X
i

varðεiÞ
#

where SOLi is the standardized outer loading of the observed variable i of a certain

construct, εi is the measurement error of observed variable i, and varðεiÞ indicates
the variance of the measurement error. The composite reliability varies between

0 and 1 so that greater values reveal upper levels of validity. In addition, composite

reliability rates of 0.60 to 0. 70 are suitable in exploratory patterns, whereas in cli-

matic CPSRM, rates between 0. 70 and 0.90 can be interpreted as acceptable. The

convergent validity index is statistically a quantity positively correlated with

different measures of the similar structure (as an index for the reflective model).

In this study, estimating convergent validity is considered the average variance ex-

tracted (AVE) for situation analysis of the reliability (as an indicator reliability

based on outer loadings of the indicators). This also indicates that the variance

shared between the construct and its indicator is larger than the measurement error

variance. The convergent validity is used as the variance distributed between the

construct and its index that if convergent validity is larger than the measurement

error variance (AVE value of 0.50 or higher) can be interpreted satisfactory. The

discriminant validity index is statistically a unique construct, capturing phenomena

with a different structure. In this study, to calculate discriminant validity, the cross-

loadings of the indicators and Fornell-Larcker criterion are examined (in the reflec-

tive and formative models) to analyze the reliability (it evaluates the square root of

the AVE values with the hidden variable correlations). The square root of each con-

struct’s AVE should be larger than its maximum correlation with any other struc-

ture. To evaluate the SGT models, the PLS-CPSRM algorithms constructed in

SmartPLS software reflectively, formative, and hybrid constructs are used (redun-

dancy analysis). Furthermore, SGT models are used to analyze more than two in-

dicators of climatic data series (multicollinearity), and then outer CHT analysis

(OWA) is applied to evaluate SGT models (as a method of a linear pattern of the

indicator scores and the outer CHT). The values of the outer CHT are employed

to analyze the indicator’s relative contribution. The next step in PLS-CPSRM algo-

rithms analysis, application of the PLS-CPSRM path patterns to obtain coefficients
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forming bootstrap distribution, bootstrap samples is determined. The bootstrap

method provides certain statistical analysis of the hypothesis with keeping specific

outer CHT. Next, bootstrap the Student’s t-test is used to calculate the significant

series as follows:

tb ¼ wðfirstÞ1
.
bswðfirstÞ1

where wðfirstÞ1 is the CHT estimated from the primary model using the primary data

samples, and bswðfirstÞ1 is the bootstrap standard error of wðfirstÞ1. Hence, when the size
of the estimated t value is above 1.96, we can suppose that the path coefficient is

significant at a significance level of 5% (two-tailed analyze). An essential point

in employing bootstrapping in PLS-CPSRM algorithms is that the signs of the hid-

den variable scores are unknown. The sign changes the mean value of bootstrap

result toward zero, and decreases the corresponding bootstrap standard error,

thereby decreasing the t value. The results of three decisions revealed that three

types sign changes were suggested: 1) accepting the negative impact of sign

changes on the results for the t value, 2) being consistent with the signs in the pri-

mary series to avoid sign change-related efforts, and 3) simultaneously comparing

the signs of the primary estimation with predicted samples by bootstrap method.

This study uses bootstrap confidence interval presenting supplementary evidence

on stability of the coefficient evaluation. Evaluation of mechanical model is

analyzed as the explained variance of the endogenous hidden variable(s) occurring

in a PLS-CPSRM algorithm fit project. In evaluating mechanical model, based on

fitting the mechanical model in PLS-CPSRM algorithms, exploratory indicators by

the model’s predictive abilities are used. The essential indicators to evaluate the me-

chanical model of the PLS-CPSRM algorithms are the significance of the path co-

efficients, the level of the coefficient of determination (R2) amounts (measuring the

model’s predictive accuracy), the effect size (impact on the endogenous constructs),

the predictive relevance (Q2) (examining Stone-Geisser’s Q2 value) as the indicator

of the model’s predictive relevance and the total effect size (direct effect and indi-

rect effects).
2.2.5. GIS-based modeling

GIS-based modeling has become an important tool in climatic CPSRM and climate

changes whose application in climatology is insufficient (Suryabhagavan, 2017;

Javari, 2017e; Bede-Fazekas et al., 2015; García-Gil et al., 2015). Application of

GIS modeling methods such as spatial and geostatistical techniques in the ArcGIS

is necessary for spatial regionalization (Javari, 2016a; Çelik, 2015; Cheng et al.,

2013; El Osta and Masoud, 2015; Feizizadeh et al., 2014). In this study, to analyze

the GIS-based effect modeling over 40-years (1975e2014) in the third-generation

techniques (TGT), and causal hybrid techniques (CHT) in Iran are employed; (1)
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development of the GIS-based climatic effect conceptual model; (2) application of

the GIS-based climatic effect statistical model at zonal and regional scales; (3) assess

and prediction of GIS-based climatic effect results and (4) process and prediction of

Comprehensive -based climatic effect results and classification (content-based data

classification). Spatial variability of the CPSRM-PLS-based effect of climatic series

over the study area was depicted using a set of patterns developed by Comprehensive

project. The Comprehensive project focuses on climatic effect patterns such as im-

pacts of the temperature indicators on rainfall, the impacts of the humidity indicators

on rainfall, and the impacts of the pressures indicators on rainfall spatially and

temporally in Iran. Temporal variability in Comprehensive project for the 170 sta-

tions was analyzed based on extracted series in the CPSRM-based effect modeling

phase and PLS-based effect modeling phase in the GIS-based effect modeling phase

using descriptive statistics such as coefficient of variation (CV%). To analyze the

spatial variability of effect and causality (PEC) for distribution of patterns analyzed

in the study area, geostatistical spatial statistics techniques were used. Various tech-

niques have been applied to analyze effect and causality (PEC) such as spatial auto-

correlation or Global Moran’s I statistic (measures spatial autocorrelation based on

both spatial distribution of patterns and distribution values of patterns simulta-

neously), Anselin Local Moran’s I Index (classifies spatial clusters of effect patterns

with high or low values), Getis-Ord Gi* statistic (recognizes statistically significant

spatial clusters of high values (hot spots) and low values (cold spots), as well as

Geographically Weighted Regression (GWR) for effect local analysis of linear pat-

terns used to spatially model varying relationships (GWR creates linear patterns

based on spatially varying relationships by combining the dependent and explana-

tory variables of climatic series distributed in the bandwidth of each effect pattern)

(Javari, 2017f; ESRI, 2017). The effect pattern and the bandwidth size are depen-

dently controlled using kernel type, bandwidth method, and distance, and the num-

ber of neighbor’s factors. In all these techniques, climatic series effect on

precipitation patterns is examined spatially and temporally. In addition, spatial

analytical techniques such as query, overlay, map algebra, and neighborhood repre-

sentation using the AecGIS10.5 software have been employed to analyze effect. In

addition, the goodness-of-fit indexes were used to compare two or more causal

models such as the chi-square index (X2), the goodness-of-fit index (GFI), the

adjusted goodness-of-fit index (AGFI) and root mean squared residual (RMR) as

AFI, the TuckereLewis index (TLI), the BentlereBonnet index (BBI), the compar-

ative fit index (CFI), the relative fit index (RFI), and the incremental fit index (IFI) as

RFI, the normed chi-square (NC), parsimony ratio (PRATIO), the parsimonious

normed fit index (PNFI), the parsimonious goodness-of-fit index (PGFI), root

average squared error of approximation (RMSEA) and normed chi-square (CMIN/

DF) as PFI, and Akaike information criterion indices (AIC), BrowneeCudeck crite-

rion (BCC), Bayes information criterion (BIC), consistent version of Akaike infor-

mation criterion (CAIC), and non-central parameter (NCP).
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3. Discussion and results

3.1. CPSRM-based modeling results

CPSRM-based modeling was applied to covariance-based structure equation model

to analyze any probable effect in the climatic series in Iran. This is as a mechanical

equation modeling developed to determine relationships between climatic observed

series over time (Rahmadi et al., 2017; Javari, 2017b). Direct effects suggest a pri-

mary over time, while indirect effects reveal secondary, and total effects show a com-

bination of the direct and indirect effects. Considering CPSRM -based modeling for

climate effect in Iran, the study focuses on application of the first-order CFA model

constructed to assess the multidimensionality of a constructed algorithm as displayed

in Fig. 1. In the CPSRM-based modeling, assessing the hypothesis of self-concept

(SC) for a four-factor constitution, is used as a multi-factor construct composed of

four factorsdprecipitation series (PRS), humidity series (HS), pressure series

(PS), and temperature series (TS). To analyze the findings of the CPSRM-based

modeling, we applied a typical confirmatory factor analysis (CFA) model as a

CPSRM-based technique to estimate the relationships between the observed climatic

series (Fig. 2). In this example, we investigate the relationship between precipitation

series (RPS), humidity series (HS), pressure series (PS), and temperature series (TS)

and their reliability. In this regard, we examine whether the four connected patterns

of the multi-factor construct, namely climatic twenty-one variables, consider a casual

design. Fig. 1 shows the hidden and observed variables based on the constructed
Fig. 1. Designed algorithm for rainfall variability analysis.
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P-value of chi-square test ¼ 0.000; goodness-of-fit index ¼ 0.71; root mean square error of approxima-

tion ¼ 0.426.
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algorithm associated with the CPSRM-based modeling to suggest a pattern of the

theoretic scheme about a studied climatic series. In general, the relationships be-

tween the observed (twenty-one variables) and hidden variables (four variables)

are the main aim of the study. These relationships are graphically depicted in path

diagram of the CPSRM-based model by two-sided arrows (to analyze the covariance

between hidden and observed variables). As Fig. 2 shows, there are twenty-one

observed variables in the CPSRM-based model. The observed variables represent

twenty-one scale scores extracted from a sample of 170 climatologic and synoptic

stations. There are also error terms connected to manifest variables. Each error is

the volume of variation in the manifest variable based on measurement error or vari-

ation in the conforming hidden factor of the variable CHT.

In CPSRM is important the mechanical model. Fig. 2 shows the mechanical model

examined and the pattern amounts as well as R2 for the endogenous variables. Inter-

faces among and between climatic factors and elements often depend on effect

models. Rate of climatic variables are often used to describe that effect models,

and to simulation how it changes climatic systems and their interactions. Table 1

summarize the effects of climatic variables such as temperature, pressure, humidity

and precipitation shifts in CPSRM based on simulated effect flows by path diagram

of CPSR model. The most important result is that climatic variables effects stimulate

climate change, in the type of variations in climatic variables, and variables effects

varied effect patterns. The CPSR model, the dominant effect, ships less under the
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Table 1. Statistics properties of the selective series.

Variable N Mean St Dev CV Minimum Median Maximum Range IQR

Elevation 170 1092.3 677.0 61.98 �23.6 1225.1 2465.2 2488.8 1043.8

Daily average rainfall 170 0.9039 0.7483 82.78 0.1332 0.7361 5.0421 4.9090 0.6433

JAN. rainfall 170 50.50 36.72 72.72 9.00 37.50 218.40 209.40 39.39

FEB. rainfall 170 41.24 30.93 75.00 5.70 33.05 232.00 226.30 29.18

MAR. rainfall 170 50.49 32.54 64.45 10.20 43.85 275.80 265.60 36.00

APR. rainfall 170 36.62 26.37 72.02 0.80 33.15 162.50 161.70 38.17

MAY. rainfall 170 18.64 17.44 93.60 0.00 13.30 82.50 82.50 26.35

JUNE. rainfall 170 5.976 10.769 180.22 0.000 1.750 57.900 57.900 4.775

JULY. rainfall 170 4.367 8.381 191.93 0.000 1.300 46.700 46.700 3.400

AUG. rainfall 170 4.98 14.58 292.95 0.00 0.70 111.90 111.90 2.32

SEP. rainfall 170 9.53 35.66 374.30 0.00 0.90 271.50 271.50 2.00

OCT. rainfall 170 20.37 45.36 222.64 0.20 6.40 326.00 325.80 19.00

NOV. rainfall 170 36.51 42.10 115.31 1.40 27.65 300.20 298.80 38.17

DEC. rainfall 170 49.02 39.62 80.82 5.10 35.30 238.20 233.10 44.10

Annual rainfall 170 328.0 271.8 82.87 51.3 267.9 1830.5 1779.2 245.0

Winter rainfall 170 142.01 96.19 67.74 29.00 117.30 726.20 697.20 105.82

Spring rainfall 170 61.24 47.36 77.33 0.80 49.40 206.30 205.50 72.44

Summer rainfall 170 18.87 57.72 305.81 0.00 2.95 429.40 429.40 7.43

Fall rainfall 170 105.89 115.53 109.11 7.90 77.24 843.50 835.60 89.41

Tem. ANN 170 19.429 7.694 39.60 6.000 24.500 29.000 23.000 15.250

Tem. Min 170 12.588 7.454 59.22 2.000 16.000 26.000 24.000 12.000

Tem. Max 170 25.241 7.989 31.65 10.000 29.500 35.000 25.000 15.250

Tem. Daily 170 18.871 7.494 39.71 6.000 23.500 28.000 22.000 14.000

Tem. Dew point 170 5.282 8.163 154.53 �6.000 6.000 22.000 28.000 13.000

Su Ratio 170 7.353 3.951 53.74 3.000 6.500 18.000 15.000 4.000

Vapour Pre 170 10.976 6.672 60.79 4.000 10.500 28.000 24.000 8.000

Humidity R Mean 170 47.176 10.801 22.89 30.000 44.000 71.000 41.000 16.250

Humidity Max 170 64.565 9.764 15.12 47.000 62.500 85.000 38.000 13.500

Humidity Min 170 32.947 11.972 36.34 16.000 29.000 63.000 47.000 16.000

Speed 170 5.259 1.432 27.23 2.000 5.000 10.000 8.000 2.000

Cloudiness 170 39.70 21.28 53.61 3.00 34.00 105.00 102.00 27.25

Pressure Mean 170 906.21 106.25 11.72 757.00 1006.00 1011.00 254.00 210.00

Pressure Max 170 920.32 109.81 11.93 766.00 1022.00 1032.00 266.00 217.00

Pressure Min 170 890.56 104.00 11.68 740.00 986.50 994.00 254.00 203.00

18 https://doi.org/10.1016/j.heliy

2405-8440/� 2018 The Auth

(http://creativecommons.org/li

Article Nowe00774
CPSR model between temperature and precipitation variables (Fig. 2). In addition,

we check the constructed model using goodness of fit indicators (c2 ¼ 678.44,

DF ¼ 184, RMSEA ¼ 0.426, and P ¼ 0.000). The results of the initial fit indicators

CFA showed an unacceptable condition of fit (P ¼ 0.000 value is smaller than
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probability level, 0.05). The model fit indices similar to the comparative fit index

(CFI), the goodness-of-fit index (GFI), normed fit index (NFI), TuckereLewis index

(TLI), and root mean square of error approximation (RMSEA) were designated to

assess the model fit (Hair et al., 2016). The results for fitting the series, namely

CFI, GFI, NFI, and TLI are less than 0.9, and the RMSEA value is higher than

0.08. Fig. 3 shows the modified model of effect among climatic variables. All good-

ness of fit statistics are acceptable based on the fit conditions, as the P-values of the

chi-square test indicated: >0.05, CFI > 0.90, GFI > 0.90, AGFI > 0.90, and

RMSEA < 0.05 (c2 ¼ 462.28; DF ¼ 182 P-value of chi-square test ¼ 0.065;

goodness-of-fit index ¼ 0.921; root mean square error of approximation ¼ 0.006).

Furthermore, this CPSRM climatologically studies the impact of climatic series

(temperature series, humidity series, and pressure series) on precipitation changes.

The results after functioning CPSRM reveal that the CPSRM hypotheses constructed

for this study are causally adopted. Fig. 4 shows the model of effect among climatic

variables on precipitation. All goodness of fit statistics are acceptable based on the fit

conditions, as the P-values of chi-square test indicated: >0.05, CFI > 0.90, GFI >

0.90, AGFI > 0.90, and RMSEA < 0.05 (c2 ¼ 496.8; DF ¼ 184 P-value of chi-

square test ¼ 0.061; goodness-of-fit index ¼ 0.901; root mean square error of

approximation ¼ 0.06). The findings not only revealed that these climatic factors

had to be well measured, but also indicated that climatic variables effect had to be

determined by temporal effect patterns on precipitation variability. Fig. 4 shows a

correlation between precipitation series and pressure series. The pressure series
Fig. 3. Path diagram of modified model of effectiveness among climatic variables. c2 ¼ 462.28; P-value

of chi-square test ¼ 0.065; goodness-of-fit index ¼ 0.921; root mean square error of approximation ¼
0.006.
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Fig. 4. Path diagram of effectiveness among climatic variables on precipitation. c2 ¼ 496. 8; P-value of

chi-square test ¼ 0.061; goodness-of-fit index ¼ 0.901; root mean square error of approximation ¼ 0.06.
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factor in this study is defined by pressure maximum, pressure minimum, pressure

mean, and wind speed distribution, which can impact the precipitation in Iran.

This suggests that pressure series has a suitable and probable impact on precipitation

variability. Furthermore, this analysis revealed that there was a relationship between

humidity series and precipitation series as a second factor in comparison to pressure

factor (Fig. 4). The humidity series factor in this analysis is described by saturation

ratio, water vapor pressure, relative humidity mean, relative humidity maximum,

relative humidity minimum, and cloudiness values impacting the precipitation in

Iran (Fig. 4). This study expanded the effect patterns by designating that there

were relationships between climatic series and environmental processes. To predict

the climatic variability, accurate selection of effect variability models is highly

important. In addition, our results showed that impact of the humidity distribution

increased the relative increase rate in the precipitation variables distribution. We

also recognized that humidity distribution increased the daily and annual precipita-

tion variables (Fig. 4).

Fig. 5 shows that a type of mechanical regression model (MRM) is used in explor-

atory mechanical equation modeling (EMEM). The temperature series factor in this

study is defined by pressure series and pressure series distribution impacting precip-

itation in Iran. We used EMEM to analyze the single relationships between the tem-

perature, humidity, pressure factors and their effects on precipitation factor (See

Fig. 5). The path model fit the data series well, c2 ¼ 386.4; P-value of chi-square

test ¼ 0.081; goodness-of-fit index ¼ 0.904; root mean square error of
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Fig. 5. Path diagram of effectiveness among climatic variables on precipitation. c2 ¼ 386.4; P-value of

chi-square test ¼ 0.081; goodness-of-fit index ¼ 0.904; root mean square error of approximation ¼ 0.07

using SRM.
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approximation ¼ 0.07 using MRM. The results revealed important specifications:

temperature series had a greater impact (b¼ 0.95) on pressure series. In the pressure

series, minimum pressure more effectively predicted the precipitation. In contrast,

humidity series had a lower effect on pressure series. The suggestions based on

the test statistics are the Critical Ratio (C.R. ¼ 3.928), representing the parameter

estimate or regression CHT (0.055) divided by its Standard Error (S.E.¼ 0.014), be-

ing significant at the level of 0.05. There are differences in the regression CHT of

variables between the models for all temperature series, pressures series, and precip-

itation series (p < 0.001). The critical ratio is the significance of path coefficients. If

the Critical Ratio (CR) is >1.96 for a regression CHT, that path is significant at the

0.05 level or higher (that is, its estimated path parameter is significant). We found

that the temperature factors were more effective than the other factors (maximum

pressure and elevation) on precipitation. This result with theoretical suggestions

and experiential effort as well as CPSRM-based modeling phase indicates that pres-

sure factors value and distribution represent one of the effect factors on precipitation.

Additionally, our findings show important specifications between the pressure series

and minimum pressure factor distribution (See Fig. 5). Fig. 6 indicates that effect

spatial distribution is used in the CPSRM-based modeling phase. The temperature,

humidity, and pressure series factors on precipitation series in this study are analyzed

using GIS-based spatial variability modeling in Iran. Fig. 6 shows effect distribution

of the pressure series on precipitation series. It shows that the pressure series impact

on precipitation series is significantly decreased from west to east and northeast for

spatial variations of pressure series on precipitation, revealing that the change point

(about 0.57 or 57%) of the CPSRM-based modeling varies and decreases with the
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Fig. 6. Effectiveness distribution of the pressure series on precipitation series in Iran.
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decrease of precipitation amounts and increases the spatial variability factors (about

0.33 or 33%) during the period 1975e2014 in Iran. As Fig. 6 shows, the effect spatial

variability coefficient between the precipitation series and pressure series amounts

for all stations, implying a strong spatial effect between the precipitation series

and pressure series in western and southeast regions, whereas in eastern north and

western south regions, a weak spatial effect was demonstrated. Moreover, the spe-

cific effect spatial pattern between pressure series amounts on precipitation series

was observed in Iran. It was found that there were opposite and contrasted effect di-

rections in Iran. Furthermore, a weak spatial effect (northeastern to southwest trend)

and a strong spatial effect (northwest to southeast trend) significance was noticed be-

tween the pressure series amounts on precipitation series (Fig. 6). However,

spatially, the highest amounts of effect were in the west and southeast for the precip-

itation and pressure series; and the lowest amounts of effect were in the west and

southwest in northeastern in Iran. In Iran, the effect distribution of the minimum

pressure series on precipitation series predicted by the GIS-based CPSRM variability

ranged from 0.98 to 1 for the causal scenarios (Fig. 7), with a maximum distribution

for the western and northern regions, the most important wet area of Iran. All western

and northern regions showed significant effect increases. Most of the western and

northern regions experienced considerable precipitation distribution based on the

minimum pressure series on precipitation in Iran. By CPSRM, the area with effect

pattern had developed in the southern regions. For all southern regions, the minimum

pressure series on precipitation series for the Hormozghan and Bushehr provinces is

predicted based on effect simulation in Iran (Fig. 7). Fig. 7 shows a deep understand-

ing of the effect of climatic series on Iran’s rainfall. Fig. 7 presents the effect distri-

bution of the minimum pressure series on the precipitation series. It shows that the
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Fig. 7. Effectiveness distribution of the minimum pressure series on precipitation series in Iran.
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minimum pressure series impact on precipitation series is significantly reduced from

northwest to southeast for spatial variations of minimum pressure series on precip-

itation, showing that the change point (about 1 or 100%) of the CPSRM-based

modeling fluctuates and decrease with the decrease of precipitation amounts and in-

creases the spatial variability factors (about 0.98 or 98%) during the period of

1975e2014 in Iran. However, spatially, the highest amounts of effect were in the

north and northwest for the precipitation and minimum pressure series, and the

lowest amounts of effect were in the southeast in Iran. The minimum pressure var-

iable with the greatest effect on the precipitation values was mostly the intensities of

northern regions (wet climate regions) in Iran. Fig. 8 presents the effect of the pres-

sure series, humidity series, and temperature series on daily precipitation based on

longitude and latitude distribution using locally CHT scatterplot smoothing (LOW-

ESS). Fig. 8 shows the diverse effect patterns of the climatic series on daily precip-

itation in Iran. The estimated results showed that the effect of the pressure series on

daily precipitation decreased with longitude totally from 36� to 64� E longitude dur-

ing the period 1975e2014 in Iran (Fig. 8A). Furthermore, the results showed that the

effect of the humidity series on daily precipitation increased with longitude gradually

from 36� to 64� E longitude during the period 1975e2014 in Iran (Fig. 8B). Effect of

the temperature series on daily precipitation differenced with longitude and

increased with longitude spatially from 56� to 64� E longitude (Fig. 8C). The esti-

mated results showed that effect of the pressure series on daily precipitation

increased with latitude totally from 24� to 39� N latitude during the period

1975e2014 in Iran (Fig. 8D). In addition, the results showed that effect of the hu-

midity series on daily precipitation decreased with longitude gradually from 24�

to 39� N latitude during the period 1975e2014 in Iran (Fig. 8E). The effect of the
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Fig. 8. Effectiveness of the climatic series (pressure series, humidity series, and temperature series) on

daily precipitation based on longitude and latitude distribution using locally weighted scatterplot smooth-

ing (LOWESS) in Iran.
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temperature series on daily precipitation differenced with latitude and increased with

latitude especially from 28� to 32� E latitude (Fig. 8F). Fig. 9 shows the total effects

(direct and indirect) of hidden variables (temperature, humidity, elevation, and pres-

sure) on the daily precipitation values, while the variables with the different impacts

estimated the effect distribution in climatic series to analyze the effect and causality

(PEC) in Iran. The predicted results displayed that the effect of the elevation on daily

precipitation increased with latitude partly from 34� to 37� N latitude during the

period 1975e2014 in Iran (Fig. 9A). Furthermore, the results showed that the effect
Fig. 9. Effectiveness of the climatic series (pressure series, humidity series, elevation, and temperature

series) on daily precipitation using locally weighted scatterplot smoothing (LOWESS) in Iran.

on.2018.e00774

or. Published by Elsevier Ltd. This is an open access article under the CC BY license

censes/by/4.0/).

https://doi.org/10.1016/j.heliyon.2018.e00774
http://creativecommons.org/licenses/by/4.0/


25 https://doi.org/10.1016/j.heliy

2405-8440/� 2018 The Auth

(http://creativecommons.org/li

Article Nowe00774
of the pressure series on daily precipitation increased with latitude gradually from

25� to 39� N latitude during the period 1975e2014 in Iran (Fig. 9B). The effect

of the temperature series on daily precipitation decreased totally with latitude

(Fig. 9C). The predicted results showed that the effect of the humidity series on daily

precipitation increased with latitude totally from 24� to 35� N latitude and decreased

with latitude from 25� to 39� N latitude during the period 1975e2014 in Iran

(Fig. 9D).
3.2. PLS- based modeling results

3.2.1. Reflective -PLS- based modeling results

In this study, we consider the results from employing the PLS-based modeling tech-

niques (reflectively, formative, and hybrid employed techniques). We describe a

summary of the constructed methods and results as well as investigative findings.

The main manifest variables of the PLS-CPSRM-based model were studied using

the three main models (endogenous construct as reflective measurement model,

exogenous constructs as formative measurement model, and hybrid model) as shown

in later sections. We use the predicted patterns for all interactions in the measure-

ment models (i.e., the climatic effect loadings and CHT) and the mechanical model

(i.e., the climatic effect path coefficients). In the PLS-CPSRM-based modeling, the

study focuses on application of the SGT model to assess the multidimensionality of

the first model (i.e., reflectively estimated indicators) as shown in Fig. 10. Fig. 10

shows the effect of the climatic series (pressure series, humidity series, and temper-

ature series) on daily precipitation using PLS-algorithms-based modeling in Iran.

The effect of the climatic series (pressure series, humidity series, and temperature

series) on daily precipitation was analyzed using SmartPLS.2 software. To analyze

the effect of the climatic series (pressure series, humidity series, and temperature se-

ries) on daily precipitation using PLS-algorithms-based modeling, indicator load-

ings, Cronbach alphas and composite reliability, convergent validity (AVE), path

coefficients, cross-loadings and CHT, correlations, construct scores, hidden variable

scores, t-values, and R2 values, were used. In this study, the indicator loadings and

indicator CHT are estimated to measure the model in the PLS-algorithms-based path

model (outer loadings) are used as reflective measurement models, whereas outer

CHT are applied in the formative measurement models). Moreover, to examine

the results, details are used as the outer CHT, outer loadings, mechanical model

path coefficients, and R2 amounts. In this study, the systematic analysis of these

criteria developed a two-step process, single evaluation of the measurement models

and the mechanical model (reliability and validity). Fig. 10 shows the first mechan-

ical model employed for climatic series effect checking. The initial phase in assess-

ing a PLS-algorithms-based path model (a reflective model) is to estimate the outer

model to evaluate the measurement model. As Table 2 shows, the outer loadings on
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Fig. 10. Effectiveness of the climatic series (pressure series, humidity series, and temperature series) on

daily precipitation as a reflective model using PLS-algorithms-based modeling in Iran.
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the path diagram for reflective model in the PLS-algorithms-based path model. The

outer loadings indicator revealed that all loadings were higher than the standard level

(0.7), except June temperature, which displayed outer loadings of .6764. Table 3

shows the Student’s t-test on the path diagram for reflective model in the PLS-

algorithms-based path model. The t-test values revealed that all factor loadings

were higher than the critical t values (2.66) for significance levels of 1 % (a ¼
0.01; two-tailed test), thereby demonstrating validity for all factor loadings. As

Table 4 shows, composite reliability varied from .86 to 1.0 for the five constructs

more than the standard threshold of 0.7 (composite reliability should be higher

than 0.7 (Hair et al., 2016). The average variance extracted (AVE) for the models

was above 0.62 for all constructs, while the threshold is .50 (the AVE should be

higher than 0.50), as a result, demonstrating convergent validity for all constructs

of the PLS-algorithms-based modeling (a reflective model) for climatic series effect

in Iran. Furthermore, in evaluating the PLS-algorithms-based path model, the reflec-

tive constructs’ discriminant validity is used. The typical indicators provided for

discriminant validity are the cross-loadings of the indicators and Fornell-Larcker cri-

terion (Hair et al., 2016). Table 5 shows the cross-loadings on the path diagram for

reflective model in the PLS-algorithms-based path model. The cross-loadings values

revealed that some factor loadings were higher than the critical values (0.1) for sig-

nificance levels of 1 % (a ¼ 0.01; two-tailed test), thereby demonstrating discrimi-

nant validity for some factor loadings. Table 6 shows the Fornell-Larcker indicator

(Fornell and Larcker, 1998) on the path diagram for the reflective model in the PLS-

algorithms-based path model. Table 6 revealed that all AVEs were greater than the

hidden variable correlations. Therefore, discriminant validity was satisfactory with
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Table 2. Outer loadings for reflective model in the PLS-SEM.

Elevation Humidity
series

Precipitation
series

Pressure
series

Temperature
series

April 0.0000 0.0000 0.0000 0.0000 0.7059

August 0.0000 0.0000 0.0000 0.0000 0.7601

Daily precipitation 0.0000 0.0000 1.0000 0.0000 0.0000

December 0.0000 0.0000 0.0000 0.0000 0.8376

Elevation 1.0000 0.0000 0.0000 0.0000 0.0000

February 0.0000 0.0000 0.0000 0.0000 0.8165

January 0.0000 0.0000 0.0000 0.0000 0.7278

July 0.0000 0.0000 0.0000 0.0000 0.7134

June 0.0000 0.0000 0.0000 0.0000 0.6764

March 0.0000 0.0000 0.0000 0.0000 0.8026

May 0.0000 0.0000 0.0000 0.0000 0.6195

November 0.0000 0.0000 0.0000 0.0000 0.9660

October 0.0000 0.0000 0.0000 0.0000 0.8365

Pressure Max 0.0000 0.0000 0.0000 0.9999 0.0000

Pressure mean 0.0000 0.0000 0.0000 1.0000 0.0000

Pressure Min 0.0000 0.0000 0.0000 0.9999 0.0000

Relative humidity Max 0.0000 0.8098 0.0000 0.0000 0.0000

Relative humidity Min 0.0000 0.8371 0.0000 0.0000 0.0000

Relative humidity mean 0.0000 0.8294 0.0000 0.0000 0.0000

Saturation ratio 0.0000 0.9701 0.0000 0.0000 0.0000

Vapor pressure 0.0000 0.9555 0.0000 0.0000 0.0000

Bold value signifies the outer loadings should be higher than 0.7.
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the measurement model of the PLS-algorithms-based modeling. After analyzing the

discriminant validity as valid, the next stage is to evaluate the measurement model

for distinguish models in the climatic series interactions used the CV-Communality

(sum of squared prediction errors for block or SSE/sum of squares of observations

for block or SSO that can be also expressed as: I ¼ SSE/SSO) as cross-validated

commonality index(I) assessing the quality of the measurement model for each cli-

matic block (Tenenhaus et al., 2005). Table 7 shows the CV-Communality or cross-

validated commonality index (I) on the path diagram for reflective model in the PLS-

algorithms-based path model. The I index values revealed that all cross-validated

communalities were positive, thus demonstrating validity for the measurement

model. After validation analysis of the measurement model, the next stage is to eval-

uate the mechanical model conditions to analyze the climatic series path relation-

ships or the relationships between hidden variables (constructs). The main

measures to evaluate the mechanical model in PLS-CPSRM-based modeling are:

1) the estimation of the collinearity (result from when two indicators are much corre-

lated). While more than two indicators are concerned, it is called multicollinearity
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Table 3. t Test for reflective model in the PLS-SEM.

Elevation Humidity
series

Precipitation
series

Pressure
series

Temperature
series

April 12.06

August 8.32

December 27.85

Elevation 6.67

February 40.84

January 17.32

July 7.29

June 7.14

March 28.76

May 12.52

November 156.07

October 15.23

Pressure Max 122269.74

Pressure Mean 401154.5

Pressure Min 91725.7

Relative humidity Max 16.37

Relative humidity Min 16.42

Relative humidity mean 15.62

Saturation ratio 131.07

Vapor pressure 110.01

Table 4. Evaluation indictors for reflective model in the PLS-SEM.

Climatic series AVE Composite reliability R square Cronbach’s Alpha

Elevation 1 1 1

Humidity series 0.63 0.86 0.47 0.86

Precipitation series 1 1 0.98 1

Pressure series 0.78 0.93 0.88

Temperature series 0.62 0.88 0.46 0.89
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among sets of constructs, 2) the applicability of the mechanical model relationships

and significance of the path coefficients, 3) the estimation of the level of R2 values, 4)

the evaluation of the effect sizes (f2), 5) the evaluation of the predictive relevance

(Q2Þ or cross-validated redundancy (CV- Redundancy) and the q2 effect sizes

(Hair et al., 2016). Before evaluating the mechanical model, we consider the model

for collinearity. To consider collinearity, we need to examine each part of predictor

structures separately for each subpart of the mechanical model. To evaluate the level

of collinearity, we estimated the tolerance. The tolerance (each indicator’s tolerance
on.2018.e00774

or. Published by Elsevier Ltd. This is an open access article under the CC BY license

censes/by/4.0/).

https://doi.org/10.1016/j.heliyon.2018.e00774
http://creativecommons.org/licenses/by/4.0/


Table 5. Cross loadings for reflective model in the PLS-SEM.

Elevation Humidity
series

Precipitation
series

Pressure
series

Temperature
series

April 0.375208 0.005000 0.687212 0.056089 0.705892

August �0.318292 �0.030500 0.746352 0.036000 0.760114

Daily precipitation �0.092508 �0.035097 1.000000 0.022069 0.991360

December �0.117705 �0.107210 0.862806 �0.075828 0.837606

Elevation 1.000000 �0.019793 �0.092508 0.002300 �0.077753

February 0.078707 �0.011427 0.833689 �0.013658 0.816470

January �0.099963 �0.071362 0.758373 �0.087561 0.727783

July �0.228073 0.041678 0.673368 0.087886 0.713352

June �0.209749 0.024882 0.622624 0.122444 0.676371

March 0.180420 0.025945 0.810517 0.023235 0.802560

May 0.244085 0.024085 0.557253 0.159853 0.619474

November �0.153473 �0.065068 0.966694 0.015313 0.966001

October �0.270038 �0.065837 0.830143 0.048675 0.836516

Pressure Max 0.002040 0.625861 0.022597 0.999909 0.033739

Pressure Mean 0.003002 0.630166 0.020865 0.999975 0.032140

Pressure Min 0.001856 0.629324 0.022743 0.999879 0.034196

Relative humidity Max �0.016691 0.809779 �0.048260 0.354291 �0.041641

Relative humidity Min �0.003028 0.837111 �0.034095 0.159042 �0.041057

Relative humidity mean 0.008748 0.829383 �0.045234 0.213263 �0.046493

Saturation ratio �0.029236 0.970128 �0.028064 0.698108 �0.027712

Vapor pressure �0.019474 0.955481 �0.024055 0.759026 �0.021398
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(VIF) value should be between 0.20 and 5) corresponds to the amount of variance of

each indicator not described by other indicators in a block (Astrachan et al., 2014).

Table 8 shows the indicator’s tolerance (VIF) value on the path diagram for the

model in the PLS-algorithms-based path model. Table 8 shows that all VIF values

are well below the threshold of 5. Therefore, VIF values indicating that the climatic

series (temperature, pressure, elevation, and humidity series) are highly inter-

correlated and the small changes in the data values may lead to large changes in

the estimates of the path coefficients of the PLS-algorithms-based modeling. Before

evaluating the significance of the path coefficients, we analyzed the coefficient of

determination ðR2Þ, an important indicator of the estimate of the model’s predictive

precision is based on the squared correlation between an endogenous construct’s

actual and forecasted values in the PLS-algorithms-based path model. Table 9 shows

the coefficient of determination values on the path diagram for the model in the PLS-

algorithms-based path model. The R2 values ranges from 0.112358 to 0.375019, and

higher levels show higher levels of analytical accuracy. Therefore, R2 values indi-

cate that the pressure series (37.5%), humidity series (35.7%), elevation series
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Table 6. Fornell-Larcker indicator for reflective model in the PLS-SEM.

Humidity series Precipitation series Pressure series Elevation

Elevation 0.8830

Humidity series �0.019793 1

Precipitation series �0.092508 �0.035097 0.9999

Pressure series 0.002300 0.628505 0.022069 0.7747

Temperature series �0.077753 �0.033492 0.991360 0.03336

Table 7. CV-Communality indicators for reflective model in the PLS-SEM.

Total SSO SSE 1-SSE/SSO

Elevation 170 170 1

Humidity series 850 276.532171 0.674668

Precipitation series 170 170 1

Pressure series 510 40.240350 0.921097

Temperature series 1870 880.886447 0.528938
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(15.5%), and temperature series (11.2%) are highly efficient in the PLS-algorithms-

based modeling, respectively. We analyzed the significance of the path coefficients

using the student’s t-test value showing the climatic series relationships. Table 10

shows the coefficients and t-test value based on the path diagram for the model in

the PLS-algorithms-based path model. Table 10 shows that all path coefficients

values are well above the critical t-values (2.58). Therefore, path coefficients and sig-

nificance level indicating that all four-climatic series effect (temperature, pressure,

elevation, and humidity series) on daily precipitation were statistically accepted in

the PLS-algorithms-based modeling. After evaluating the path coefficients, we

consider the model for total effects. To consider total effects, we need to examine

each path of the predictor structures along with using the student’s t-test value for

total effects. Table 11 shows the total effects and level of significance based on

the path diagram for the model in the PLS-algorithms-based path model. Table 11

shows that significance values of the total effects are well above the critical t-values

(1.96 and 2.58). Therefore, total effects and significance level indicating that all four-

climatic series effect (temperature, pressure, elevation, and humidity series) on daily

precipitation were statistically accepted in the PLS-algorithms-based modeling.

Finally, after assessing the total effects, we consider the model for the predictive rele-

vance (Q2Þ or cross-validated redundancy (CV- Redundancy). Table 12 shows the

predictive relevance (Q2Þ or CV-Redundancy and level of significance based on

the path diagram for the model in the PLS-algorithms-based modeling. Table 12

showed that significance values of the predictive relevance (Q2Þ or CV- Redundancy
were positive and suitable for the model. Therefore, predictive relevance (Q2Þ or

CV-Redundancy and level of significance indicating that all four-climatic series
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Table 8. Indicator’s tolerance (VIF) for model in the PLS-SEM.

Model Unstandardized coefficients Standardized
coefficients

t Sig. Correlations Collinearity statistics

B Std. Error Beta Zero-order Partial Part Tolerance VIF

(Constant) �1.718E-7 0.010 0.000 1.000

Elevation series �0.015 0.010 �0.015 �1.507 0.134 �0.093 �0.117 �0.015 0.993 1.007

Humidity series 0.008 0.013 0.008 .594 0.554 �0.035 0.046 0.006 0.601 1.663

Pressure series �0.016 0.013 �0.016 �1.215 0.226 0.022 �0.094 �0.012 0.602 1.662

Temperature series 0.991 0.010 0.991 97.565 0.000 0.991 0.991 0.985 0.988 1.013

Bold indicates each VIF value in between 0.2 and 5.
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Table 9. R2 values for model series in the PLS-SEM based model.

Series R2

Elevation 0.155254

Humidity series 0.357369

Pressure series 0.375019

Temperature series 0.112358

Table 10. Results of the significance of the path coefficients based on PLS-SEM

model.

Original
sample
(O)

Sample
mean
(M)

Standard
deviation
(STDEV)

Standard
error
(STERR)

T [ (O)/
(STERR)

Result

Elevation / Precipitation
series

0.025269 0.016630 0.009274 0.009274 2.72471 Accept***

Humidity series / Precipitation
series

0.107726 0.007935 0.021851 0.021851 4.93002 Accept***

Pressure series / Precipitation
series

0.075810 0.015902 0.010698 0.010698 7.08637 Accept***

Temperature series / Precipitation
series

0.990959 0.991479 0.004110 0.004110 241.10924 Accept***

Critical t-values for a two-tailed test is: <2.58 (P-value ¼ .001***).
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effect (temperature, pressure, elevation, and humidity series) on daily precipitation

were statistically suitable and accepted in the PLS-algorithms-based modeling.
3.2.2. Formative -PLS- based modeling results

In addition, in this study, we consider the results from employing the PLS-based

modeling techniques (formative used techniques) to analyze the second-generation

techniques (SGT). We describe a summary of formative methods and results as

well as investigative findings. The main manifest variables of the PLS-CPSRM-

based model were studied using the main model (endogenous construct as formative

measurement model) as shown in Fig. 11. We use the analyzed patterns for all inter-

actions in the measurement models (i.e., the climatic effect loadings and CHT) and

the mechanical model (i.e., the climatic effect path coefficients). In the PLS-CPSRM-

based modeling, the study focuses on the application of the SGT model to assess

multidimensionality of the second model (i.e., formative estimated indicators) as

shown in Fig. 11. Fig. 11 shows effect of the climatic series (elevation series, pres-

sure series, humidity series, and temperature series) on daily precipitation using the

PLS-algorithms-based modeling in Iran. Effect of the climatic series (elevation se-

ries, pressure series, humidity series, and temperature series) on daily precipitation

was analyzed using SmartPLS.2 software. To examine effect of the climatic series
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Table 11. Results of the significance of the total effects based on PLS-SEM

model.

Original
sample (O)

Sample
mean (M)

Standard
deviation
(STDEV)

Standard
error
(STERR)

T statistics
(jO/STERRj)

Result

Elevation /
Precipitation series

0.192286 0.083945 0.098227 0.098227 1.95757 Accept***

Humidity series /
Precipitation series

0.057716 0.008112 0.021184 0.021184 2.72451 Accept***

Pressure series /
Precipitation series

0.629831 0.630112 0.023463 0.023463 26.84399 Accept***

Temperature series /
Precipitation series

0.990537 0.991181 0.004273 0.004273 231.81842 Accept**, ***

Critical t-values for a two-tailed test is: <2.58 (P-value ¼ .001***) and <1.96 (p ¼ .05**).

Table 12. Results of the significance of the CV- Redundancy based on PLS-SEM
model.

Total SSO SSE 1-SSE/SSO

Elevation series 18.107368 18.000368 0.005909

Humidity series 850.000000 699.045499 0.177594

Precipitation series 170.000000 8.826225 0.948081

Temperature series 1870.000000 1869.145347 0.000457

Fig. 11. Effectiveness of the climatic series (pressure series, humidity series, and temperature series) on

daily precipitation as a formative model using PLS-algorithms-based modeling in Iran.
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(elevation series, pressure series, humidity series, and temperature series) on daily

precipitation using the PLS-algorithms-based modeling, the indicator loadings,

Cronbach alphas and composite reliability, convergent validity (AVE), path coeffi-

cients, cross-loadings and CHT, correlations, construct scores, hidden variable

scores, t-values, and R2 values were applied. Fig. 11 shows the second mechanical

model as a formative pattern for climatic series effect checking. The initial phase in

assessing a PLS-algorithms-based path model (a formative model) is to assess the

outer model to estimate the measurement model. As results show, the outer loadings

on the path diagram are suitable for the formative model in the PLS-algorithms-

based path model. The outer loadings indicator showed that all loadings were higher

than the standard level (0.7), except relative humidity displaying outer loadings of

0.16366. In PLS-based modeling, an effect increase of humidity and pressure series

and a decrease in temperature series on precipitation series is estimated in Iran

(Fig. 12). The effect of the relative humidity, vapor pressure and saturation ratio

will increase up to 0.955 in the PLS-CPSRM. The variability in the precipitation dis-

tribution however, is more changeable due to spatiotemporal effect and the vari-

ability controlled by the various effect models employed (Fig. 12). Table 13

shows that the student’s t-test on the path diagram is suitable for the formative model

in the PLS-algorithms-based path model. The t-test values (Student’s t-test for outer

CHT varied from 3.39 to 4.876 for the five constructs) displayed that all path coef-

ficients were greater than the critical t values (2.66) for significance levels of 1 % (a

¼ 0.01; two-tailed test), thus presenting validity for all outer CHT. The key measures

to evaluate the formative model in the PLS-CPSRM-based modeling is estimating

the collinearity. To study collinearity, we should examine each part of predictor
Fig. 12. Effectiveness of the climatic series (pressure series, humidity series, and temperature series) on

daily precipitation as a hybrid model using PLS-algorithms-based modeling in Iran.
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structures separately for each subpart of the formative model. To estimate the level

of collinearity, we estimated the indicator’s tolerance (VIF) values VIF ¼ 1=ð1�
R2Þ. Table 14 shows the indicator’s tolerance (VIF) value on the path diagram

for the formative model in the PLS-algorithms-based path model. Table 14 shows

that all VIF values are well lower than the threshold of 5. Therefore, the VIF values

showing that the climatic series (temperature, pressure, elevation, and humidity se-

ries) are highly inter-correlated. After analyzing the VIF values as valid, the next

stage is to evaluate the formative model to distinguish the suitable models in the cli-

matic series effect is estimating the coefficient of determination (R2) as quality

assessment of the formative model for each climatic series. Table 15 shows the co-

efficient of determination ðR2Þ on the path diagram for the formative model in the

PLS-algorithms-based path model. The R2 index values revealed that they varied

from 0.983 to 0.322 for the five constructs, thus indicating different validity for

the formative model. Therefore, R2 values representing the humidity series

(35.7%), pressure series (32.2%), elevation series (15.4%), and temperature series

(15 %) have different efficiency in the PLS-algorithms-based modeling, respectively.

After the R2 index analysis of the formative model, the next stage is to assess the

mechanical model conditions to analyze the climatic series relationships between

the hidden variables (constructs). We analyzed significance of the path coefficients

using the student’s t-test value showing the climatic series relationships. Results

show the coefficients and t-test value based on the path diagram for the model in

the PLS-algorithms-based path model. After assessing the path coefficients, we

consider the model for total effects. To assess the formative model, the predictive

relevance (Q̂2) or cross-validated redundancy (CV-Redundancy) is used. Table 16

shows the predictive relevance (Q2Þ or CV- Redundancy based on the path diagram

for the formative model in the PLS-algorithms-based modeling. Table 16 shows that

the significance values of theQ2 or CV-Redundancy are positive and suitable for the

model. Therefore, the predictive relevance (Q2Þ representing that all four-climatic

series effect (temperature, pressure, elevation, and humidity series) on daily precip-

itation are statistically fitted and accepted in the PLS-algorithms-based for formative

modeling.
3.2.3. Hybrid-PLS- based modeling results

In this study, we consider the results from employing PLS-based modeling tech-

niques to analyze the second-generation techniques (SGT). We use the analyzed pat-

terns for all interactions in the measurement models and the mechanical model.

Effect of the climatic series (elevation series, pressure series, humidity series, and

temperature series) on daily precipitation was analyzed using hybrid techniques.

The initial phase in assessing a PLS-algorithms-based path model (a hybrid model)

is to assess the outer model to estimate the measurement model. Table 17 shows the

student’s t-test on the path diagram for hybrid model in the PLS-algorithms-based
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Table 13. Results of the t-statistics based on PLS-SEM formative model.

Original
series (O)

Series
mean (M)

Standard
deviation
(STDEV)

Standard
error
(STERR)

T statistics
(O/STERR)

Temperature series / Daily Precipitation 0.270165 0.266930 0.058780 0.058780 4.596247

Relative humidity series / Daily
Precipitation

0.563010 0.566548 0.121053 0.121053 4.650942

Pressure series / Daily Precipitation 5.557346 5.446230 1.637093 1.637093 3.394643

Elevation series / Daily Precipitation 5.057346 5.046230 1.037093 1.037093 4.876463

Table 14. Results of the indicator’s tolerance (VIF) on PLS-SEM formative

model.

Original series (O) VIF [ 1/(1-R2)

Temperature series / Daily Precipitation 0.270165 VIF ¼ 1

1� 0:2701652
¼ 1.078

Relative humidity series / Daily
Precipitation

0.563010 1.464

Pressure series / Daily Precipitation 5.557346 �0.0334

Elevation series / Daily Precipitation 5.057346 �0.0406

Table 15. R2 values for PLS-SEM based formative model.

Climatic series R2

Elevation series 0.154

Humidity series 0.357

Precipitation series 0.983

Pressure series 0.322

Temperature series 0.150
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path model. The t-test values (Student’s t-test for outer CHT varied from 2.32 to

25.57 for the four constructs) displays that all path coefficients are greater than

the critical t-values (1.96) for the significance levels of 5% (a ¼ 0.05; two-tailed

test), thereby presenting validity for all outer CHT. After assessing the path coeffi-

cients, we consider the model for total effects. To assess the hybrid model, the pre-

dictive relevance (Q2Þ or cross-validated redundancy (CV-Redundancy) is used.

Results show the predictive relevance (Q2Þ or CV-Redundancy based on the path

diagram for the hybrid model in the PLS-algorithms-based modeling that the signif-

icance values of the Q2 or CV-Redundancy are positive and suitable for the model.

Therefore, predictive relevance (Q2Þ representing all four-climatic series effect (tem-

perature, pressure, elevation, and humidity series) on daily precipitation are statisti-

cally fitted and accepted in the PLS-algorithms-based for hybrid modeling.
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Table 16. Results of the significance of the CV- Redundancy based on PLS-SEM
formative model.

Total SSO SSE 1-SSE/SSO

Elevation series 25.610 0.445 0.9826

Humidity series 1020 867.156135 0.1498

Precipitation series 170 69.833451 0.5892

Temperature series 2720 2704.694609 0.0056

Table 17. Results of the t-statistics based on PLS-SEM hybrid model.

Original
sample (O)

Sample
mean (M)

Standard
deviation
(STDEV)

Standard
error
(STERR)

T statistics
(jO/STERRj)

Humidity series / Precipitation
series

2.855506 0.528225 1.337599 1.007599 2.833970

Pressure and Elevation series /
Precipitation series

0.921488 0.822895 0.397419 0.397419 2.318683

Temperature series /
Precipitation
series

0.865830 0.857891 0.033855 0.033855 25.574971
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3.3. GIS-based modeling results

In this stage, we consider the results from the used CPSRM-based and PLS-based

modeling techniques (reflective, formative, and hybrid patterns) to map the findings

extracted from the CPSRM-based and PLS-based modeling. We describe the spatial

patterns of the considered models and results as well as exploratory findings. In this

stage, we focus on climatic effect patterns spatially such as the impacts of temperature

indicators on rainfall, the impacts of humidity indicators on rainfall, and the impacts of

elevation and pressures indicators on rainfall in Iran. We use GIS-based spatial-inter-

polation techniques such as Kriging methods to analyze the effect results of the CB-

CPSRM-based and PLS-basedmodels. Considering the total effects based onCPSRM

and PLS-based modeling in climate effect in Iran, the study focuses on application of

the FGT-SGTmodels to assess the effect of thefinalmodel as shown in Fig. 14. Fig. 14

shows the spatial distribution of the effect of climatic series on daily precipitation using

hybrid (final) model in Iran from 1975 to 2014. Fig. 14 shows five effect levels on

application of the FGT-SGT models for the final model in the GIS-based modeling.

The spatial variability indicates the range of effect on climatic series on daily precip-

itation occurred in Iran, varying from very low to very high. The range of effect in Iran

is different based on the elevation factor, especially in the Zagros and Alborz moun-

tains regions. Some CPSRM accept that elevation impact on precipitation over the

Caspian Sea is less important than those of the Zagros and Alborz mountains regions

due to some strong synoptic systems (effect by humid westerly winds). In addition, as
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Fig. 14A noticeably shows, the rate of effect of the elevation factor on daily precipita-

tion in southeast and central parts of the country is greater than that of the northeast

parts. The Zagros eastern slopes, Azerbaijan mountains, and Makran mountains

play an important role in effect of the elevation factor on daily precipitation in central,

northwest, and southeast parts of the country. However, in effect of the elevation factor

on daily precipitation, there exists no individual pattern in Iran. The indicator point of

the maximum effect of the elevation factor on daily precipitation over the coastal re-

gions of the Oman Sea is situated in Sistan and Baluchistan with a less important num-

ber of rainy days. In this region toward the south, the value of rainfall distribution has

increased (Fig. 13). TheOmanSea coasts is located along a direction affected by humid

Seasonal winds (monsoon low pressure system), and then the lowland area is

controlled by the Makran Mountains (Fig. 14A). Thus, there is decreased irregular ef-

fect of the elevation factor on daily precipitation northward from the Oman Sea coast

and northeastward in Iran. However, in central and northwest regions, the decreased

irregular effect is modified due to the Alborz and central mountains. Secondary com-

ponents of the effect of the humidity factor on daily precipitation, in the western and

central regions, play a crucial role in effect of the humidity factor on daily precipitation

(Fig. 14B). Fig. 14B shows the effect spatial variability of the humidity variables on

daily precipitation in Iran during the period 1975e2014. Compared to the elevation

factor, effect of the humidity variables shows a northern andwestern shift of effect dur-

ing the period 1975e2014. In Fig. 14B, in two realms, the maximum effect of the hu-

midity variables corresponds with central and western regions. Such effect spatial

variability patterns can appear in this realm as a result of a supported and shifted humid

seasonal winds system (monsoon winds system) and the humid western winds (pre-

vailing westerly’s system) into a hydrodynamic process (Fig. 14B). Furthermore,
Fig. 13. Distribution of the daily precipitation series in Iran.
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Fig. 14. Spatial effectiveness variability of the climatic series on daily precipitation using PLS-

algorithms-based final modeling in Iran.
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Fig. 14B shows that the area of the maximum effect of the humidity variables in west-

ern slopes of the ZagrosMountains is greater than that of the central regions. Thewest-

ern slopes of the Zagros Mountains play an important role in absorbing rainfall and

humidity by western winds or prevailing westerly’s system, a system that can be the

influx of Mediterranean cyclones. A realm linked to the distribution of maximum pre-

cipitation is situated in the western zones of Iran. In addition, Fig. 14B shows the area

of minimum effect of the humidity variables in northern slopes of the Alborz Moun-

tains, southern coasts, and northeast regions. The zonal conditions and prevailing

high-pressure system (Siberian anticyclone) play an important role in decreasing effect

of the humidity variables on daily precipitation, a pattern that can be due to lack of flow

humidity resources. Fig. 14C shows effect spatial variability of the pressure variables

(minimumpressures series) on daily precipitation in Iran during the 1975e2014 period

(Fig. 11). The effect spatial variability of the pressure variables shows a higher effect

zone in the Zagros Mountains and central regions during the period 1975e2014. The

different effectiveness of climatic series on precipitation distribution in the predicted

series has altered spatiotemporally such that pressure variables has been monitored

in the west and central parts of the country and temperature series distribution belongs

to the Oman sea coastline, southeast regions of Iran (Fig. 14). The results of the causal

modeling investigation revealed that effectiveness of climatic series on precipitation

indicated a strong irregularity in climatic variables for precipitation variability in

Iran. In addition, The focus of the effect spatial variability of the pressure variables
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on daily precipitation is observed in the impact zone of the prevailing westerly’s sys-

tem and low pressure of the Zagros mountains, with its spatial variability rate being

observably decreased as one pattern toward other parts (Fig. 14C). As Fig. 14C shows,

in one region, the maximum effect spatial variability of the pressure variables on daily

precipitation correspondswith intense precipitation. Fig. 14D shows effect spatial vari-

ability of the temperature variables on daily precipitation in Iran. Fig. 14D shows that

the effect rate of effect is mainly examined over the coasts of the Oman Sea. Addition-

ally, Fig. 14D shows that the second focus of the effect spatial variability of the tem-

perature on daily precipitation in Iran during 1975e2014 is mainly situated in

Azerbaijan regions, especially in East Azerbaijan Province. This effect pattern can

be controlled by mechanisms of atmospheric circulation system and local conditions

is based on the main dynamics effecting in Azerbaijan regions and coasts of the

Oman Sea (Modarres and Sarhadi, 2011; Ghasemi and Khalili, 2006; Raziei et al.,

2012; Najafi et al., 2017; Liu et al., 2017). However, the factors effect on daily precip-

itation has considerable diversity in Iran (Fig. 14). In fact, the diversity of factors effect

on daily precipitation is controlling the precipitation distribution in Iran.Assessment of

the diversity of factors effect on daily precipitation in the period 1975e2014 shows

decreased effect of internal factors than the external factors in Iran. Fig. 15 shows

the dominant frequency of the maximum effect in the provinces of Iran. Furthermore,

as Fig. 15 shows, the number of stations effect is different for pressure variables (sta-

tions 100 or 58.8%), humidity variables (stations 37 or 21.8%), temperature variables

(stations 25 or 14.7%), and elevation variable (stations 8 or 4.7%) to extract the esti-

mated values of climatic series in the Comprehensive -based modeling based on the
Fig. 15. Spatial effectiveness frequency of the climatic series on daily precipitation using

Comprehensive-based modeling in Iran.
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spatial variability produced in its GIS-basedmodeling. In northern and central regions,

the pressure variable effect range on daily precipitation has developed in nineteen

provinces. Furthermore, in southern regions, Hormozghan, Sistan und Baluchestan,

and SouthKhorasan provinces of Iran, the rate of humidity effect on daily precipitation

has increased. Additionally, the rate of temperature effect on daily precipitation in

western regions, Khuzestan and Chaharmahal and Bakhtiari, Kohgihluyeh and

Boyer-Ahmad, Lorestan, and Bushehr provinces, and the rate of elevation effect on

daily precipitation for Gholston Province have increased. The dominant frequency

of the maximum effect of climatic series in these provinces for pressure (58.8%) and

humidity (21.8%) on daily precipitation are predicted (80.6%) for pressure and humid-

ity variables. As Fig. 15 shows, the regionswithmaximumeffect on daily precipitation

can be consideredmainly as factors of formation of precipitation in Iran. The results of

effectiveness analysis showed that precipitation distribution and its variability have

been influenced by pressure variables (Climatic systems come from the Siberia, Eu-

rope, and North Atlantic Ocean) (Fig. 15).
4. Conclusions

The results indicated that during the period of 1975e2014, 80.6% of the climatic

variables effectiveness had belongs to the pressure and humidity variables distribu-

tions, respectively. The results of zoning of the climatic variables effectiveness

spatiotemporally revealed that the precipitation variability follows the different pat-

terns in Iran. The patterns and effect frequency of climatic series on daily precipita-

tion in the period 1975e2014 examined in this CPSRM indicate that four effect

regions in Iran can be detected for the rate of these effect factors:

1) In northern and central regions, the effect of pressure series on daily precipita-

tion is frequently focused.

2) In the south and southeast along the Oman Sea coasts and Sistan und Belutschi-

stan, and South Khorasan provinces of Iran, effect of humidity series on daily

precipitation is increased.

3) In the west and southwest along Khuzestan and Chaharmahal and Bakhtiari,

Kohgihluyeh and Boyer-Ahmad, Lorestan, Bushehr, and Ardebil provinces of

Iran, effect of temperature series on daily precipitation is increased.

4) In the north and southeast along the Caspian Sea, effect of elevation series on

daily precipitation is increased.

5) In the causal modeling, a typical application for effect formative model is sup-

posed in Iran, but the variability in precipitation is more changeable, with

various predicting to the climatic causal modeling.

Effect patterns appeared in the dominant frequency of climatic series on daily pre-

cipitation are summarized in zonal conditions, and the prevailing high-pressure
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system plays an important role in the patterns change of effect of the climatic vari-

ables on daily precipitation. The results of analyzing the first-generation techniques

(FGT), second-generation techniques (SGT), third-generation techniques (TGT),

and causal hybrid techniques (CHT) indicate that, although the climatic temporal-

spatial effect variability (SEV) has predicted spatial and temporal changes in the pre-

cipitation patterns, it has mainly focused on effect of various factors in Iran. The

spatiotemporal effect variability (SEV) of climatic factors is not similar to that of

rainfall distribution patterns in Iran. Effect spatial variability in daily precipitation

shows considerable diversity and composite patterns in recent years. Therefore, ac-

cording to the spatiotemporal effect variability, analysis of effect and causality (PEC)

requires an analytical model to predict the spatiotemporal changes in the precipita-

tion patterns. However, the CHT can help us to detect climatic changes by SEV in

Iran and other regions.
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