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Abstract

Staphylococcus aureus is a commensal and major pathogen of humans and animals. Comparative genomics of S. aureus populations

suggests that colonization of different host species is associated with carriage of mobile genetic elements (MGE), particularly bac-

teriophagesandplasmids capableofencodingvirulence, resistance,and immuneevasionpathways.Antimicrobial-resistant S.aureus

of livestock are a potential zoonotic threat to human health if they adapt to colonize humans efficiently. We utilized the technique of

experimental evolution and co-colonized gnotobiotic piglets with both human- and pig-associated variants of the lineage clonal

complex 398, and investigated growth and genetic changes over 16 days using whole genome sequencing. The human isolate

survived co-colonization on piglets more efficiently than in vitro. During co-colonization, transfer of MGE from the pig to the human

isolate was detected within 4 h. Extensive and repeated transfer of two bacteriophages and three plasmids resulted in colonization

with isolates carrying a wide variety of mobilomes. Whole genome sequencing of progeny bacteria revealed no acquisition of core

genome polymorphisms, highlighting the importance of MGE. Staphylococcus aureus bacteriophage recombination and integration

intonovel siteswasdetectedexperimentally for thefirst time.Duringcolonization, clonescoexistedanddiversifiedrather thanasingle

variant dominating. Unexpectedly, each piglet carried unique populations of bacterial variants, suggesting limited transmission of

bacteria between piglets once colonized. Our data show that horizontal gene transfer occurs at very high frequency in vivo and

significantly higher than that detectable in vitro.
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Introduction

Staphylococcus aureus is a commensal and opportunistic

pathogen of humans and animals (DeLeo and Chambers

2009). Nasopharyngeal colonization can be considered as

the first step toward the development of S. aureus infection,

as most S. aureus infections are caused by endogenous colo-

nizing strains (Von Eiff et al. 2001; McCarthy, Breathnach,

et al. 2012). The emergence of methicillin-resistant S. aureus

(MRSA) clones is a major global concern as options for pre-

vention and treatment of infection are restricted. Human

MRSA reservoirs have successfully evolved and adapted to

survive as either healthcare or community pathogens.

Livestock-associated (LA-)MRSA clones are an emerging prob-

lem, particularly in pig and veal calf farming, as these MRSA

can successfully transmit from animal reservoirs and adapt to

colonize and cause infections in in-contact humans (Huijsdens

et al. 2006; Khanna et al. 2008; Wulf and Voss 2008; Smith

et al. 2009; van Cleef, Monnet, et al. 2011). Although the pig-

associated clonal complex (CC)398 lineage can cause human

infection, they are currently inefficient at spreading between

humans or within human hospitals (van Cleef, Graveland,

et al. 2011; Wassenberg et al. 2011).

Populations of S. aureus isolates belong to many indepen-

dently evolving lineages (also known as CCs), each with

unique combinations of genes encoding surface proteins, se-

creted immune evasion proteins, and their regulators (Lindsay

et al. 2006; McCarthy and Lindsay 2010, 2013). Mobile ge-

netic elements (MGEs) account for 15–20% of the S. aureus

genome (the mobilome) and include bacteriophages, plas-

mids, S. aureus pathogenicity islands (SaPIs), transposons,
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and the staphylococcal cassette chromosomes encoding

methicillin-resistance (SCCmec) that can be acquired and lost

from genomes through horizontal gene transfer (HGT) mech-

anisms (Lindsay 2014b). HGT of MGEs is assumed from com-

parative genomic studies to be a major evolutionary step that

accelerates genetic and phenotypic variation in S. aureus pop-

ulations, and enables adaptation to changing environments

(Lindsay 2010). The remarkable variation in MGE content of

S. aureus isolates within the same lineage, or even within the

same MRSA clone, suggests that HGT is frequent among S.

aureus isolates (Lindsay et al. 2006) although experimental

evidence is lacking. As MGEs can carry genes encoding resis-

tance, virulence, and/or host-specific factors that are relevant

for survival and adaptation, their acquisition and loss is pre-

dicted to play important roles in adaptation to changing envi-

ronments. Genome analysis suggests that particular MGEs

have crossed-lineage boundaries and are associated with ad-

aptation to specific environmental settings (Lindsay 2010). In

particular, the j3 family of bacteriophages encodes up to

three human-specific host immune-evasion proteins, Sak,

Chp, and Scn, and these bacteriophages are strongly associ-

ated with human rather than animal isolates (van Wamel et al.

2006; Sung et al. 2008; McCarthy, van Wamel, et al. 2012).

Polymorphisms in genes encoding proteins involved in

specific host–pathogen interactions are also described in

S. aureus; however, the distribution of polymorphism is

often lineage-associated rather than host-associated

(McCarthy and Lindsay 2010, 2013). Nevertheless, single nu-

cleotide polymorphisms (SNPs) in the S. aureus genome might

be expected to arise during host adaptation, particularly in

immune evasion pathways or specific host binding proteins

(Uhlemann et al. 2012). This type of gene polymorphism in

specific pathways emerges in experimental evolution experi-

ments utilizing pathogens such as Pseudomonas aeruginosa

and Escherichia coli in response to new host environments

(Ensminger 2013). In contrast, the potential for transfer of

MGEs during bacterial host adaptation is poorly understood.

CC398 is the prevalent lineage of LA-MRSA colonizing

pigs, veal calves, and in-contact humans in Europe and

North America (McCarthy, van Wamel, et al. 2012).

Although LA-MRSA can infect humans, it is inefficiently trans-

mitted between humans or within human hospitals (van

Cleef, Graveland, et al. 2011; Wassenberg et al. 2011). In

contrast, a proportion of CC398 isolates appear to be associ-

ated with human-to-human transmission only, including

infection outbreaks in the Netherlands, Belgium, Denmark

and increasingly high levels of colonization reported in New

York, Chicago, the Dominican Republic, and Dallas County Jail

(van Belkum et al. 2008; Vandendriessche et al. 2011;

Uhlemann et al. 2012; David et al. 2013). Pig-associated

and human-specific S. aureus isolates of CC398 have substan-

tial differences in their MGE content (McCarthy, van Wamel,

et al. 2012). Pig-associated CC398 genomes typically carry

SCCmec (b-lactam resistance), tetM (tetracycline resistance)

on the transposon Tn916, j2 and j6 bacteriophages, SaPI5

with putative host specific proteins such as alternative scn

variants (for complement binding) and vwbp variants (von

willebrand factor binding and coagulation), and small plas-

mids such as those carrying genes encoding tetracycline

(tetK) or trimethoprim resistance (dfrG) (Schijffelen et al.

2010; McCarthy, van Wamel, et al. 2012). The role of these

MGEs in host adaptation has not been tested experimentally.

On the other hand, the human-specific CC398 isolates, de-

spite their geographical differences, typically carry j3 bacte-

riophage (and genes encoding the immune evasion proteins

Chp, Scn, and Sak) and alternative small plasmids (McCarthy,

van Wamel, et al. 2012). These studies suggest that S. aureus

mobilomes are genetically diverse and that individual mobi-

lomes are well-adapted to colonization of specific hosts.

However, the possibility that S. aureus mobilomes adapt to

their hosts in short timescales has been little studied.

Experimental evolution is a powerful method to directly test

models of host–pathogen interaction (Ensminger 2013) that

has not previously been applied to S. aureus. In this study we

aimed to investigate S. aureus population survival, adaptation

and diversification during colonization with CC398 clones

adapted to different hosts. Such studies require a tightly con-

trolled environment and for this reason a gnotobiotic piglet

model was used (Giotis et al. 2012). Molecular methods iden-

tified regions of the S. aureus genome that diversified in

response to colonization of gnotobiotic piglets, and detected

high frequency HGT of MGEs rather than SNPs.

Co-colonization of piglets with human-specific and pig-asso-

ciated CC398 isolates showed S. aureus clonal coexistence

and genome diversification during colonization rather than

fixation of a single successful variant. Accumulation of specific

bacteriophages and a resistance plasmid suggested that they

may play a role in adaptive evolution during colonization.

Materials and Methods

Strains

The two parent CC398 isolates used in the studies were pig-

associated isolate S0385 and human-specific isolate H398.

S0385 was isolated in 2006 from a blood culture of a patient

with endocarditis who had contact with pig farms. It was the

first CC398 isolate to be sequenced and completely annotated

(Schijffelen et al. 2010) (GenBank NC_017333), and was

kindly supplied by Henrik Hasman. H398, renamed from

strain TB27855 for this study, was isolated in 1998 from

blood culture during an outbreak of S. aureus disease unre-

lated to pig exposure (van Belkum et al. 2008) and was kindly

supplied by Willem van Wamel. Previous comparative geno-

mics indicates that S0385 belongs to the pig-associated

CC398 clade, whereas H398 belongs to the human-specific

CC398 clade (McCarthy, van Wamel, et al. 2012). S0385 is

phenotypically resistant to oxacillin and tetracycline and forms
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gray colonies, whereas H398 is resistant to erythromycin and

forms white colonies.

Gnotobiotic Piglet Colonization

All animal experiments in this study were approved by the

Royal Veterinary College Ethics and Welfare Committee and

licensed by the UK Home Office (PPL 70/6975). Piglets were

delivered by sterile caesarean section into and housed in a

sterile plastic and stainless steel isolator at 30 �C (Giotis et al.

26). Each gnotobiotic piglet was inoculated atraumatically at 2

weeks of age on the sacrum, by gently rubbing a cotton swab

dipped in overnight bacterial culture of both S0385 and H398

adjusted to 7�107 colony forming units (CFU)/ml. At 4 h, 2,

4, 12, and 16 days, piglets were separately swabbed in both

nostrils, behind one ear and on the sacrum. Swabs had been

premoistened in sterile water before sampling, and were asep-

tically removed from the isolator, the tips snipped off into

sterile saline and vortexed for 35 s to disperse the bacteria.

Serial dilutions were plated on brain heart infusion agar (BHIA)

with or without 20mg/ml tetracycline in duplicate and incu-

bated overnight at 37 �C. The mean colony count of the two

plates was used to derive the log10 CFU/ml per swab. Twenty

distinct colonies of each color type were picked per piglet for

each time point from the BHIA plates without antibiotic, and

stored in brain heart infusion broth (BHIB) with 20% glycerol

at �20 �C.

Laboratory Growth

A single colony was inoculated into 20 ml of BHIB and incu-

bated overnight at 80 rpm and 37 �C. Cultures were diluted to

OD600 0.03 and 200ml of each isolate was inoculated into

20 ml of fresh BHIB and incubated overnight at 80 rpm and

37 �C. Daily subculture, where 200ml of overnight culture was

diluted into 20 ml of fresh BHIB, was continued for 16 days. At

4 h, 2, 4, 12, and 16 days, cultures were sampled and serial

dilutions plated on BHIA with or without 20mg/ml tetracycline

in duplicate and incubated overnight at 37 �C. Colony num-

bers were counted to calculate CFU/ml, and 20 well-isolated

colonies of each color type were picked and stored in BHIB

with 20% glycerol at �20 �C. Experiments were repeated

four times.

Genetic Analysis

DNA from stored progeny bacteria was extracted using the

PureElute Bacterial Genomic DNA preparation kit

(EdgeBiosystems, UK) following the standard protocol with

the addition of lysostaphin (Lindsay et al. 2006). The presence

of ten MGEs was detected using polymerase chain reaction

(PCR) (supplementary table S1, Supplementary Material

online), and products detected by separation on 1.5% aga-

rose gels.

Both parents, 15 H398 progeny and 5 S0385 progeny were

chosen for whole genome sequencing using the Ion Torrent

Personal Genome Machine (Ion PGM) in conjunction with Ion

Torrent workflow reagents (Life Technologies, Paisley, UK).

For each sample, 100 ng of genomic DNA was fragmented

by sonication using a BioRuptor UD-200 (Diagenode, Belgium)

and the library prepared using the Ion Plus Fragment Library

Kit according to the manufacturer’s instructions. Briefly, frag-

mented DNA was end-repaired, ligated to Ion-compatible

adapters and nick-translated. To enable multiplexing of four

samples on one sequencing chip, barcoded adaptors were

used (Ion Xpress Barcode Adapters 1-16 Kit). Each library

was size-selected using a 2% E-Gel SizeSelect Agarose Gel

(Life Technologies) to produce a median fragment size of ap-

proximately 330 bp, and then quantified by quantitative PCR

(Ion Library Quantitation Kit). Four barcoded libraries were

pooled in equimolar amounts before being clonally amplified

on Ion Sphere Particles (ISP) using the Ion OneTouch instru-

ment. The template-positive ISPs were then enriched using the

Ion OneTouch ES, before being sequenced on the Ion 316

chip using a 200-bp sequencing kit. Sequence coverage for

each isolate is reported in supplementary table S4,

Supplementary Material online.

Sequence quality was assessed using Fastqc (http://www.

bioinformatics.babraham.ac.uk/projects/fastqc/). Sequence as-

sembly was performed using MIRA v3.9.4 (Chevreaux et al.

1999) with default parameters for Ion Torrent data. Manual

analysis and sequence inspection were performed using the

Artemis and ACT genome visualization tools (Rutherford et al.

2000; Carver et al. 2005). SNP-based phylogenetic reconstruc-

tion was performed using a method similar to Harris et al.

(2012). Briefly, reads were mapped to the ST398 reference

genome (RefSeq: NC_017333) using TMAP v3.4.0 (Ion

Torrent, USA) and alignments sorted with Picard v1.76

(http://picard.sourceforge.net/). Per base alignment statistics

were generated with samtools mpileup (v0.1.18) (Li et al.

2009) and variants called using bcftools v0.1.17-dev. Variant

sites were filtered based on the following criteria: Mapping

quality above 30, site quality score above 30, at least four

reads covering each site with at least two reads mapping to

each strand but with maximum depth of coverage 200, at

least 75% of reads supporting site (DP4), allelic frequency

(AF1) of 1. Sites which failed these criteria in any strain were

removed from the analysis. Phylogenetic reconstruction was

performed by maximum-likelihood inference using RAxML

v7.4.2 (Stamatakis 2006) with a general time reversible

model of nucleotide substitution and a GAMMA model of

rate heterogeneity, branch support values were determined

using 1,000 bootstrap replicates. Sequence data have been

deposited in the European Nucleotide Archive with study

accession number ERP004215.

Results

The two parental S. aureus CC398 isolates, pig-associated

S0385 and human-specific H398, were sequenced and
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showed relatively conserved core genomes (supplementary

fig. S1, Supplementary Material online), but differ substantially

in their mobilomes (fig. 1a). S0385 (Schijffelen et al. 2010)

carries the SCCmecV element and the Tn916 tetM transposon

conferring methicillin and tetracycline resistance, respectively.

In addition, S0385 carries 1) two bacteriophages, j6 and j2

which are highly similar but have distinctive integrase (int)

genes and insert into unique specific locations on the chro-

mosome, 2) one SaPI5 element with putative ruminant asso-

ciated scn and vwbp variant genes implicated in complement

evasion and coagulation, respectively, and 3) three small plas-

mids, one encoding tetK resistance, one with a putative aad-6

gene for gentamicin resistance, and one with a putative reg-

ulator. In contrast, H398 carries the human associated j3

bacteriophage encoding the human-specific scn and chp

genes for complement evasion and neutrophil chemotaxis in-

hibition, respectively. H398 also carries a small plasmid with

ermC erythromycin resistance. This MGE profile is typical of

human-adapted CC398 (McCarthy, van Wamel, et al. 2012).

Neither isolate carried tra genes necessary for conjugation.

The surface gene sdrE was absent in S0385, as previously

reported (Schijffelen et al. 2010), but was present in H398,

and this difference was exploited by a specific PCR test (sup-

plementary table S1, Supplementary Material online).

During gnotobiotic piglet co-colonization, both isolates

grew and survived equally well (fig. 1b). As early as 4 h postin-

oculation of piglets, both isolates were colonizing all piglets at

all sites sampled.

During piglet co-colonization, extensive acquisition and loss

of MGEs was observed (fig. 2). In piglet 1 at 4 h, 30% of

S0385 progeny had lost at least one plasmid (pS0395-1,

pS0385-2, or pS0385-30), and 75% of H398 had lost plasmid

pH398. Further, one H398 progeny had acquired a plasmid

from S0385. By day 2, the genome of S0385 progeny had

stabilized, but the H398 progeny genome had diversified into

nine different mobilome types, each with different combina-

tions of plasmids and bacteriophage acquired from S0385. By

day 4, the parental H398 mobilome was not detected, and

only two of the previous H398 progeny mobilomes were still

present with four new mobilomes detected. Similarly at days

12 and 16, the S0385 genome with the original mobilome

was stable, whereas the H398 progeny continued to show

evidence of MGE acquisition and loss with new mobilomes

emerging. Overall, a variety of mobilomes were detected in

the H398 progeny over the 16-day co-colonization period

rather than dominance of a single mobilome type. The

S0398 elements SCCmec, Tn916 and SaPI5, and H398

element j3, were stable and did not show any evidence

of HGT.

Piglets 2, 3, and 4 showed similar evidence of high fre-

quency HGT of MGEs from S0385 to H398 as piglet 1 (fig.

2). The S0385 genome was stable in all progeny and in all

piglets, and there was no evidence of any transfer of the H398

plasmid or f3 bacteriophage to S0398. In contrast, in the

H398 progeny the parental mobilome was replaced by new

mobilomes that were detected at each time point by loss of

the resident plasmid and frequent transfer of bacteriophage

and plasmids from S0385. By day 4, on average each piglet

had generated evidence of at least 7.5 transfer events into or

out of the H398 parent, and by day 16 this had risen to 10.75

events (fig. 3).

Surprisingly, the H398 progeny between the individual pig-

lets varied. For example, at 4 days, the dominant H398 mobi-

lome in piglet 1 (j2, j3, j6, pS0385-2) was not found in

piglet 2 or 3 and accounted for only 5% of progeny in piglet 4.

Similarly, the dominant mobilome in piglet 2 (j2, j3, j6) was

not found in piglet 1, 3, or 4; the dominant mobilome in piglet

3 (j2, j3, pS0385-2) was not found in piglet 2 or 4 and

accounted for only 10% of progeny in piglet 1; and the dom-

inant mobilome in piglet 4 (j3, pS0385-2) was not found in

piglet 2, and accounted for only 20% of progeny in piglets 1

and 3. This indicates relatively infrequent transmission of bac-

teria between the piglets despite their close contact. Further

evidence for lack of transmission is the finding that 11 of the

21 (52%) novel mobilomes in the H398 background were

detected in only one of the piglets. Different patterns of

FIG. 1.—Coculture with S0385 and H398 isolates. (a) Origin and genetic features of parental S. aureus strains. (b) Growth of S. aureus strains during co-

colonization of gnotobiotic piglets. (c) Growth of S. aureus strains during in vitro coculture in BHIB. Error bars represent one standard error of the mean.

Comparison of bacterial growth was assessed using Student’s two-tailed t-test, *P< 0.05, **P< 0.01, ns, nonsignificant.
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MGE acquisition in H398 over time were observed for each

piglet, including piglet 2 which did not acquire any plasmids

until day 16, and piglet 1 colonized with 11 different H398

mobilomes by day 2 compared with piglets 2–4 colonized

with a total of four mobilomes.

We next investigated whether high levels of HGT occurred

during co-colonization in vitro in rich laboratory media, ensur-

ing that we used subcultures to capture sufficient generations

and population size during the repeated cycles of growth in

fresh media. During subculture of both isolates over 16 days in

BHIB, the pig-associated isolate S0385 showed a clear fitness

advantage over the human-specific isolate H398 by day 4 (fig.

1c). S0385 remained the dominant isolate for the remaining

16 days, although the H398 isolate did not disappear. These

results are in contrast to the successful equal colonization of

both isolates during the gnotobiotic piglet experiment.

Genetic analysis of progeny bacteria from the laboratory

media experiment (fig. 4) revealed less MGE movement

than during colonization (fig. 3 and supplementary table S2,

Supplementary Material online). The H398 progeny typically

lost its plasmid pH398, and the S0385 progeny occasionally

lost one plasmid (either pS0385-1, pS0385-2 or pS0385-3).

On two occasions, a plasmid (pS0385-1 or pS0385-2) from

S0385 was detected in a H398 progeny cell indicating HGT.

Importantly, the majority of progeny retained the same mobi-

lome as their parents.

Isolates marked in figure 2 with an S were chosen for whole

genome sequencing. This confirmed that color of colony and

sdrE PCR were reliable markers of each isolate’s background.

Whole genome sequencing and variant site analysis identified

271 sites showing SNPs within the sequenced strain set.

Phylogenetic reconstruction based on these sites confirmed

separate clades corresponding to the two parental isolates

(supplementary fig. S1, Supplementary Material online), with

an estimated 268 SNPs between the two clades and one or

less core genome SNPs per strain within the individual progeny

clades (supplementary table S3, Supplementary Material

online). There was no evidence of core genome SNP transfer

between the isolates nor accumulation nor selection of SNPs.

SNPs were not detected in genes encoding surface proteins or

immune evasion proteins (supplementary table S3,

Supplementary Material online). In contrast, substantial MGE

movement was detected, correlating with the mobilome re-

sults (supplementary fig. S2, Supplementary Material online).

During the course of piglet colonization experiments, j2

and j6 from S0385 accumulated in the H398 background

(fig. 5). Not all progeny acquired both bacteriophages, but

isolates with either or both bacteriophage were found at in-

creased frequency over time. Sequencing analysis revealed the

bacteriophages moved between the parents and progeny

cleanly, although some variation was detected (fig. 6).

Progeny AP1510 (piglet 3, day 4), in the H398 background,

acquired j6 but this bacteriophage had recombined with the

j2 resulting in an exchange of three genes (SAPIG1550–

1552) for six genes (SAPIG0335–0341). This type of recombi-

nation event has not been detected during experimental cul-

ture before, and could result from recombination in the

donor, or in the recipient followed by loss of the j2.

Progeny AP1660 (piglet 4, day 4) had a similar profile in re-

verse. This time,j2 had been acquired, but it had recombined

with j6 in the same region resulting in the six genes

(SAPIG0335–0341) for three genes exchange (SAPIG1550–

1552). Genetic analysis also revealed evidence of bacterio-

phage integration into novel genomic sites (supplementary

figs. S3 and S4, Supplementary Material online). Progeny

AP1503 (piglet 3, day 4) had acquired a copy of the j2

phage but it had integrated into a novel site; the 50- and 30-

sequences ofj2 in AP1503 were both adjacent to SAPIG0656

(hypothetical protein). In the remaining j2-positive H398

progeny (n = 11), j2 had integrated into known integration

site (SAPIG1555 in S0385), and j6 had integrated into the

known integration site (SAPIG0333 in S0385) in allj6-positive

H398 progeny (n = 12). This variation confirms that frequent

and varied HGT and exchange of bacteriophages f2 and f6

from S0385 to H398 progeny, and that the amount of varia-

tion reported in figure 2 may be an underestimate.

Furthermore, there was evidence of j3 genes moving from

H398 into AP2401, a progeny derived from S0385.

Plasmids also moved frequently during the course of the

experiment (fig. 5). Although H398 rapidly lost its own plas-

mid (pH398), and occasionally acquired plasmids pS0385-1

and pS0385-3, it acquired and maintained plasmid pS0385-

2. By 16 days, more than 50% of the H398 progeny harbored

this plasmid. In contrast, other MGEs were stable throughout

the experiment. All H398 progeny stably maintained the f3

(fig. 5). The S0398 elements SCCmec, Tn916, and SaPI5 were

stable and did not show any evidence of HGT. In addition,

there was no evidence for the transfer of additional genomic

FIG. 3.—Minimum MGE transfer events (acquisition or loss) account-

ing for mobilome profiles detected in piglets and BHI. Significantly more

HGT events were detected in the H398 background (red) in piglets than in

the S0398 background (blue, t-test, P< 0.05). Significantly more HGT

events were detected in the H398 background in piglets than in BHI

(t-test, P<0.01).
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regions between the isolates, including genomic islands and

putative integrative and conjugative elements. Further, there

was no evidence for the acquisition of MGEs that were not

present in the parental strains.

Discussion

Experimental evolution under controlled in vivo conditions in

gnotobiotic piglets showed an unexpectedly high frequency of

HGT between the co-colonizing S. aureus isolates. MGE

transfer was detected within 4 h. Over subsequent days,

an extensive range of variant mobilome profiles was continu-

ally generated. These data suggest that S. aureus populations

can alter their genomes in vivo on much shorter timescales

than previous estimates. Comparative genomic studies of

human isolate variation during outbreaks and over longer

term evolution of successful MRSA clones estimate that one

SNP per genome is generated every 6 weeks (Harris et al.

FIG. 4.—Stable mobilomes of S. aureus CC398 progeny generated during in vitro coculture in BHIB. The unique mobilomes of 20 S0385 progeny (pig

clade, black circle) and 20 H398 progeny (human clade, gray circle) for each replication (shown as four different panels) at each sample point (4 h, 2, 4, 12,

and 16 days postinoculation) are shown. The frequency of each mobilome at a specific sample point is represented by a percentage above the mobilome.

Individual MGEs have a colored border indicative of the parental strain they originate from, red border = originates from S0385, blue border = originates from

H398. Parental mobilomes are represented by a gray shadow.
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2010; McAdam et al. 2012; Holden et al. 2013). MGE varia-

tion is often not investigated in these studies (Lindsay 2014a),

but we have recently reported evidence of MGE movement as

isolates spread between hospitalized patients (McCarthy,

Breathnach, et al. 2012), and a recent study reported a

“cloud” of variants colonizing a putative carrier in an outbreak

of MRSA infection on a special care baby unit with minor

variation in SNPs as well as the variable carriage of an eryth-

romycin resistance plasmid (Harris et al. 2012). Our data are

the first measurement of the transfer frequency of S. aureus

MGE in vivo and suggest that it is capable of occurring at high

frequency, and at significantly higher frequency than detected

nucleotide polymorphisms in the genome.

HGT occurred at much higher frequency in the piglet

colonization in vivo experiments than during growth in daily

subculture of BHIB (fig. 3). The major mechanism of HGT in

S. aureus is transduction through bacteriophage. In contrast,

transformation is extremely inefficient in S. aureus (Morikawa

et al. 2012; Lindsay 2014b). Although conjugation occurs in

S. aureus, it is dependent on conjugative tra genes (McCarthy

and Lindsay 2012) which are absent in the parent strains in

this study. It is therefore likely that HGT was mediated by

transduction (for the bacteriophage) and generalized trans-

duction (for the plasmids), and the likely bacteriophages in-

volved were j2 and j6. The triggers for generalized

transduction and HGT in S. aureus are thought to be stress

linked (Goerke et al. 2006; Selva et al. 2009). This suggests

colonization in vivo or response to a new host induced trans-

fer. Alternatively, there could be a trigger for successful MRSA

clones to recognize appropriate conditions to enhance HGT

when it is beneficial. Another possible explanation that we

cannot rule out is that isolates with varied mobilomes were

generated but did not survive in BHIB conditions.

A key finding of our study is that a diverse range of mobi-

lomes was generated and survived during the colonization

process, instead of the fixation of a single successful variant.

Lieberman et al. (2014) have recently suggested that

pathogens such as Burkholderia dolosa causing chronic

long-term infection of cystic fibrosis patients evolve through

SNP generation leading to the emergence of new “lineages”

that continue to diversify, rather than fixation of specific SNPs

and replacement with successful variants. Our study results

suggest a similar evolutionary pattern in S. aureus during in

vivo colonization, but through MGE transfer rather than SNPs.

A high frequency of transfer in vivo could explain the di-

versity of MGEs described in comparative population genomic

studies of a wide variety of S. aureus, even between isolates

belonging to the same lineage (Holden et al. 2004, 2013;

Lindsay et al. 2006; Harris et al. 2010; McAdam et al. 2012;

McCarthy, van Wamel, et al. 2012). We have also reported

high levels of MGE and antibiotic resistance variation in hos-

pital MRSA clones suggesting frequent movement into and

out of isolates, possibly because resistances may have both a

selective advantage and a fitness cost on the host bacterium in

differing conditions (Knight et al. 2012, 2013; Zhou et al.

2013; Knoppel et al. 2014). Taken together, this data suggest

that MGE transfer and loss is common and the high level

detected in vivo suggests that sampling studies may be under-

estimating the variety of mobilomes in populations.

The variety of mobilomes detected during the colonization

of the gnotobiotic piglets makes it difficult to conclude

whether individual MGEs provided a selective advantage

during colonization, or whether the variation is random and

evolutionarily neutral (Zhou et al. 2013; Knoppel et al. 2014).

Further experiments are required to establish whether any of

the new mobilome types have a fitness advantage, compared

with the parental strains, during piglet colonization. However,

in this study systematic accumulation of both f2 and f6 bac-

teriophage was observed over time, and to a lesser extent

accumulation of one plasmid (fig. 5). This suggests that selec-

tion may have occurred, and is consistent with a previous

finding of f2, f6, and rep7 plasmid association with

CC398 isolates from pig farming but not with isolates associ-

ated with human–human spread (McCarthy, van Wamel,

FIG. 5.—Incidence of bacteriophages (a) and plasmids (b) in H398 progeny during colonization of gnotobiotic piglets over time. A red border indicates an

MGE that originated from S0385, and a blue border indicates an MGE that originated from H398. There was no evidence that SCCmec, SaPI5, or Tn916

elements moved into the H398 progeny.
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et al. 2012). However, not all isolates in the gnotobiotic piglet

study carried all three of these MGEs. The sequences of these

MGEs do not clearly indicate genes that are expected to play a

role in colonization (Schijffelen et al. 2010). The plasmid carries

the aminoglycoside 6-adenylyltransferase (aad-6) gene; how-

ever, the piglets were not exposed to aminoglycosides nor any

other antimicrobials during the experiment. It is also unclear

why both bacteriophages accumulate in cells when their ge-

nomes are highly homologous. The bacteriophage may carry

unknown selective advantage, such as host-specific factors

that are not homologous to previously described genes impli-

cated in host adaptation, or are only expressed during coloni-

zation (Koskiniemi et al. 2012). It is also possible that S. aureus

HGT per se, driven by bacteriophages, provides a selective

advantage during colonization. A pool of horizontally acquired

genetic diversity in S. aureus populations may be a strategy for

ensuring the raw material is available for efficient adaptability

during the colonization of new hosts or to new niche environ-

ments (Knoppel et al. 2014).

HGT of MGEs during colonization only occurred in the di-

rection of S0385 to H398. Transduction involves a proportion

of the donor (S0385) population undergoing lysis and release

of bacteriophage particles, and this may have only occurred in

the S0385 background. Presumably this has a detrimental

impact on S0385 fitness and survival. The HGT and growth

data suggest the possibility of cooperation between the bac-

terial isolates rather than competition. An alternative hypoth-

esis is that bacteriophages themselves control the lytic and

transduction pathways, and as “selfish elements” ensure

that they are spread throughout the bacterial population.

Staphylococcus aureus bacteriophages have highly mosaic ge-

nomes, generated by frequent recombination, and each

family integrates into unique but precise genomic locations

(Kwan et al. 2005; McCarthy, Witney, et al. 2012). In this

study, the generation of new bacteriophage by recombination

between j2 and j6 bacteriophage, and integration of bac-

teriophage into unique sites of the H398 genome, was ob-

served under in vivo experimental conditions. This is the first

time to our knowledge that recombination has been seen

under in vivo experimental conditions, and may be the result

of bacteriophage coevolution (Sachs and Bull 2005).

Collectively, the data in these studies provide evidence that

new MGEs can be created during colonization with heteroge-

neous S. aureus populations. Of concern is the potential for

new MGEs to emerge with new combinations of resistance,

virulence, and/or host adaptation genes.

The high level of HGT between S. aureus isolates of the

same lineage during piglet colonization suggests few genetic

barriers to the transfer and successful replication and integra-

tion of certain MGEs. Recent research has revealed the genetic

barriers in S. aureus that control transfer. Restriction–modifi-

cation (R-M) systems have a critical role in ensuring that iso-

lates of the same lineage exchange DNA at higher frequency

than isolates of differing lineages (Waldron and Lindsay 2006;

Roberts et al. 2013). This is the major barrier to HGT between

S. aureus, which rarely carry CRISPR elements and rarely

exchange DNA with other species (Lindsay 2014b). R-M sys-

tems likely explain why certain MGEs have not successfully

transferred to all S. aureus lineages. A previous study of co-

colonization of human volunteers with a human and a live-

stock S. aureus isolates belonging to different lineages (CC8

FIG. 6.—Bacteriophage acquisition and genome remodeling in H398

progeny. Parental genomes are represented by a single line (red= S0385

genome, blue= H398 genome) with the integration site ofj2,j6, andj3

bacteriophages shown. The majority of H398 progeny have the entire j2

and j6 bacteriophage integrated at known integration sites. AP1510 and

AP1660 strains have unique j2/j6 recombinant bacteriophages inte-

grated in their genomes. AP1503 has a j2 bacteriophage integrated at

a novel integration site.
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and CC398, respectively) saw the livestock isolate colonize

more effectively than the human isolate in a subset of hosts.

However, the two isolates did not belong to the same lineage,

and no MGE exchange was detected (Slingerland et al.

2012). Therefore, it is likely R-M barriers prevented HGT, high-

lighting the importance of understanding the mechanisms

that control HGT.

Unexpectedly, isolates with differing mobilomes did not

appear to transmit between piglets despite very close physical

contact in the isolation chamber. Staphylococcus aureus and

MRSA are thought to spread between carriers by direct con-

tact. After initial inoculation of the piglets, the S. aureus

spread rapidly to all sampled piglet sites within 4 h. A likely

explanation for this rapid dissemination is a lack of competing

colonizing flora. By day 4, the maximum density of S. aureus

on piglet skin was achieved, and transmission of isolates be-

tween piglets was low. The importance of colonizing flora in

successful transmission of S. aureus between hosts is not well

understood. Previous studies of piglets and humans have sug-

gested that newborns are more readily colonized than older

animals or humans (Peacock et al. 2003; Moodley et al. 2011),

whereas pig farm workers typically become MRSA negative

after as little as 24 h away from the farm and are therefore

persistently positive for MRSA because of repeated exposure

rather than colonization (van Cleef, Graveland, et al. 2011).

The data here are consistent with the hypothesis that success-

ful transmission of S. aureus and MRSA may be inefficient,

especially if an established flora is already present. Gnotobiotic

piglets may be a useful model for further investigation of S.

aureus transmission and the importance of colonizing flora

and antibiotic usage.

The high level of successful MGE transfer between CC398

clones during colonization suggests few barriers to the evolu-

tion of strains that can carry MGE that may allow them to

colonize a variety of hosts, resist a wide range of antibiotics,

and produce a diverse array of virulence factors. This is parti-

cularly concerning for the livestock industries, especially if LA-

MRSA were to become carriers of the major food-poisoning

toxins and to become more efficient at human–human trans-

mission (European Food Safety Authority Panel on Biological

Hazard 2009). Studies to establish whether particular mobi-

lomes are better adapted to colonizing different hosts are

needed, although preliminary studies growing these isolates

in pig plasma or whole blood lead to extensive coagulation,

indicating that this may be an unsuitable model for future

studies.

Sampling of a single colony from colonized or infected

hosts may not be representative of the diverse S. aureus pop-

ulations harbored by an individual. This finding is potentially

important for diagnostic laboratories reporting toxin or anti-

biotic susceptibility profiles if only a single colony is chosen for

analysis. Interpretation of studies investigating epidemiological

relationships between isolates during an outbreak or tracking

the spread and evolution of successful clones may also be

influenced by the choice of colony. Our results showed that

the core genome is relatively stable compared with the MGEs,

which is reassuring for transmission studies relying on core

genome sequencing.

Measurement of MGE transfer between S. aureus revealed

unexpectedly high frequencies during host colonization in

vivo. The results in this study suggest that the coexistence of

multiple mobilome types in vivo may be common, and that

bacteriophage integrated into the genome plays a key role in

colonization and gene transfer. These results have important

implications for diagnostics, and for host–pathogen, epidemi-

ological, evolutionary and transmission studies. Further in vivo

experiments are required to determine exactly which MGEs

and genes impact on fitness and host-adaptation.

Supplementary Material

Supplementary figures S1–S4 and tables S1–S4 are available

at Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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