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Background: Black ginseng (BG) has greatly enhanced pharmacological activities relative to white or red
ginseng. However, the effect and molecular mechanism of BG on muscle growth has not yet been
examined. In this study, we investigated whether BG could regulate myoblast differentiation and myo-
tube hypertrophy.
Methods: BG-treated C2C12 myoblasts were differentiated, followed by immunoblotting for myogenic
regulators, immunostaining for a muscle marker, myosin heavy chain or immunoprecipitation analysis
for myogenic transcription factors.
Results: BG treatment of C2C12 cells resulted in the activation of Akt, thereby enhancing hetero-
dimerization of MyoD and E proteins, which in turn promoted muscle-specific gene expression and
myoblast differentiation. BG-treated myoblasts formed larger multinucleated myotubes with increased
diameter and thickness, accompanied by enhanced Akt/mTOR/p70S6K activation. Furthermore, the BG
treatment of human rhabdomyosarcoma cells restored myogenic differentiation.
Conclusion: BG enhances myoblast differentiation and myotube hypertrophy by activating Akt/mTOR/
p70S6k axis. Thus, our study demonstrates that BG has promising potential to treat or prevent muscle
loss related to aging or other pathological conditions, such as diabetes.
� 2017 The Korean Society of Ginseng, Published by Elsevier Korea LLC. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Black ginseng (BG) was prepared through the iterative process
of steaming and drying nine times [1]. During the steaming process,
ginsenosides of white or red ginseng are converted into less polar
ginsenosides, and 19 ginsenosides were newly discovered in BG [1].
It has been reported that BG has greatly elevated the pharmaco-
logical activities compared with white or red ginseng [2]. Other
reports have suggested the beneficial effect of BG on cancer, in-
flammatory, and oxidant effects [3e5]. The extract of BG has an
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anti-hyperglycemia effect via modulation of glucose metabolism in
the liver andmuscle [6]. However, the detailedmechanism of BG on
myogenesis and muscular hypertrophy has not been examined.

Muscle differentiation is a tightly regulated process in which
proliferative myoblasts exit the cell cycle and fuse together to
generate mature multinucleated myofibers. Myogenic regulatory
factors such as MyoD and Mef2 coordinate the process of myogenic
specification and differentiation [7]. These factors influence myo-
genesis during skeletal muscle regeneration after injury in which
quiescent muscle stem cells re-enter the process of cell cycle,
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Fig. 1. BG promotes myogenesis in C2C12 myoblasts. (A) BG-treated C2C12 cells were differentiated in differentiation medium for 2 d and analyzed by MHC immunostaining. DAPI
was used to visualize nuclei. (B) The MHC-positive myocytes shown in panel A were quantified as a number of nuclei per myotube. Values are represented as means � SD of three
independent experiments. **p < 0.01. (C) MHC, MyoD, and myogenin were analyzed by immunoblotting using prepared cell lysates from panel A. (D) The signal intensity of
indicated muscle-specific proteins was quantified in three independent experiments and normalized to pan-Cadherin. Values are represented as means � SD. **p < 0.01. BG, black
ginseng; DAPI, 40 ,6-diamidino-2-phenylindole stain; MHC, major histocompatibility complex; SD, standard deviation.
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proliferate, and fuse to repair the injured skeletal muscle [8]. Recent
research is inclined toward discovery of natural compounds that
have the potential to improve myogenesis and muscle regenera-
tion. Our study demonstrates the beneficial effect of BG on
myoblast differentiation and myotube hypertrophy. Thus, BG has
great potential as a therapeutic agent for treating muscular atrophy
related to aging or other chronic diseases, including diabetes and
cancer.
2. Materials and methods

2.1. Cell cultures

C2C12 cells from mouse myoblasts were cultured as previously
described [9]. C2C12 cells were maintained in Dulbecco’s Modified
Eagle’s medium (DMEM; Gibco-BRL, Grand Island, NY, USA) with
15% fetal bovine serum (FBS; Gibco-BRL, Grand Island, NY, USA). For
induction of myogenic differentiation, C2C12 cells were exchanged
into DMEM with 2% horse serum (differentiation medium; Gibco-
BRL) after reaching near confluence. The efficiency of the
myoblast differentiationwas quantified as previously reported [10].
For induction of hypertrophic growth, C2C12 cells were differen-
tiated for 2 d and then treated with BG for an additional 2 d in
differentiation medium [11]. For this study that involved the
pharmacological inhibitor, C2C12 cells were pre-incubated with
2.5mM LY294003 (CalBiochem, La Jolla, CA, USA) for 30 min and
then treated with BG for 2 d. Additional cell lines used in this study
included human rhabdomyosarcoma (RMS) and 293T cultured in
DMEM containing 10% FBS.
2.2. Immunoblotting and immunoprecipitation analysis

Immunoblotting analysis was performed as described previ-
ously [12,13]. Briefly, cells were extracted in cell extraction buffer
(pH 7.2, 1mM EDTA, 10mM Tris-HCl, 150mM NaCl, 1% Triton X-100)
containing complete proteinase inhibitor cocktail (Roche Di-
agnostics, Basel, Switzerland). Cell lysates were subjected to so-
dium dodecyl sulfate polyacrylamide gel electrophoresis. The
primary antibodies used were MHC (Developmental Studies Hy-
bridoma Bank, Iowa, IA, USA), Akt, mammalian target of rapamycin
(mTOR), 4E-BP1, p70S6K, the phosphorylated form of Akt (p-Akt),
mTOR (p-mTOR), 4E-BP1 (p-4E-BP1), p70S6K (p-p70S6K) (Cell
Signaling Technology, Beverly, MA, USA), pan-Cadherin (Sigma-
Aldrich, St. Louis, MO, USA), MyoD, myogenin, E2A, and a-tubulin
(Santa Cruz Biotechnology, Santa Cruz, CA, USA).

For immunoprecipitation (IP) assay, cultures were treated with
BG and lysed in IP lysis buffer, followed by IP with anti-E2A anti-
bodies overnight at 4�C. The immunoprecipitants were mixed with
protein G agarose beads (Roche Diagnostics, Basel, Switzerland)
and analyzed by immunoblotting with antibodies against MyoD
and E2A.

2.3. Immunocytochemistry

MHC immunostaining was performed as mentioned previously
[10,12]. Briefly, cultures were fixed, permeabilized, blocked, and
incubated with MHC antibodies, followed by an Alexa Fluor 568-
conjugated secondary antibody (Molecular Probes, Eugene, OR,
USA). Images were obtained with a Zeiss LSM-510 Meta confocal
microscope and processed using the ZEN-2 software (Carl Zeiss AG,
Oberkochen, Germany).

2.4. HPLC analysis

The profile of ginsenosides in BG was determined by HPLCe
evaporative light scattering detector method as previously
mentioned [4,14]. For detailed methods, see supplementary
methods.

2.5. Cell viability assay

MTT assay was used to examine cell viability. For detailed
methods, see supplementary methods.

2.6. Statistics

The experiments were performed three times independently.
The participants’ t test was used to assess the significance of the
difference between two mean values. The p values < 0.01
and < 0.05 were considered to be statistically significant.



Fig. 2. BG activates Akt signaling, thereby promoting the heterodimerization of MyoD and E proteins. (A) BG-treated C2C12 cells were differentiated for 2 d. The phosphorylated and
total forms of Akt of cell lysates were analyzed by immunoblotting. (B) Quantification of three experiments was independently performed as shown in panel A. The signal intensity of
phosphorylatedAktwas calculated andnormalized to total Akt. Values arepresentedasmeans� SD. **p<0.01. (C) C2C12 cellswere pre-incubatedwith 2.5mMLY294002 for 30min and
treated with 10 mg/mL BG. These cells were differentiated in differentiation medium for 2 d. Immunoblotting analysis was performed using cell lysates. (D) Quantification of three
experiments was independently performed as shown in panel C. The relative intensity of phosphorylated Akt andmuscle-specific proteins was calculated and normalized to total Akt
and pan-Cadherin, respectively. Values are represented asmeans� SD. *p< 0.05, **p< 0.01. (E) C2C12 and (F)MyoD-transfected 293Tcellswere treatedwith BG for 2 d and followed by
immunoprecipitation with anti-E2A antibodies and immunoblotting using anti-MyoD antibodies. Cell lysates are used as an input control for each protein. BG, black ginseng; DAPI,
40 ,6-diamidino-2-phenylindole stain; DMSO, dimethyl sulfoxide; MHC, major histocompatibility complex; N.S., not significant; p-Akt, phosphorylated Akt; SD, standard deviation.

J Ginseng Res 2018;42:116e121118
3. Results and discussion

3.1. BG enhances myogenic differentiation

The ginsenoside profile of BG was found to contain Rg3, Rg5,
Rk1, and Rh4 using HPLC analysis (Fig. S1). BG is enriched with the
bioactive chemical constituents by the process of heating and
drying, and the chemical composition of BG is different from that of
white and red ginseng [4,14]. In order to characterize the effect of
BG on myogenic differentiation, C2C12 cells were differentiated in
differentiation medium with varying concentrations of BG for 2 d,
and the myotube formation was assessed by immunostaining. BG
treatment enhanced the formation of MHC-positive multinucleated
myotube in a dose-dependent manner (Fig. 1A). For quantification
of the myotube formation, MHC-positive myotubes were counted
and plotted as percentile (Fig. 1B). Treatment with BG significantly
increased the ratio of larger myotubes with six or more nuclei per
myotube, while mononucleate myocytes decreased in a
concentration-dependent manner (Fig. 1B). Furthermore, Figs. 1C
and 1D revealed that the expression of MHC and myogenin was
gradually increased in BG-treated C2C12 cells compared with that
in dimethyl sulfoxide (DMSO)-treated cells. BG had no cytotoxic
effect on the growth of C2C12 cells, as assessed by MTT assay
(Fig. S2). These results indicate that BG enhances myoblast differ-
entiation at a morphological as well as at a biochemical level.

3.2. BG activates Akt signaling and promotes heterodimerization of
MyoD and E proteins

Akt signaling plays a major role in myogenic differentiation and
acts as a key promyogenic kinase [12,13,15]. To examine the
mechanism of BG in the promotion of myoblast differentiation,
C2C12 cells were treated with either control DMSO or BG in the
differentiation medium for 2 d and the activation status of Akt was
examined with an antibody recognizing the active phosphorylated
form of Akt (p-Akt). BG treatment elevated the level of p-Akt dose-
dependently without altering the total Akt level (Figs. 2A and 2B).
To investigate whether the BG effect on myoblast differentiation
requires Akt activation, C2C12 cells were pre-incubated with
LY294002 for 30 min and then treated with 10 mg/mL of BG for 2
d in differentiation medium, followed by Western blot analysis.
Inhibition of Akt decreased the expression of MHC, MyoD, and
myogenin compared with the control cells (Figs. 2C and 2D).
Furthermore, BG treatment partially restored the phosphorylation
level of Akt in LY294002-treated cells; however, it failed to rescue
the expression of muscle-specific proteins.

One key step for myoblast differentiation is through MyoD
activation which in turn induces myogenin and MHC expression,
and MyoD activity is regulated at multiple levels, including the
heterodimer formation with E protein [16e18]. Therefore, we
examined whether BG modulates the heterodimerization of MyoD
with E protein. C2C12 cells were treatedwith either DMSO or 10 mg/
mL of BG for 2 d, and lysates were analyzed by co-IP with an
antibody against E2A, by immunoblotting with MyoD antibodies.
BG treatment enhanced the amount of MyoD in the precipitates
with E2A antibodies as compared with the control treatment
(Fig. 2E). However, MyoD and E2A protein levels were constant in
total lysates, regardless of the BG treatment (Fig. 2E). To further
confirm, 293T cells expressing MyoDwere treated with 10 mg/mL of
BG for 2 d, followed by co-IP analysis. Consistent with the endog-
enous interaction, exogenous MyoD proteins strongly interacted
with E2A proteins in the BG-treated cells (Fig. 2F). In order to
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regulate the target genes expression, the recruitment of MyoD-
associated proteins such as BAF60C to the promoter region of
muscle-specific genes is required [19]. Promyogenic signalings,
p38MAPK, and Akt are critical for sustained recruitment of MyoD
protein complex [20,21]. One of the key steps for early myogenic
differentiation is the heterodimer formation of MyoD with E2A
gene products, leading to the recruitment of MyoD to the E box of
target genes and eventually induction of gene transcription [20].
Our data suggest that BG augments MyoD-dependent myogenic
transcription through Akt activation.

3.3. BG enhances myotube hypertrophy through activation of Akt
and its downstream signalings

Skeletal muscle atrophy and hypertrophy contribute to modu-
lation of the diameter of pre-existing muscular fibers [11]. Akt
signaling promotes protein synthesis pathway leading to muscle
hypertrophy mediated by its downstream signaling pathways, such
as mTOR/p70S6K [22,23]. To determine the effect of BG on muscle
growth, C2C12 cells were differentiated for 2 d and treated with BG
or control DMSO for additional 2 d, followed by immunostaining to
assess the myotube diameter. BG treatment enhanced myotube
growth (Fig. 3A), and myotubes were thicker with diameter about
1.52- or 1.92-fold when treated with BG (1mg/mL or 10 mg/mL,
respectively) compared with control myotubes (Fig. 3B). To further
explore the effect of BG on hypertrophic signaling pathway, C2C12
cells were cultured under the same experimental conditions as
mentioned above, and subjected to immunoblotting analysis.
Similarly to early differentiation, myotubes treated with BG dis-
played higher expression levels of MHC, MyoD, and myogenin than
the DMSO-treated myotubes (Figs. 3C and 3D). Additionally, BG
Fig. 3. BG promotes Akt-dependent myotube hypertrophy. (A) C2C12 myoblasts were diffe
additional 2 d. The myotube formation was analyzed by MHC immunostaining. DAPI was us
using the ZEN-2 software. Data are presented as means determination of six fields � 1 SD. *
(D) Quantification of three experiments was independently performed as shown in panel C. T
calculated and normalized to pan-Cadherin. Values are represented as means � SD. **p < 0.0
were analyzed by immunoblotting. a-Tubulin was used as loading control. (F) Quantification
intensity of phosphorylated Akt, mTOR, p79S6K, and 4E-BP1 was calculated and normali
means � SD. *p < 0.05, **p < 0.01. BG, black ginseng; DAPI, 40 ,6-diamidino-2-phenylindole
ibility complex; mTOR, mammalian target of rapamycin; N.S., not significant; p-Akt, phosp
treatment elevated the activation of Akt and its downstream
signaling events, as evident by greatly enhanced levels of the active
phosphorylated forms of mTOR and p70S6K as well as 4E-BP1
phosphorylation compared with vehicle-treated cells (Figs. 3E and
3F). Total protein levels of mTOR, p70S6K, and 4E-BP1 remained
constant regardless of the BG treatment. The protein synthesis
pathway controlled by Akt/mTOR/p70S6K pathway plays a critical
role in muscle growth, and defects in this signaling pathway have
been observed in various conditions associated with muscle atro-
phy [22,24]. Akt/mTOR signaling pathway has been involved in
muscle regeneration and hypertrophy by counteracting atrophy-
related signaling [21]. The activation of Akt and its downstream
signaling pathway not only prevent muscle loss but also induce
muscle growth [11,22]. Thus, Akt/mTOR signaling has been inves-
tigated for its potential clinical benefit to prevent age-related
muscular atrophy [11]. Our current data demonstrate that BG
elicits the activation of Akt/mTOR/p70S6K signaling to induce
myotube hypertrophy, indicating that BG has a great potential as a
therapeutic agent to treat atrophy.

3.4. RMS cells are converted into myoblasts by treatment of BG

RMS is a malignant cancer that arises from childhood soft tissue
sarcoma and has the characteristics of fetal myoblasts with
impaired myogenic differentiation [25]. We tested the effect of BG
on the impaired differentiation capacity of human RMS cells. RMS
cells at near confluence were treated with 10 mg/mL BG for 3 d and
subjected to immunoblotting for the expression of muscle-specific
proteins. BG treatment dramatically increased the expression of
muscle-specific proteins, such as MHC and myogenin, compared
with the DMSO treatment, whereas the expression of MyoD
rentiated in differentiation medium for 2 d and then treated with 10 mg/mL of BG for
ed to visualize nuclei. (B) Average myotube diameter shown in panel A was measured
*p < 0.01. (C) Muscle-specific proteins from panel A were analyzed by immunoblotting.
he relative intensity of muscle-specific proteins such as MHC, MyoD and Myogeninwas
1. (E) Total and phosphorylated forms of Akt, mTOR, p70S6K, and 4E-BP1 from panel A
of three experiments was independently performed as shown in panel E. The relative

zed to total Akt, mTOR, p79S6K, and 4E-BP1, respectively. Values are represented as
stain; DMSO, dimethyl sulfoxide; IP, immunoprecipitation; MHC, major histocompat-

horylated Akt; p-mTOR, phosphorylated mTOR; SD, standard deviation.



Fig. 4. BG converts RMS cells into myoblasts. (A) BG-treated RMS cells were differentiated for 3 d. Using prepared cell lysates, MHC, MyoD, and myogenin were analyzed by
immunoblotting. (B) The signal intensity of indicated muscle-specific proteins was quantified in three independent experiments and normalized to pan-Cadherin. Values are
presented as means � SD. **p < 0.01. (C) C2C12 cells from panel A were analyzed by MHC immunostaining to reveal myotube formation. DAPI was used to visualize nuclei. (D) The
MHC-positive myocytes shown in panel C were quantified as the number of nuclei per myotube. Values are presented as means � SD of three independent experiments. **p < 0.01.
BG, black ginseng; DAPI, 40 ,6-diamidino-2-phenylindole stain; DMSO, dimethyl sulfoxide; MHC, major histocompatibility complex; N.S., not significant; RMS, rhabdomyosarcoma;
SD, standard deviation.
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remained unchanged by BG treatment (Figs. 4A and 4B). Further-
more, BG treatment also improved MHC-positive myotube forma-
tion and enhanced the ratio of larger myotubes relative to DMSO-
treated RMS cells (Fig. 4C). BG treatment increased in the ratio of
myotubes containing three or more nuclei, whereas it decreased in
the portion of mononucleate myocytes (Fig. 4D). These data suggest
that BG restores myogenic differentiation of human RMS cells.
4. Conclusion

Our study provides a mechanistic framework for understanding
how BG enhances myoblast differentiation and muscular hyper-
trophy by activating Akt/mTOR/p70S6K signaling. Furthermore, BG
ameliorates the differentiation capacity of RMS cells, suggesting
that BG is a promising candidate to treat or prevent muscle atrophy
associated with aging or other chronic diseases.
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