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Abstract Ranking sets of objects based on an order be-
tween the single elements has been thoroughly studied in
the literature. In particular, it has been shown that it is in
general impossible to find a total ranking – jointly satisfying
properties as dominance and independence – on the whole
power set of objects. However, in many applications certain
elements from the entire power set might not be required
and can be neglected in the ranking process. For instance,
certain sets might be ruled out due to hard constraints or
are not satisfying some background theory. In this paper,
we treat the computational problem whether an order on a
given subset of the power set of elements satisfying differ-
ent variants of dominance and independence can be found,
given a ranking on the elements. We show that this problem
is tractable for partial rankings and NP-complete for total
rankings.

Keywords Ranking Sets · Complexity

1 Introduction

The problem of lifting rankings on objects to ranking on sets
has been studied from many different view points — see [2]
for an excellent survey. Several properties (also called ax-
ioms) have been proposed in order to indicate whether
the lifted ranking reflects the given order on the elements.
Two important axioms are dominance and independence.
Roughly speaking, dominance ensures that adding an el-
ement which is better (worse) than all elements in a set,
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makes the augmented set better (worse) than the original
one. Independence, on the other hand, states that adding an
element a to sets A and B where A is already known to
be preferred over B , must not make B [ fag be preferred
over A[fag (or, in the strict variant, A[fag should remain
preferred over B[fag). These axioms were first considered
together in the context of decision making under complete
uncertainty [9]. There, sets represent the (mutually exclu-
sive) possible outcomes of an action and one tries to rank
these sets based on a preference ranking on the outcomes.
It is assumed that the probability of each outcome is un-
known, i. e., it is only known whether an event is a possible
outcome or not. This is a very reductive model. Still, “it
does succeed in modelling some empirically interesting sit-
uations” [5, p. 2]. Especially, “when the number of possible
states of the world is large, an agent of bounded rationality
may be incapable of undertaking (or unwilling to undertake)
the complex calculations which consideration of the entire
rows in the outcome matrix will involve.” [15, p. 2]. Such
situations often occur for autonomous agents, for example
self driving cars, where “the temporal evolution of situa-
tions cannot be predicted without uncertainty because other
road users behave stochastically and their goals and plans
cannot be measured” [6, p. 1]. Moreover, dominance and
independence are also sensible axioms in other contexts,
for example bundles of objects of unknown size. Finally,
to mention a very different application, Packard [14] used
independence and a version of dominance to define plausi-
bility rankings on theories.

However, it is well known that constructing a ranking on
the whole power set of objects which jointly satisfies domi-
nance and (strict) independence is, in general, not possible.

Example 1 Consider the problem of assigning tasks to
agents. Let X = ft1; :::; tng be a collection of tasks. Further-
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more, assume we know for every agent what tasks they
prefer to perform. If there are more tasks than agents,
some agents have to perform several tasks, therefore it
would be useful to know the preferences over sets of tasks.
However, asking for these preferences directly is infeasi-
ble even for a reasonable small number of tasks. Therefore,
we would like to lift the preferences over tasks to pref-
erences over sets. Furthermore, it seems reasonable that
the order on the sets should satisfy dominance and (strict)
independence. Unfortunately, for strict independence, this
is impossible even for n = 3. Assume t1 < t2 < t3.
Then, ft1g � ft1; t2g is implied by dominance, therefore
ft1; t3g � ft1; t2; t3g must hold by strict independence. On
the other hand, ft2; t3g � ft3g is also implied by dominance,
therefore, ft1; t2; t3g � ft1; t3g by strict independence. We
thus end up with ft1; t2; t3g � ft1; t3g � ft1; t2; t3g, hence �
is not an order.

Because of this, other (weaker) axiomatizations were
proposed (see for example [7], or more recently, [4] and [10]
among many others). However, in many applications one
does not need to order the entire power set (for example,
some tasks cannot be performed in parallel). In these cases,
it may be possible to construct rankings that jointly satisfy
dominance and (strict) independence.

Example 2 Let X be as above. Now assume ft1; t2; t3g is
not a possible combination of tasks, for example, because
fulfilling all three tasks at once is not feasible. Then, for
example

ft1g � ft1; t2g � ft2g � ft1; t3g � ft2; t3g � ft3g

is a total order that satisfies dominance and strict indepen-
dence (respecting the underlying linear order t1 < t2 < t3).

In this paper, we investigate exactly this situation, i. e.,
lifting rankings to specific sets of elements. In the litera-
ture, this scenario seems to be rather neglected, so far. The
only exception we are aware of deals with subsets of a
fixed cardinality [3]. In particular, we are interested in the
complexity of computing, if possible, rankings on arbitrary
subsets of the power set that satisfy dominance and (strict)
independence. To do so, we first give a new definition for
dominance which appears more suitable in such a setting
(for more details, see Section 3). Then, we consider the fol-
lowing problem: Given a ranking on elements, and a set S
of sets of elements, does there exist a strict (partial) order
on S that satisfies D and I (where D is either standard
dominance or our notion of dominance and I is indepen-
dence or strict independence)? We show that the problem is
either trivial or easy to solve for the case of partial orders.
Our main result is NP-completeness for the case when total
orders are required.

The remainder of the paper is organized as follows. In the
next section, we recall some basic concepts. In Section 3
we discuss why standard dominance can be seen as too
weak in our setting and propose an alternative definition.
Section 4 contains our main results. We conclude the paper
in Section 5 with a summary and pointers to future work.

This paper is an extended version of [11].

2 Background

The formal framework we want to consider in the following
consists of a finite1 nonempty set X , equipped with a linear
order < and a subset X � P.X/nf¿g of the power set of
X not containing the empty set. We want to find a binary
relation � on X that satisfies some niceness conditions.
We will consider several kinds of relations. We recall the
relevant definitions.

Definition 1 A binary relation is called a strict partial
order, if it is irreflexive and transitive. A strict or linear
order is a total strict partial order. A binary relation is
called a preorder, if it is reflexive and transitive. A (weak)
order is a total preorder. If � is a weak or a preorder on a
set X , for all x; y 2 X , the corresponding strict order � is
defined by x � y if x � y and y 6� x hold.

Additionally, we need the following notions:

Definition 2 For a pre- or weak order �, we write x � y

if x � y and y � x hold. Let A 2 X be a set of elements
of X . Then we write max.A/ for the maximal element of
A with respect to < and min.A/ for the minimal element
of A with respect to <. Furthermore, we say a relation R

on a set X extends a relation S on X if xSy implies xRy

for all x; y 2 X . Finally, we say a relation R on X is the
transitive closure of a relation S on X if the existence of a
sequence x1Sx2S:::Sxk implies x1Rxk for all x1; xk 2 X
and R is the smallest relation with this property. We write
trcl.S/ for the transitive closure of S .

Many different axioms a good order should satisfy are
discussed in the literature (an overview over the relevant in-
terpretations and the corresponding axioms can be found in
the survey [2]). The following axioms “have very plausible
intuitive interpretations” [2, p. 11] for decision making un-
der complete uncertainty and belong to the most extensively

1 In the literature, infinite sets of alternatives are also considered. The
results presented in the background section hold also for this case. For
the results on computational complexity in the main part, finiteness of
the (infinitely many) instances is obviously crucial.
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studied ones. (We added conditions of the form X 2 X that
are not necessary if X = P.X/nf¿g holds.)

Axiom 1 (Extension Rule) For all x; y 2 X , such that
fxg; fyg 2 X :

x < y implies fxg � fyg:

Axiom 2 (Dominance) For all A 2 X and all x 2 X ,
such that A [ fxg 2 X :

y < x for all y 2 A implies A � A [ fxgI
x < y for all y 2 A implies A [ fxg � A:

Axiom 3 (Independence) For all A;B 2 X and for all
x 2 Xn.A [ B/, such that A [ fxg; B [ fxg 2 X :

A � B implies A [ fxg � B [ fxg:

Axiom 4 (Strict Independence) For all A;B 2 X and
for all x 2 Xn.A [ B/, such that A [ fxg; B [ fxg 2 X :

A � B implies A [ fxg � B [ fxg:

Example 3 Take X = f1; 2; 3; 4g with the usual linear
order and

X = ff3g; f4g; f1,3g; f2,3g; f1,4g; f1; 2; 3g; f1; 3; 4gg:

Then the extension rule implies f3g � f4g, dominance
implies f1,3g � f1; 3; 4g, f1; 2; 3g � f2,3g � f3g and
f1,4g � f4g but not f3g � f4g. Furthermore, (strict) in-
dependence lifts the preference between f2,3g and f3g to
f1; 2; 3g and f1,3g, i. e., in combination with dominance,
independence implies f1; 2; 3g � f1,3g and strict indepen-
dence implies f1; 2; 3g � f1,3g.

Every reasonable order should satisfy the extension rule.
If we assume X = P.X/nf¿g, the extension rule is implied
by dominance [2]. Therefore, a natural task is to find a total
order on P.X/nf¿g that satisfies dominance together with
(some version of) independence. However, in their seminal
paper [9], Kannai and Peleg have shown that this is impossi-
ble for regular independence and dominance if jX j � 6 and
X = P.X/nf¿g hold. Barberà and Pattanaik [1] showed
that for strict independence and dominance this is impossi-
ble even for jX j � 3 and X = P.X/nf¿g (see Example 1
for a proof of the statement).

If we abandon the condition X = P.X/nf¿g, the situ-
ation is not as clear. As we have seen in Example 2 there
are sets X � P.X/nf¿g with jX j � 3 such that there is an
order on X satisfying strict independence and dominance.

3 A Stronger Form of Dominance

Many results regularly used in the setting ofX = P.X/nf¿g
are not true in the more general case. For example, in con-
trast to the result stated above, the extension rule is not
implied by dominance as we have seen in Example 3.
Furthermore, it could be argued that f1,3g � f1,4g should
hold in that example which would be implied by domi-
nance and independence if f3,4g 2 X would hold, because
f3,4g � f4g holds by dominance and so f1; 3; 4g � f1,4g
by independence. Hence, f1,3g � f1; 3; 4g � f1,4g implies
f1,3g � f1,4g by transitivity.

Furthermore, for the set X from Example 3, dominance
does not even imply f1g � f1; 2; 3g if f1,2g is not in the
family. Therefore, it is reasonable to ask for a stronger ver-
sion of dominance that behaves nicely in the general case.
We observe that x < y for all y 2 A implies max.A [
fxg/ = max.A/ and min.A [ fxg/ < min.A/; whereas
y < x for all y 2 A implies max.A/ < max.A [ fxg/
and min.A [ fxg/ = min.A/. We claim that every dom-
inance-like axiom should satisfy this property. Therefore,
we can use this property to define a “maximal” version of
dominance which can be seen as a special case of Pareto
dominance [12].

Axiom 5 (Maximal Dominance) For all A;B 2 X ,

.max.A/ � max.B/ ^ min.A/ < min.B// or

.max.A/ < max.B/ ^ min.A/ � min.B// implies A � B:

This axiom trivially implies the extension rule and of
course dominance. Looking again at the family introduced
in Example 3 maximal dominance implies all preferences
implied by either dominance or by the extension rule and
additionally f1,3g � f1,4g. Furthermore, if X is sufficiently
large or even X = P.X/nf¿g, dominance and indepen-
dence imply maximal dominance.

Proposition 1 Let X = P.X/nf¿g. Then every transitive
relation that satisfies dominance and independence also sat-
isfies maximal dominance and independence.

Proof Let � be a transitive relation that satisfies domi-
nance and independence. We show that � satisfies maximal
dominance using the following observation due to Kannai
and Peleg in [9]:
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Table 1 Main results: Complexity of deciding Problems 1–4

Not total Total

Dominance + Independence always yesa NP-comp.

Max. Dominance + Independence always yesa NP-comp.

Dominance + Strict Ind. in P NP-comp.

Max. Dominance + Strict Ind. in P NP-comp.
a Constructing the order can be done in polynomial time

Observation A � fmin.A/;max.A/g.
We can assume w.l.o.g. that A has more than two ele-

ments. We enumerate A by A = fa1; a2; :::; akg such that
ai < aj holds for all i < j . Using transitivity and domi-
nance, it is easy to see that fa1g � fa1; a2; :::; ak−1g holds.
This implies, by independence, fa1; akg � A. Analogously,
we get fa2; a2; :::; akg � fakg and A � fa1; akg and there-
fore A � fa1; akg = fmin.A/;max.A/g. ˙

Using this observation we can prove that max.A/ =
max.B/ and min.A/ < min.B/ implies A � B by the
following argument:

A � fmin.A/;max.A/g � fmin.A/;min.B/;max.A/g
� fmin.B/;max.A/g = fmin.B/;max.B/g � B:

The other case is proven analogously, hence � satisfies
maximal dominance. �

It would be possible to define several other versions of
dominance of intermediate strength. We will only consider
dominance and maximal dominance. As we will see our re-
sults justify this approach; in particular, since both versions
yield equal complexity results.

4 Main Results

We studied 8 problems in total, as defined below.2 Our re-
sults are summarized in Table 1.

Problem 1 (The Partial (Maximal) Dominance Strict In-
dependence problem) Given a linearly ordered set X and
a set X � P.X/nf¿g, decide if there is a partial order � on
X satisfying (maximal) dominance and strict independence.

Problem 2 (The Partial (Maximal) Dominance Indepen-
dence problem) Given a linearly ordered set X and a set
X � P.X/nf¿g, decide if there is a preorder � on X
satisfying (maximal) dominance and independence.

2 Definitions that only differ in the word maximal are combined into
one definition using brackets.

Problem 3 (The (Maximal) Dominance Strict Indepen-
dence problem) Given a linearly ordered set X and a set
X � P.X/nf¿g, decide if there is a strict total order � on
X satisfying (maximal) dominance and strict independence.

Problem 4 (The (Maximal) Dominance Independence
problem) Given a linearly ordered set X and a set
X � P.X/nf¿g, decide if there is a total order � on X
satisfying (maximal) dominance and independence.

4.1 Partial Orders

First, we consider the Partial (Maximal) Dominance Inde-
pendence problem. We can define a preorder that satisfies
independence and maximal dominance (and therefore also
dominance) on all X .

Definition 3 Given a set X , a linear order < on X and a
family X � P.X/n¿, we define a relation �m as A�mB

iff max.A/ � max.B/ and min.A/ � min.B/.

Observe that it is obviously possible, given X , < and X ,
to construct �m in polynomial time.

Theorem 4.1 For every linearly orderedX and every fam-
ily X � P.X/n¿, �m is a preorder and satisfies maximal
dominance and independence.

Proof Obviously, �m is reflexive and transitive, be-
cause � is reflexive and transitive. Furthermore, the corre-
sponding strict order �m satisfies maximal dominance.
Assume, w.l.o.g., min.A/ < min.B/ and max.A/ �
max.B/. Then A�mB by definition and B 6�mA be-
cause min.B/ Š min.A/, so A�mB . Finally, assume
A�mB and A [ fxg; B [ fxg 2 X for x 62 A [ B and,
w.l.o.g., min.A/ < min.B/ and max.A/ � max.B/. If
min.A/ < x we know min.A [ fxg/ < min.B [ fxg/
and max.A [ fxg/ � max.B [ fxg/; if x < min.A/ we
get min.A [ fxg/ � min.B [ fxg/, and max.A [ fxg/ �
max.B [ fxg/. Hence, A [ fxg�mB [ fxg. �

Example 4 Consider once again the family from Exam-
ple 3. �m consists of the following preferences on that
family:

f1,3g�mf1; 2; 3g�mf1; 3; 4g�mf1,4g�mf4g;
f1,3g�mf1; 2; 3g�mf2,3g�mf3g�mf4g:

Next, we consider the Partial Dominance Strict Inde-
pendence problem. As we have seen in Example 1 and 2,
only some sets X allow such an order. In order to decide
if a set admits a partial order we build a minimal transi-
tive relation satisfying dominance and strict independence.
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First, we build a minimal transitive relation satisfying dom-
inance. It is worth noting that a very similar relation can be
defined for maximal dominance. With this relation, all re-
sults in this section can be proven for maximal dominance
the same way.

Definition 4 Given a set X , a linear order < on X and a
family X � P.X/n¿, we define a relation �d on X in the
following way: If A;A [ fxg 2 X , then

1. A�dA [ fxg if y < x for all y 2 A.
2. A [ fxg�dA if x < y for all y 2 A.

We define the relation �t
d
on X by �t

d
W= trcl.�d /.

This relation has the following useful property.

Proposition 2 For every linearly ordered set X and every
family X � P.X/n¿, �t

d
is a partial order and a partial

order on X satisfies dominance if and only if it extends �t
d
.

Proof Obviously, �t
d

is transitive. Furthermore, �t
d

is irreflexive as A�t
d
B implies max.A/ < max.B/ or

min.A/ < min.B/ and < is irreflexive.
By definition, a relation satisfies dominance if and only

if it extends �d and a transitive relation extending �d also
extends �t

d
by the minimality of trcl. �

We want to extend this relation to a minimal relation for
strict independence and dominance.

Definition 5 Given a set X , a linear order < on X and
a family X � P.X/n¿, we build a relation �1 on X by
induction. First, we set �t

0 W= �t
d
. Now let �t

n be defined.
For �n+1 we select sets A;B;Anfxg; Bnfxg 2 X with
x 2 X , Anfxg�t

nBnfxg but not A�n
t B and set C�n+1D

if C�t
nD or C = A and D = B holds. Then, we set

�t
n+1 W= trcl.�n+1/. In the end, we set �1 =

S
n�t

n.

Example 5 Consider the family from Example 3, i. e.,

X = ff3g; f4g; f1,3g; f2,3g; f1,4g; f1; 2; 3g; f1; 3; 4gg:

Then, �1 consists of the following preferences:

f1,3g�1f1; 3; 4g;
f1; 2; 3g�1f2,3g�1f3g;
f1,4g�1f4g;
f1; 2; 3g�1f1,3g:
In order to prove that this is actually a minimal order for

dominance and strict independence, we have to introduce
another concept we call links.

Definition 6 A �1-link from A to B in X is a sequence
A =W C0; C1; :::; Cn W= B with Ci 2 X for all i � n such
that, for all i < n, either Ci�dCi+1 holds or there is a link
between Cinfxg and Ci+1nfxg for some x 2 X .

We show that �1-links indeed characterize �1.

Lemma 1 For A;B 2 X , A�1B implies that there is a
�1-link from A to B and if there is a �1-link from A to
B then A��B holds for every transitive relation �� that
satisfies dominance and strict independence.

In order to prove this result, we need another definition.

Definition 7 For every pair A�1B , there is a minimal
k such that A�t

k
B holds. We call this the �1-rank of the

pair.
Furthermore, we define the rank.C1; C2; :::; Cn/ of a �1-

link C1; C2; :::; Cn from C1 to Cn:

● rank�.Ci ; Ci+1/ = 0 if Ci�dCi+1,
● rank�.Ci ; Ci+1/ = rank.Cinfxg; Ci+1nfxg/,
● rank.C1; C2; :::; Cn/ = maxfrank�.Ci ; Ci+1/ j i < ng + 1.

Now we can prove Lemma 1:

Proof Assume A�1B . We prove that a �1-link exists
by induction on the �1-rank of A;B . If A�t

d
B , then there

is sequence A = C1; C2; :::; Cn = B such that Ci�dCi+1

holds for all i < n, hence there is a �1-link from A to
B . Now assume A;B has �1-rank k and for every pair
with �1-rank k − 1 or less there is a �1-link from C

to D. There is a sequence A = C0�kC1:::Cn−1�kCn = B .
For every i < n either Ci�dCi+1 or Cinfyg�t

k−1Ci+1nfyg
holds, which implies by induction that there is a �1-link
from Cinfyg to Ci+1nfyg. Hence there is a �1-link from
A to B .

Now, let � be a transitive relation that satisfies domi-
nance and strict independence and assume there is a �1-
link A = C1; C2; :::; Cn = B from A to B . We prove
A � B by induction on the rank of the �1-link. First,
assume rank.C1; C2; :::; Cn/ = 1, then Ci�dCi+1 holds
for all i < n, hence A � B holds by dominance and
transitivity. Now assume rank.C1; C2; :::; Cn/ = k and for
all �1-links with rank.C �

1 ; C
�
2 ; :::; C

�
n / < k we know

C �
1 � C �

n . By induction, for every i < n either Ci�dCi+1

or Cinfxg � Ci+1nfxg holds. This implies that Ci � Ci+1

holds for all i < n, because � satisfies dominance and
strict independence. Therefore A � B by transitivity. �

Using this lemma, we can show now that �1 is indeed
a minimal relation for dominance and strict independence.
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Fig. 1 Family that forces that A � B leads to B � C

Fig. 2 Family that forces that A � B leads to B � C

Fig. 3 Sketch of the sets V1; V2 and Vn

Theorem 4.2 Given a set X , a linear order < on X and a
family X � P.X/nf¿g, there is a partial order on X that
satisfies dominance and strict independence if and only if
�1 is irreflexive on X .

Proof �1 satisfies dominance as it extends �t
d
. By con-

struction it also satisfies strict independence and transitiv-
ity: A1�1A2�1:::�1Ak implies A1�t

nA2�t
n:::�t

nAk for
some n 2 N but then A1�t

nAk holds by the transitivity
of �t

n and therefore A1�1Ak . Now assume A�1B and
hence A�t

nB for some n and A [ fxg6�t
nB [ fxg 2 X for

some x 62 A [ B . Then A;B;A [ fxg; B [ fxg is picked
for some l with n < l and A[ fxg�lB [ fxg is set, hence
A [ fxg�1B [ fxg. Therefore, if �1 is irreflexive, it is a
partial order satisfying dominance and strict independence.

On the other hand, if �1 is not irreflexive no strict
partial order can extend it. But every strict partial order on
X satisfying dominance and strict independence must be an

extension of �1. Assume otherwise there is a strict partial
order � on X satisfying dominance and strict independence
that does not extend �1, i. e., there are sets A;B 2 X such
that A�1B holds but not A � B . By Lemma 1 there is a
�1-link from A to B . This implies, by Lemma 1, A � B

because � is transitive and satisfies dominance and strict
independence. Contradiction. Therefore no partial order on
X can satisfy dominance and strict independence, if �1 is
irreflexive. �

Using this result, we can define a polynomial time algo-
rithm for the Partial Dominance Strict Independence Prob-
lem.

Corollary 1 The Partial Dominance Strict Independence
problem is in P .

Proof Computing �1 can obviously be done in poly-
nomial time because the construction always stops after at
most jn�nj = n2 steps. Then checking if �1 is irreflexive
only requires checking if A�1A holds for some A. �

Finally, links give us an easy characterization of sets X
for which �1 is irreflexive.

Corollary 2 �1 is irreflexive if and only if there is no
set A 2 X such that there is a �1-link from A to A.

Proof �1 is transitive and satisfies dominance and strict
independence, hence Lemma 1 tells us, that A�1A if and
only if there is a �1 link from A to A.

4.2 Total Orders

We show that it is, in general, not possible to construct a
(strict) total order satisfying both (maximal) dominance and
(strict) independence deterministically in polynomial time3.
We do this by a reduction from betweenness.

Problem 5 (Betweenness) Given a set V = fv1; v2; :::; vng
and a set of triples R � V 3, does there exist a strict total
order on V such that a < b < c or a > b > c holds for all
.a; b; c/ 2 R.

Betweenness is known to be NP-hard [13]. We use this
result to show NP-hardness for all four versions of the
(Maximal) Dominance (Strict) Independence problem. The
idea is, roughly, to represent the elements of V by sets

3 To be more precise, we show that it is not possible to decide whether
such an order exists. However, this also rules out the construction of
such an order in polynomial time.
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Fig. 4 Sketch of the sets A;B;Anfkg; Bnfk + 1g; Anf1; k; k + 4g
and Bnf1; k + 1; k + 4g

which are not directly comparable via the axioms of domi-
nance or independence. Hence, in order to find a total order,
we need to guess how these sets are ordered. Starting from
this guess we need to “maximize” this initial order in such
a way that for each triple .a; b; c/ both a < b > c and
a > b < c would lead to a circle in every order satisfy-
ing dominance and independence. However, this requires a
number of carefully chosen additional sets as we will detail
below.

Theorem 4.3 The Maximal Dominance Strict Indepen-
dence problem, the Dominance Strict Independence prob-
lem, the Maximal Dominance Independence problem and
the Dominance Independence problem are NP-complete.

It is clear that all four problems are in NP. We can guess
a binary relation and then check if it has all properties we
want. It is well known that checking for transitivity and
(ir-) reflexivity can be done in polynomial time. Checking
(maximal) dominance only requires an easy check for every
pair of sets and (strict) independence an equally easy check
for every quadruple of sets. It is clear that this can be done
in polynomial time. In what follows, we split the proof of
the NP-hardness in four parts, one for each problem.

4.2.1 The Maximal Dominance Strict Independence
problem

Proof Let .V;R/ be an instance of betweenness with
V = fv1; v2; :::; vng. We construct an instance .X;<;X / of
the Maximal Dominance Strict Independence problem. We
set X = f1; 2; :::; N g equipped with the usual linear order,
for N = 8n3 + 2n + 2. Then, we construct the family X
stepwise. The family contains for every vi 2 V a set Vi of
the following form (see Figure 3):

Vi W= f1; N g [ fi + 1; i + 2; :::; N − ig:

Furthermore, for every triple from R we want to enforce
A � B � C or A 	 B 	 C by adding two families of sets

as shown in Figure 1 and Figure 2 with q; x; y; z 2 X . The
solid arrows represent preferences that are forced through
maximal dominance and strict independence. The family in
Figure 1 makes sure that every total strict order satisfying
independence that contains A � B must also contain B �
C . Similarly, the family in Figure 2 makes sure that A 	 B

leads to B 	 C .
We implement this idea for all triples inductively. For

every 1 � i � jRj, pick a triple .vl ; vj ; vm/ 2 R and set
k = n + 1+ 8i . Let .A;B;C / = .Vl ; Vj ; Vm/ be the triple of
sets coding the triple of elements .vl ; vj ; vm/. We add the
following sets:

Anfkg; Bnfkg; Bnfk + 1g; Cnfk + 1g;
Anfk + 2g; Bnfk + 2g; Bnfk + 3g; Cnfk + 3g:

These sets correspond to the sets Anfxg; Bnfxg; :::; Cnfqg
in Figure 1 and Figure 2. Observe that the inductive con-
struction guarantees that every constructed set is unique.
We now have to force the preferences

Bnfk + 1g � Anfkg; Bnfkg � Cnfk + 1g;
Anfk + 2g � Bnfk + 3g; Cnfk + 3g � Bnfk + 2g:

For technical reasons4, we add sets Anfk; k +4g; Bnfk +
1; k + 4g. Then, observe that, by construction, either
Bnf1; k+1; k+4g � Anf1; k; k+4g or Bnfk+1; k+4; N g �
Anfk; k +4; N g is implied by maximal dominance. We add
Anf1; k; k + 4g and Bnf1; k + 1; k + 4g in the first case and
Anfk; k +4; N g and Bnfk +1; k +4; N g in the second case
(see Figure 4). This ensures Bnfk + 1g � Anfkg by strict
independence. In the same way, we can force the other
preferences using k + 5; k + 6 and k + 7 instead of k + 4.

We repeat this with a new triple .v0
i ; v

0
j ; v

0
m/ 2 R until

we treated all triples in R. Observe that there are at most
n3 triples, thus, for every triple, the values k; :::; k + 7 lie
between n + 1 and N − n, hence are element of every Vi .
In total, we add 24 sets per triple. Therefore, X contains
n + 24n3 sets.

It is easy to see, that, by construction, for every strict
total order on X satisfying maximal dominance and strict
independence, we have

Anfkg � Bnfk + 1g; Cnfk + 1g � Bnfkg;
Bnfk + 3g � Anfk + 2g; Bnfk + 2g � Cnfk + 3g:

Now assume there is a strict total order on X satisfying
maximal dominance and strict independence. We claim that
the relation defined by vi < vj iff Vi � Vj is a positive
witness for .V;R/. By definition this is a strict total order.

4 This makes sure that we don’t accidentally force a preference be-
tween Anfkg and Bnfkg.
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So assume there is a triple .a; b; c/ such that a > b < c or
a < b > c holds. We treat the first case in detail: a > b < c

implies A 	 B � C . This implies by the strictness of �
and strict dominance Anfkg 	 Bnfkg and Bnfk + 1g �
Cnfk + 1g. However, then
Anfkg 	 Bnfkg 	 Cnfk + 1g
	 Bnfk + 1g 	 Anfkg

contradicts the assumption that � is transitive and irreflex-
ive. Similarly, the second case leads to a contradiction.

Now assume that there is a strict total order on V sat-
isfying the restrictions from R. We use this to construct
an order on X . We set Vi � Vj iff vi < vj holds. Fur-
thermore, we set A � B for all A;B 2 X if it is implied
by dominance. Then, we apply strict independence twice
and once “reverse” strict independence5, i. e., A � B im-
plies Anfxg � Bnfxg for A;B;Anfxg; Bnfxg 2 X . We
claim that all possible instances of strict independence are
decided already by this order. If A = Vi for i � n, then
there is no set A [ fxg in X . If A = Vinfxg for some
i � n and x 2 X , then x is the only element of X such that
A[fxg 2 X holds. But then there can only be one other set
B with B [ fxg 2 X and B = Vj nfxg hence a preference
between A and B was already introduced by reverse strict
independence. Analogously in the cases A = Vinfx; yg and
A = Vinfx; y; zg for i � n and x ¤ y ¤ z 2 X , every
possible instance of strict independence is already decided
by dominance and two applications of strict independence.

It can easily be seen, that this construction does not lead
to circles, if we start with a positive instance of between-
ness: Every set of the form A = Vinfx; y; zg is only com-
parable to other sets by maximal dominance. Every set of
the form A = Vinfx; yg is only comparable by maximal
dominance or to another set of the same form. The order
on sets of this form mirrors the order on sets of the form
A = Vinfx; y; zg which is produced by maximal dominance
and hence is circle free. Finally sets of the form A = Vinfxg
or A = Vi are only comparable to other sets by maximal
dominance or if this is intended by the construction. Hence,
the order on these sets is circle free, if we started with a
positive instance of betweenness.

Finally, we can extend this order to a total order because
extensions do not produce new instances of strict indepen-
dence. �

5 Every total order satisfying strict independence has to satisfy reverse
strict independence: If A � B holds, then Bnfxg � Anfxg would
implyB � A, by strict independence contradicting the irreflexivity of
�, hence by the totality of � we have Anfxg � Bnfxg.

4.2.2 The Dominance Strict Independence problem

Proof We construct an instance .X;<;X / of the Domi-
nance Strict Independence problem in a similar fashion as
above. We take the same X and < and add the same sets to
X . In order to make the reduction work for the Dominance
Strict Independence problem, we have to add more sets.

Observe that maximal dominance is only needed in the
reduction for the Maximal Dominance Strict Independence
problem to introduce preferences like Anf1; k; k + 4g �
Bnf1; k + 1; k + 4g. We can enforce these preferences also
using strict independence and regular dominance using a
construction as in the proof of Proposition 1.

For every k used in the reduction, let .A;B;C / be the
triple of sets for which k appears in the reduction and let
.Xk ; Yk/ be one of the following pairs:

.Bnfk + 1; k + 4; z1g; Anfk; k + 4; z1g/;

.Bnfk; k + 5; z2g; Cnfk + 1; k + 5; z2g/;

.Anfk + 2; k + 6; z3g; Bnfk + 3; k + 6; z3g/;

.Cnfk + 3; k + 7; z4g; Bnfk + 2; k + 7; z4g/
with zi 2 f1; N g chosen such that Xk ; Yk 2 X holds.

We want to enforce Xk � Yk . By definition, max.Xk/ =
max.Yk/ and min.Xk/ < min.Yk/ or max.Xk/ < max.Yk/

and min.Xk/ = min.Yk/. Assume, w.l.o.g. max.Xk/ =
max.Yk/ and min.Xk/ < min.Yk/ and let
Xk = fx1; x2; :::; xlg and Yk = fy1; y2; :::; ymg be enu-
merations of Xk resp. Yk such that i < j implies xi < xj
resp. yi < yj . We add

fxlg; fxl−1; xlg; :::; fx2; :::; xlg

and fx1; xlg to X . This forces by dominance

fx2; :::xlg � ::: � fxl−1; xlg � fxlg

and hence by transitivity and strict independence Xk �
fx1; xlg. Analogously, we can enforce fx1; y1; ymg �
fx1g [ Yk by adding

fx1; y1g; fx1; y1; y2g; :::; fx1; y1; :::; ym−1g

as well as fx1; y1; ymg and fx1g [ Yk to X . Finally we add
fx1; y1; ymg, fx1g and fx1; y1g enforcing fx1g � fx1; y1g
by dominance and hence fx1; ymg � fx1; y1; ymg by strict
independence. Then, we have Xk � Yk by

Xk � fx1; xlg � fx1; y1; xlg � fx1g [ Yk � Yk:

The process of producing a positive instance of between-
ness from a positive instance of the Dominance Strict In-
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Fig. 5 Sketch of the sets V1; :::; Vn; C1; :::; F1; Fn2 ; z and z�

Fig. 6 Enforcing strictness without strict independence

dependence problem is the same as for the Maximal Dom-
inance Strict Independence case. However, in order to con-
struct a total order on X , we have to do a bit more. We
take the same steps as in the Maximal Dominance Strict
Independence case (including the closure under maximal
dominance) but additionally, for A;B 2 X with max.A/ =
max.B/, min.A/ = min.B/ and jAj; jB j � 3 we set A � B

if

1. min.A/ = 1 and jAj = 2 and jB j = 3,
2. min.A/ = N and jAj = 3 and jB j = 2,
3. jAj = jB j = 3 and AnB < BnA.

This order, together with a positive instance of between-
ness, maximal dominance and (reverse) strict independence
is circle free and decides all possible applications of strict
independence. Therefore, we can construct a total order on
X satisfying strict independence and dominance. �

4.2.3 The Maximal Dominance Independence Problem

Proof We have to adapt the reduction for the Maxi-
mal Dominance Strict Independence problem above in two
places. We have to change the way we enforce the strict
preferences in Figure 1 and Figure 2 and we have to make
sure that the order restricted to the sets V1; V2; :::; Vn is strict.

To enforce, without strict independence, a strict prefer-
ence between two sets that is not forced by maximal dom-
inance we define for every pair A;B 2 X with min.B/ �
min.A/, max.A/ � max.B/ and 2 � max.A/ − min.A/ a
family of sets S.A;B/ forcing A � B . S.A;B/ contains
the following sets

fxABg; fyABg; fxAB ; zABg; fyAB ; z
�
ABg;

A [ fzABg; B [ fz�
ABg

where min.A/ < yAB < xAB < max.A/, max.B/ < zAB

and z�
AB < min.B/ hold.

Then A [ fzABg � fxAB ; zABg holds by maximal
dominance and, therefore, fxABg 6� A and hence A �
fxABg holds by “reverse” independence6 and analogously,
fyABg � B . Therefore, transitivity implies A � B by
A � fxABg � fyABg � B .

Using S.A;B/, we can adapt the proof above. We want
to construct an instance of the maximal dominance indepen-
dence problem .X;<;X /. We take as X again a set of the
form X = f1; :::; N g with the usual linear order, however N
has to be larger than in the maximal dominance strict inde-
pendence case. Namely, we setN = 20n3+28n2+2n+14. X
contains sets V1; :::; Vn similar to the ones in the reductions
above (see Figure 5). However, they do not have a com-
mon smallest element or common largest element and the
smallest element of V1 is 4n3 + 4n2 + 1 and largest element
16n3 + 24n2 + 2n + 14, i. e.,

Vi W= f4n3 + 4n2 + i; :::; 16n3 + 24n2 + 2n + 14 − ig:

We assume, for all families S.A;B/ and S.C;D/ occur-
ring in the reduction, pAB ¤ qCD for p; q 2 fx; y; zg and
.A;B/ ¤ .C;D/. As well, for every family S.A;B/, as-
sume 5n3+13n2+n+7 � yAB and xAB � 16n3+17n2+n+7.

For a triple .a; b; c/ in the instance of betweenness we
add the following sets as in the two previous reductions:

Anfkg; Bnfkg; Bnfk + 1g; Cnfk + 1g;
Anfk + 2g; Bnfk + 2g; Bnfk + 3g; Cnfk + 3g

6 Every total order that satisfies independence also satisfies “reverse”
independence, i. e., A � B implies Anfxg � Bnfxg. Otherwise, we
would get Bnfxg � Anfxg by the totality of �, hence B � A by
independence, contradicting the definition of �.
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where we start with k = 4n3 + 11n2 + n + 7. We force
the same preference as in the Maximal Dominance Strict
Independence case, by adding the following families:

S.Anfkg; Bnfk + 1g/;S.Cnfk + 1g; Bnfkg/;
S.Bnfk + 3g; Anfk + 2g/;S.Bnfk + 2g; Cnfk + 3g/:

We still have to make sure that the order on the sets
V1:::Vn is strict. To achieve this we want to use the idea
shown in Figure 6, that is to add for every pair Vi ; Vj sets
that lead to a circle if both Vi � Vj and Vj � Vi hold.
Let f .l/ = .Vi ; Vj / be an enumeration of all pairs of sets
V1; V2; :::; Vn. We add sets Cl ;Dl ; El and Fl that are con-
tained in the “middle parts” of all sets Vi such that Cl 
 Fl 0

holds for all l 0 < l . Moreover, we want the following:

Fl = Elnfmax.El/;max0.El /;min0.El/;min.El /g;
El = Dlnfmax.Dl/;max0.Dl/;min0.Dl/;min.Dl/g;
Dl = Clnfmax.Cl/;max0.Cl/;min0.Cl/;min.Cl/g
where max0.X/ denotes the second largest element of X
and min0.X/ the second smallest. We can achieve this by
taking for all l � n2

Cl W= f4n3 + 4n2 + n + 7l; :::; 16n3 + 24n2 + n + 14 − 7lg

and Dl ; El and Fl accordingly. Furthermore, we add sets
Flnfmin.Fl /g, Vi [ fzlg and .Flnfmin.Fl/g/ [ fzlg for a
unique7 zl < min.V1/. This ensures Fl � Flnfmin.Fl/g �
Vi . In a similar fashion we can enforce Vi � Dl , El � Vj

and Vj � Fl . Then, we add sets Clnfylg,Dlnfxlg,Elnfylg
and Flnfylg for xl = 5n3 + 11n2 + n + 7 + l and yl = 5n3 +
12n2+n+7+l . Furthermore, we enforceDlnfxlg � Flnfylg
and Elnfylg � Clnfxlg by adding S.Dlnfxlg; Flnfylg/
and S.Elnfylg; Clnfxlg/.

This forces a strict preference between Vi and Vj . As-
sume otherwise Vi � Vj for a total order satisfying max-
imal dominance and independence. Then, for l such that
f .l/ = .Vi ; Vj / holds, Fl � Vi � Vj � El implies Fl �
El . This implies Flnfyg � Elnfyg because Elnfyg �
Flnfyg would imply El � Fl , a contradiction. Similarly,
Cl � Vj � Vi � Dl implies Clnfxg � Dlnfxg. However,
then Clnfxg � Dlnfyg � Flnfyg � Elnfyg � Clnfxg is
a circle in �, contradicting the assumption that � is a total
order.

It is straightforward to check that this construction yields
a valid reduction analogously to the proof above. The key
step is to observe that independence can only be applied to
the new sets in cases where it is used in the proof. This is
clear for the sets pictured in Figure 6. For the one and two

7 I. e zl ¤ zl 0 for l ¤ l 0 and zl 62 X for allX 2 S.A;B/ occurring
in the reduction.

element sets this holds, because the elements are unique
and because no three element sets are contained in X .

It remains to check that we can actually pick a unique
element every time we want to do this in the reduction. The
inner part of Fn2 has .16n3 +24n2 +n+14−7n2 −7/−.4n3 +
4n2+n+7n2+7/ = 12n3+6n2 elements. For every triple, we
have to pick 12 unique elements contained in this middle
part. These are at most 12n3 elements. Furthermore, we
have to pick for every pair .Vi ; Vj / 6, two for x and y and 4
to enforce preferences, unique elements. There are n2 such
pairs, so we need 6n2 elements. Hence we need at most the
12n3+6n2 elements contained in Fn2 . Furthermore, we need
for every pair .Vi ; Vj / and every triple 4 elements smaller
than min.V1/ and the same amount of elements larger than
max.V1/. This is possible as min.V1/ = 4n3 + 4n2 + 1 and
N − max.V1/ = .20n3 + 28n2 + 2n + 14/ − .16n3 + 24n2 +
2n + 14/ = 4n3 + 4n2. �

4.2.4 The Dominance Independence problem

Proof We construct an instance .X;<;X / of the Domi-
nance Independence problem in a similar fashion as above.
We take the same X and < and add the same sets to X as
in the Maximal Dominance Independence case. In order to
make the reduction work for the Dominance Independence
problem, we have to add more sets.

Observe that maximal dominance is only needed in the
reduction for the Maximal Dominance Strict Independence
problem to introduce preferences between sets of the form
(1) Fl � Flnfmin.Fl/g, (2) fxg � fyg, and (3) R [ fzg �
S[fzg, for setsR;S and z 2 X . We can enforce these pref-
erences also using independence and regular dominance.
(1) is implied by dominance anyway. (2) can be forced by
adding fx; yg because fxg � fx; yg � fyg holds by domi-
nance. Finally, we can enforce (3) using the idea from the
Dominance Strict Independence reduction.

Now, assume, w.l.o.g., min.R/ < min.S/ < max.S/ <
max.R/ < z; the other case is similar. Let R = fr1; :::; rlg
and S = fs1; :::; smg be enumerations of R (resp. S)
such that i < j implies ri < rj (resp. si < sj ). We
add fzg; frl ; zg; :::; fr2; :::; zg; fr1; zg to X . This forces
fr2; :::; zg � fzg by dominance and hence by one applica-
tion of independence R [ fzg � fr1; zg. Analogously, we
enforce fs1; zg � S [ fzg by adding
fs1g; fs1; s2g; :::; fs1; :::; smg; fs1; zg to X . Finally, we add
fr1g; fr1; s1g and fr1; s1; zg, which leads to fr1; zg �
fr1; s1; zg. Then we have R [ fzg � fr1; zg � fr1; s1; zg �
fs1; zg � S [ fzg, hence R [ fzg � S [ fzg.

Checking the correctness of this reduction is straightfor-
ward. The correctness proof for the Maximal Dominance
Independence case can be adapted to the Dominance In-
dependence case in the same way as the proof of the cor-
rectness of the Maximal Dominance Strict Independence
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case was adapted to the Dominance Strict Independence
case. �

5 Conclusion

We have shown that the problem of deciding whether a
linear order can be lifted to a ranking of sets of objects sat-
isfying a form of dominance and a form of independence
is in P or trivial if we do not expect the ranking to be total
and NP-complete if we do. In order to prove P-membership
or triviality we constructed such rankings. Rankings of spe-
cific sets are useful in several applications, e.g., to eliminate
obviously inferior sets of objects from a set of options.

In many applications, the family of sets to be ranked is
not given explicitly but implicitly. We expect that a com-
pact representation of the sets increases the computational
complexity of decision problems as studied in this paper.
As future work we thus want to investigate the complexity
blow up caused by a compact representation.

Furthermore, we would like to characterize families that
allow an order satisfying (maximal) dominance and (strict)
independence. Moreover, it may be possible to find suffi-
cient but not necessary conditions for the existence of such
rankings that can be checked in polynomial time. We aim
for finding strong forms of such conditions. A related goal
is to obtain special classes of families where such a char-
acterization is feasible. A promising candidate are families
generated via graphs, where the family is given by the sets
of vertices that induce connected subgraphs.

Another item on our agenda is to investigate whether the
logic proposed in [8] can be used for specific sets of objects
as well. Finally, it would be interesting to study some of the
other axioms that have been considered in the literature and
see how they behave when one has to rank proper subsets
of the whole power set of elements.

Acknowledgments Open access funding provided by Austrian Sci-
ence Fund (FWF). This research has been supported by the Austrian
Science Fund (FWF) through projects P25207, I2854 and Y698. The
authors want to thank Ulle Endriss and the anonymous reviewers for
their helpful remarks on earlier versions of this work.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

Literatur

1. Barberà S, Pattanaik PK (1984) Extending an order on a set to the
power set: some remarks on Kannai and Peleg’s approach. Journal
of Economic Theory 32(1):185–191

2. Barberà S, Bossert W, Pattanaik PK (2004) Ranking sets of objects.
In: Handbook of Utility Theory, Springer, Boston, pp 893–977

3. Bossert W (1995) Preference extension rules for ranking sets
of alternatives with a fixed cardinality. Theory and Decision
39(3):301–317

4. Bossert W, Suzumura K (2012) Revealed preference and choice un-
der uncertainty. SERIEs: Journal of the Spanish Economic Associ-
ation 3(1):247–258

5. Bossert W, Pattanaik PK, Xu Y (2000) Choice under complete un-
certainty: axiomatic characterizations of some decision rules. Eco-
nomic Theory 16(2):295–312

6. Brechtel S, Gindele T, Dillmann R (2014) Probabilistic decision-
making under uncertainty for autonomous driving using continuous
POMDPs. In: Proc. ITSC’14, IEEE, Piscataway, pp 392–399

7. Fishburn PC (1984) Comment on the Kannai-Peleg impossibil-
ity theorem for extending orders. Journal of Economic Theory
32(1):176–179

8. Geist C, Endriss U (2011) Automated search for impossibility the-
orems in social choice theory: Ranking sets of objects. J Artif Intell
Res (JAIR) 40:143–174, http://dx.doi.org/10.1613/jair.3126

9. Kannai Y, Peleg B (1984) A note on the extension of an order on a
set to the power set. Journal of Economic Theory 32(1):172–175

10. Larbi RB, Konieczny S, Marquis P (2010) A characterization of
optimality criteria for decision making under complete ignorance.
In: Proc. KR’10, pp 172–181

11. Maly J, Woltran S (2017) Ranking specific sets of objects. In: BTW
(Workshops), GI, LNI, vol P-266, pp 193–201, https://www.gi.de/
service/publikationen/lni/gi-edition-proceedings-2017/gi-edition-
lecture-notes-in-informatics-lni-p-266.html

12. Mas-Colell A, Whinston MD, Green JR, et al (1995) Microeco-
nomic Theory, vol 1. Oxford University Press, New York

13. Opatrny J (1979) Total ordering problem. SIAM Journal on Com-
puting 8(1):111–114

14. Packard DJ (1981) Plausibility orderings and social choice. Syn-
these 49(3):415–418

15. Pattanaik PK, Peleg B (1984) An axiomatic characterization of the
lexicographic maximin extension of an ordering over a set to the
power set. Social Choice and Welfare 1(2):113–122

K

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1613/jair.3126
https://www.gi.de/service/publikationen/lni/gi-edition-proceedings-2017/gi-edition-lecture-notes-in-informatics-lni-p-266.html
https://www.gi.de/service/publikationen/lni/gi-edition-proceedings-2017/gi-edition-lecture-notes-in-informatics-lni-p-266.html
https://www.gi.de/service/publikationen/lni/gi-edition-proceedings-2017/gi-edition-lecture-notes-in-informatics-lni-p-266.html

	Ranking Specific Sets of Objects
	Abstract
	Introduction
	Background
	A Stronger Form of Dominance
	Main Results
	Partial Orders
	Total Orders
	The Maximal Dominance Strict Independence problem
	The Dominance Strict Independence problem
	The Maximal Dominance Independence Problem
	The Dominance Independence problem


	Conclusion
	Literatur


