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Abstract
Background: Phosphatase and tensin homolog (PTEN) germline mutations are as-
sociated with cancer syndromes (PTEN hamartoma tumor syndrome; PHTS) and in 
pediatric patients with autism spectrum disorder (ASD) and macrocephaly. The exact 
prevalence of PTEN mutations in patients with ASD and macrocephaly is uncertain; 
with prevalence rates ranging from 1% to 17%. Most studies are retrospective and 
contain more adult than pediatric patients, there is a need for more prospective pedi-
atric studies.
Methods: We recruited 131 patients (108 males, 23 females) with ASD and mac-
rocephaly between the ages of 3 and 18 from five child and adolescent psychiatry 
clinics in Turkey from July 2018 to December 2019. We defined macrocephaly as 
occipito-frontal HC size at or greater than 2 standard deviations (SD) above the mean 
for age and sex on standard growth charts. PTEN gene sequence analysis was per-
formed using a MiSeq next generation sequencing (NGS) platform, (Illumina).
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1  |   INTRODUCTION

Phosphatase and tensin homolog (PTEN) (OMIM 601728) 
is a tumor suppressor negatively regulates Phosphoinositide 
3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/
mTOR) pathway that plays an important role in cell growth, 
survival, and proliferation (Lv et al., 2013). Germline patho-
genic variants in the PTEN gene lead to a range of clinical 
outcomes including cancer syndrome phenotypes collec-
tively known as PTEN hamartoma tumor syndrome (PHTS), 
and autism spectrum disorder (ASD) with macrocephaly 
(MIM 605309) (Lv et al., 2013). Indeed, in mice model of 
PTEN haploinsufficiency, overgrowth of brain is detectable 
from birth to adulthood (Chen et al., 2015).

It had been reported that the frequency of PTEN muta-
tions ranged from 1% to 22% in patients with ASD and mac-
rocephaly (Buxbaum et al., 2007; Conti et al., 2012; Frazier 
et al., 2015; Herman et al., 2007; Hobert et al., 2014; Klein 
et al., 2013; Kurata et al., 2018; McBride et al., 2010; Varga 
et al., 2009). Even though same PTEN mutation in differ-
ent individuals lead to different phenotype (Leslie & Longy, 
2016), missense mutations were predominantly reported in 
autism and macrocephaly syndrome (Leslie & Longy, 2016; 
Spinelli et al., 2015). These mutations lower, but do not 
abolish, PTEN’s key activity (Smith et al., 2019). Mighell 
et al., (2018) proposed that mutations associated with ASD 
and developmental delay are unstable, but more catalytically 
active than mutations causing PHTS. It had been suggested 
that PTEN mutation carrier ASD patients have a distinct neu-
robehavioral phenotype compared to idiopathic ASD (Busch 
et al., 2019) that strongly suggests the importance of reliable 
genotype-phenotype studies to help in patient management, 
prognosis and therapeutic selection by identifying key mu-
tations associated to ASD phenotypes. Since clinical test-
ing guidelines for PTHS in children are fairly new and not 
applied uniformly (Butler et al., 2005; Hansen-Kiss et al., 
2017; Macken et al., 2019), PTHS often goes undetected in 

children. We hope that our study will increase awareness of 
this rare disease in Turkey.

In this study, we screened PTEN variants in children with 
ASD, mild intellectual disability and macrocephaly without 
significant developmental delay in Turkey to determine the 
prevalence of PTEN mutations in pediatric ASD and macro-
cephaly patients and to find novel mutations that would lead 
to greater insight into genotype-phenotype correlations for 
PTEN mutations.

2  |   METHODS

After Istanbul University ethics committee approval 
(Number: 2014/798), we recruited 131  Turkish children 
(108 males, 23 females) aged 3–18 years with macrocephaly 
and ASD who were seen at five different child and adolescent 
psychiatry clinics in Turkey from July 2018 to December 
2019. ASD diagnosis was made by experienced child and 
adolescent psychiatrists using DSM V criteria. We defined 
macrocephaly as occipito-frontal HC size at or greater than 
2 standard deviations (SD) above the mean for age and sex on 
standard growth charts. All patients had thyroid ultrasounds 
(USG) and cranial magnetic resonance imagining (MRI).

Total of 3cc's of peripheral venous blood was collected 
from each patient after written informed parental consent 
forms were signed. The blood samples were archived and 
stored for possible further analysis. DNA extraction was per-
formed with DNA extraction kits (Qiagen. inc), and the DNA 
samples were preserved at −20°C for future analysis.

First tier PTEN gene sequence analysis was performed 
using a MiSeq next generation sequencing (NGS) plat-
form, (Illumina, San Diego, CA, USA) an FDA approved 
diagnostic system. All coding exons of the PTEN gene 
and their flanking splice site junctions were amplified by 
in house designed primers. PCRs were validated by using 
agarose gel electrophoresis. After PCR amplification, the 

Conclusion: PTEN gene sequence analyses identified three pathogenic/likely 
pathogenic mutations [NM_000314.6; p.(Pro204Leu), (p.Arg233*) and novel 
(p.Tyr176Cys*8)] and two variants of uncertain significance (VUS) [NM_000314.6; 
p.(Ala79Thr) and c.*10del]. We also report that patient with (p.Tyr176Cys*8) muta-
tion has Grade 1 hepatosteatosis, a phenotype not previously described. This is the 
first PTEN prevalence study of patients with ASD and macrocephaly in Turkey and 
South Eastern Europe region with a largest homogenous cohort. The prevalence of 
PTEN mutations was found 3.8% (VUS included) or 2.29% (VUS omitted). We rec-
ommend testing for PTEN mutations in all patients with ASD and macrocephaly.

K E Y W O R D S
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libraries were prepared with the NexteraXT kit (Illumina 
Inc.), according to the manufacturer's instructions. Next-
generation sequencing was carried on MiSeq (Illumina 
Inc.). Sequences were aligned to the hg19 genome within 
MiSeq Reporter software (Illumina Inc.). Visualization 
of the data was performed with IGV 2.3 (Broad Institute) 
software. Confirmatory Sanger sequencing was performed 
for 10 randomly selected patients, patients with positive re-
sults, and their respective parents.

To determine the confidence interval of the estimated prev-
alence, we followed Lwanga and Lemeshow (1991), where the 
absolute precision is defined as: D = sqrt(z2 × P × (1 − P)/n) 
with z the significance threshold, P the calculated prevalence, 
D the absolute precision and n the sample size. Using the 
genomic data on 131 patients and considering five SNPs dis-
covered, we calculated the prevalence to be 3.8 ± 3.3%, with 
95% confidence interval being (0.5, 7.1). The clinical sig-
nificance of each variant was evaluated with ClinVar (http://
www.ncbi.nlm.nih.gov/clinv​ar/) database and Database  of 
Genomic Structural Variation (dbVar).

Patients with positive results were seen by a pediatric ge-
neticist (except for patient 3 lost to follow up) for dysmorphol-
ogy exam, additional family history, and genetic counselling.

3  |   RESULTS

In our cohort of 131 patients (108  males, 23 females) be-
tween the ages of 3 and 18, we found two variants of uncer-
tain significance and three pathogenic mutations according to 
ClinVar database. The prevalence of PTEN mutations is 3.8% 
and 2.29% by including or excluding VUS, respectively.

Among pathogenic mutations, two are frameshift muta-
tions and one is a missense mutation. We confirmed the de 
novo nature of these mutations by using DNA from the par-
ents of four patients. Clinical and molecular characteristics of 
these patients are summarized in Table 1.

Patient 1 was a 5-year-old female diagnosed with mild 
ASD when she was 4 years old. She did not have any dys-
morphic features nor other medical problems. She had nor-
mal intellectual capacity based on observations and Turkish 
developmental test (Savasir et al., 2005). She did not have 
cutaneous lesions. Her weight and height were −0.4 and −0.5 
SD respectively whereas her HC was +2.01 SD. She had thy-
roid and abdominal USG’s which were normal. Cranial MRI 
showed nonspecific hyperintense areas on T2.). Her PTEN 
mutation has moderate evidence level according to Clingen 
PTEN Expert Panel phenotype scoring. (Mester et al.,l., 
2018) (Table 2 and SuppInfo 1).

She carries a de novo P204L [Ref seq NM_000314.6; 
c.611C>T p.(Pro204Leu)] missense variant that was pre-
dicted to be pathogenic according to multiple in silico algo-
rithms (Table 1 and SuppInfo 2).

Patient 2 was an 8-year-old male diagnosed with mild 
ASD when he was 5 years old. He also had attention deficit 
hyperactivity disorder (ADHD). He had mild intellectual de-
ficiency based on observations and Turkish developmental 
test. On physical exam, he was found to have almond shaped 
eyes, low set ears, and prominent ear lobes. His HC was 56cm, 
99. 32% and +2.41 SD. He did not want his height and weight 
measured during exam. Thyroid USG and cranial MRI was 
normal. There were no cutaneous lesions. His PTEN muta-
tion has strong evidence level according to Clingen PTEN 
Expert Panel phenotype scoring. (Table 2 and SuppInfo 1) 
A79T [Ref seq NM_000314.6; c.235G>A, p.(Ala79Thr)] 
missense variant was identified in this patient. The dbSNP 
database classified this variant as of uncertain significance, 
while ClinVar classified it as likely benign (Table 1 and 
SuppInfo 2).

Patient 3 was a 7-year-old male diagnosed with mild 
ASD when he was 3 years old. His HC was 55cm, 98.07% 
and +2.42 SD. He and his family were lost to follow up. 
Developmental test could not be done. He had mild ID based 
on observations. His PTEN mutation has strong evidence level 
according to Clingen PTEN Expert Panel phenotype scoring. 
(Table 2 and SuppInfo 1) c.*10del (Ref seq NM_000314.6; 
c.*10del) variant was identified. It was classified as a variant 
of uncertain significance in the ClinVar database (Table 1 
and SuppInfo 2).

Patient 4 was a 5-year-old female diagnosed with mild 
ASD when she was 3  years old. She had mild intellectual 
deficiency based on observations and Turkish developmental 
test. Her HC had the biggest SD among 131 patients; mea-
suring 59 cm, 99.98% and +5.65 SD. Her weight was +3.47 
SD. She had a normal EEG and thyroid USG. Cranial MRI 
showed nonspecific hyperintense areas on T2. She was non- 
dysmorphic. There were no cutaneous lesions. Her PTEN mu-
tation has strong evidence level according to Clingen PTEN 
Expert Panel phenotype scoring. (Table 2 and SuppInfo 1) 
Her mother also had HC +2 SD, a nasal bridge lipoma, di-
abetes mellitus, and hypertension. She was suffering from 
depression. A de novo p.Arg233* [Ref seq NM_000314.6; 
c.697C>T, (p.Arg233*)] loss-of-function (LOF) mutation 
was identified. It was classified as pathogenic with no con-
flicts in ClinVar and dbSNP database (Table 1 and SuppInfo 
2).

Patient 5 was a 15-year-old male diagnosed with mild 
ASD when he was 7 years old. He had mild intellectual de-
ficiency according to observations. His parents refused the 
developmental test. His HC was 61 cm, 99.75% and +2.81 
SD. His weight was −1.05 SD and height was +0.38 SD. 
He had frontal bossing and penile freckling. Thyroid and 
scrotal USG were normal. Abdominal USG showed grade I 
hepatosteatosis. Cranial MRI was normal. His PTEN muta-
tion has strong evidence level according to Clingen PTEN 
Expert Panel phenotype scoring. (Table 2 and SuppInfo 1) 

http://www.ncbi.nlm.nih.gov/clinvar/
http://www.ncbi.nlm.nih.gov/clinvar/
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This patient fit the diagnostic criteria of BRRS. A novel de 
novo p.Y176Cfs*8 [Ref seq NM_000314.6; c.525_526dup, 
(p.Tyr176Cys*8)] LOF mutation was found. It was classified 
as likely pathogenic in ACMG classification. (Table 1 and 
SuppInfo 2) It has not previously been reported in the litera-
ture nor found in the Population Frequency Databases.

4  |   DISCUSSION

PTEN is composed of 403 amino acids that comprise five 
functional domains: a phosphatidylinositol4,5-bisphosphate 
(PIP2)-binding domain (PBD) and a phosphatase domain 
containing the catalytic core (spans amino acids 123–130) at 
the N-terminus, a C2 domain, two PEST (proline, glutamic 
acid, serine, threonine) domains, and a PDZ interaction motif 
for protein-protein interactions at the C-terminus (Yehia & 
Eng, 2018) (Figure 1).

The c.*10del (NM_000314.6; c.*10del) variant 
(rs756681683) that is located in 3’UTR region of the PTEN 
gene is classified as a variant of uncertain significance in 
the ClinVar database. It was absent from controls in Exome 
Sequencing Project, 1000 Genomes Project, or Exome 
Aggregation Consortium. However, in ALFA Project (Allele 
Frequency Aggregator), the minor allele frequency reported 
for the variant was below 1% (delT=0.00036) (Phan et al., 
2020) (Table 1 and SuppInfo 2).

Novel loss-of-function mutation p.Y176Cfs*8 
(NM_000314.6; c.525_526dup, p.Tyr176Cys*8) and 
p.Arg233* [NM_000314.6; c.697C>T, (p.Arg233*)], located 

in PTP and C2 domains of PTEN, respectively, result in an 
early truncated protein. They might affect the enzymatic 
activity and protein stability of PTEN, cell migration, and 
protein–protein interactions (Phan et al., 2020; Song et al., 
2011; Vazquez et al., 2000). p.Y176Cfs*8 meets criteria to 
be classified as likely pathogenic (Table 1 and SuppInfo 2). 
The other LOF mutation of PTEN c.697C>T at cDNA level 
creates a stop codon from Arginine at 233 position at the pro-
tein level. It was classified as pathogenic with no conflicts 
in ClinVar database (ClinVar: 7813) and it is a well-known 
stop codon mutation reported in the literature multiple times 
and results in Cowden Syndrome, Bannayan-Riley-Ruvalcaba 
syndrome and other cancers (Busch et al., 2013; Lachlan 
et al., 2007; Marsh et al., 1997; Ngeow et al., 2014).

The A79T]NM_000314.6; c.235G>A, p.(Ala79Thr)] vari-
ant was reported with low frequency (0.01%) in gnomAD ex-
omes and ExAC. The dbSNP database classified this variant 
as of uncertain significance, while ClinVar classified it as 
likely benign (dbSNP: rs202004587, ClinVar: 41682). It was 
predicted to be deleterious by multiple in silico algorithms 
(MetalR, MetaSVM and FATHMM), while some of the pre-
dictions obtained from SIFT, REVEL, Polyphen suggested a 
benign effect on protein function (Table 1 and SuppInfo 2). 
PTEN is a gene that has a low rate of benign missense varia-
tion and where missense variants are a common mechanism 
of disease (Raftopoulou et al., 2004). The A79T variant was 
located on the catalytic phosphatase tensin-type domain (spans 
amino acids 14 – 185). The analysis of the effect of the A79T 
substitution on the stability and conformational dynamics of 
the protein (PDB:1D5R) using DynaMut web server suggested 

T A B L E  2   PTEN variant classification according to Clingen PTEN Expert Panel

Pt
Phenotype specificity 
score

Phenotypic evidence 
level Variant classification

1 2 Moderate PS1, PS2, PM5, PS4_M, PP2, PP3

2 4 Strong PS4, PM1, PP3

3x 4 Strong PS4, BP7

4 5 Strong PVS1, PS2, PS4

5 7 Strong PVS1, PS2, PS4

Note: 3x: Patient lost contact.
Abbreviations: Please refer to SuppInfo 1.

F I G U R E  1   Mutations within the functional domain structure of human PTEN (with modification from Yehia and Eng (2018)) PBD: a 
phosphatidylinositol-4,5-bisphosphate (PIP2)-binding domain; PTEN_C2: C2 domain of PTEN tumor-suppressor protein; PTP_PTEN: Dual 
specificity phosphatase, catalytic domain; PEST: (proline, glutamic acid, serine, threonine)



6 of 9  |      KAYMAKCALAN et al.

that A79 destabilizes this protein (ΔΔG: −0.3431 kcal/mol; a 
negative value of ΔΔG indicates the mutation destabilizes the 
protein) (Wu et al., 2000) (Figure 2a). Additionally, we used 
HOPE web server (Project Have yOur Protein Explained) that 
analyzes the structural and functional effects of point muta-
tions (Rodrigues et al., 2018). Wildtype A79 residue positioned 
within PTP domain is smaller and more hydrophobic than the 
mutant T79 residue that suggests mutation of theA79T might 
disturb the function of the protein.

P204L [NM_000314.6; c.611C>T p.(Pro204Leu)] 
missense variant was identified in our study, it was previ-
ously reported in cancer database. In addition, this variant 
was predicted to be deleterious by PolyPhen, FATHMM, 
ClinPred, MetaSVM, REVEL, and SIFT in silico analy-
ses. An alternative P204A (p.Pro204Ala) variant has been 
found to be Likely Pathogenic in the ClinVar Database 
(ClinVar: 189415) (Table 1 and SuppInfo 2). Also, addi-
tional missense variants in nearby residues (F200S, T202I, 
M205V, S207R) have been reported in PTEN-related dis-
orders (Stenson et al., 2014), providing functional impor-
tance of this region of the protein. Based on the currently 
available evidence, P204L is, therefore, considered likely 
pathogenic. The analysis of the effect of P204L missense 
mutation that is located at the C2 domain using DynaMut 
web server found the positive ΔΔG (ΔΔG: 1.022  kcal/
mol), which indicates the mutation does not destabilize the 
protein. However, HOPE web server revealed that the mu-
tant residues of P204L bigger than the wild-type residue 

(proline) and the mutation introduces an amino acid (leu-
cine) with different properties, which can disturb the C2 
domain and abolish its function. Moreover, rigidity of a 
protein structure is essential for specific function. The 
wild-type 204 residue, proline, is known to be very rigid 
(Figure 2b) and substitution with leucine can disrupt this 
required rigidity of the PTEN protein.

Macrocephaly prevalence in ASD is estimated to be 20% 
in some studies (Fombonne et al., 1999; Miles et al., 2000), 
however another study reported no difference in head size 
between children with autism and controls (Langen et al., 
2009). Although it was not the aim of our study, we found 
a 10.2% prevalence of macrocephaly in one center. At this 
center, head circumferences of 361 patients with autism spec-
trum disorder were measured for our study and 37 of these 
patients had macrocephaly. (SuppInfo 3) To the best of our 
knowledge this is the largest cohort of pediatric patients with 
ASD and macrocephaly and is the first prevalence study of 
PTEN mutations in macrocephaly and ASD in Turkey and 
South Eastern Europe region.

The patient 5 with de novo pathogenic LOF mutation 
(c.525_526dup, p.Tyr176Cys*8) displayed Grade 1  hepa-
tosteatosis. PTEN loss has been previously hypothesized to 
cause hepatosteatosis by resulting in increased lipogenesis 
and hepatic apoB-lipoprotein degredation (Qiu et al., 2008). 
Clinically, our patient does not have any other risk factors for 
hepatosteatosis (patient is not obese, does not have diabetes, 
does not have high cholesterol and not an adult) Therefore, 

F I G U R E  2   (a) Structural alteration 
of the wild-type residue A79 by the mutant 
T79 illustrated by DynaMut. (b) Structural 
alteration of the wild-type residue P204 by 
the mutant L204 illustrated by DynaMut. 
Wild-type and mutant residues are colored 
in light-green
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PTEN mutation in this patient may be also associated with 
hepatosteatosis. This feature, to the best of our knowledge, 
is not previously described in the literature. Clinical out-
come of pediatric patients with PTEN mutations are not well 
known yet; there are few studies suggesting a follow up plan 
in this group (Ciaccio et al., 2019). Smpokou et al., (2015) 
showed that thyroid carcinoma can occur at a very early age 
(6–7 years). This indicates the importance of screening for 
PTEN mutations to allow later thyroid carcinoma surveil-
lance. Ciaccio et al., (2019) recommend screening of patients 
with ASD when HC is more than 3 SD. However, in our co-
hort, three patients with PTEN mutations have HC less than 
3 SD. Also a progressive increase in HC is described. (Balci 
et al., 2018; Vanderver et al., 2014) We therefore recommend 
screening all patients with ASD whose HC are more than 2 
SD.

Studies showed that individuals with ASD who carries 
PTEN mutations have reduced performance on attention, 
impulsivity, reaction time, processing speed, motor coordi-
nation and worse ID’s compared to individuals with ASD 
without PTEN mutations (Busch et al., 2013, 2019; Frazier 
et al., 2015). The limitations of our study is that we could not 
do a detailed neurobehavioral tests to observe these domains. 
Interestingly, in our cohort, one patient did not have ID and 
others had mild ID. However, it is not possible to make a 
genotype-phenotype correlation at this time.

Studies of the mutation types in PTEN have varying re-
sults (Spinelli et al.,; 2015) and the genotype-phenotype cor-
relations reported are not substantial enough to predict the 
phenotype. (Macken et al.,; 2019).

Among our pathogenic mutations, two are LOF mutations 
and one is missense mutation. With this small number it is 
difficult to make a conclusion. Patient 5 with LOF mutation, 
demonstrated the clinical phenotype of BRRS. Patient 4 with 
LOF mutation had the biggest head circumference and since 
she is only 5 years old she may not show the clinical charac-
teristics of PHTS yet. (She carries a well-known stop codon 
mutation reported in the literature multiple times and results 
in Cowden Syndrome, Bannayan-Riley-Ruvalcaba syndrome 
and other cancers).

Most of the PHTS-linked PTEN mutations are loss-of-
function mutations (Rademacher & Eickholt, 2019) and our 
findings are in line with this hypothesis although as stated 
by Macken et al in their paper, in the absence of observa-
tional studies we cannot predict the phenotypes of children 
into adulthood. Due to this lack of firm genotype-phenotype 
correlations, children with pathogenic or likely pathogenic 
PTEN variants are advised to follow PHTS cancer surveil-
lance guidelines.

Identification of PTEN mutations is important for accu-
rate genetic counselling, patient follow up, management and 
treatment with targeted therapies on the horizon.
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