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Abstract

Drug induced liver injury (DILI) is one of the key safety concerns in drug development. To

assess the likelihood of drug candidates with potential adverse reactions of liver, we pro-

pose a compound attributes-based approach to predicting hepatobiliary disorders that are

routinely reported to US Food and Drug Administration (FDA) Adverse Event Reporting Sys-

tem (FAERS). Specifically, we developed a support vector machine (SVM) model with

recursive feature extraction, based on physicochemical and structural properties of com-

pounds as model input. Cross validation demonstrates that the predictive model has a

robust performance with averaged 70% of both sensitivity and specificity over 500 trials. An

independent validation was performed on public benchmark drugs and the results suggest

potential utility of our model for identifying safety alerts. This in silico approach, upon further

validation, would ultimately be implemented, together with other in vitro safety assays, for

screening compounds early in drug development.

Introduction

Despite the current advancements of many scientific and technological factors such as genet-

ics, chemistry and protein engineering, the efficiency of drug research and development

(R&D) has not risen intended [1]. High-profile drug attrition substantially hinders R&D pro-

ductivity, with unacceptable safety often a reason for failures [2]. Therefore, identifying poten-

tial risks due to adverse drug reactions (ADRs) as early as possible in drug development

pipeline and prospectively predicting their likelihood as accurate as possible in humans is one

of the most important and challenging tasks for the pharmaceutical industry.

Prior to drug trials in humans, extensive preclinical studies are conducted to examine effi-

cacy and toxicity [3]. In addition to animal models, alternative translational approaches, espe-

cially in silico computational models, are widely used to refine drug development design, and

reduce the size and duration of clinical series [4]. Various in silico efforts have been reported

with predictive modeling based on drug properties [5], drug-ADR connections [6], drug-drug

similarities [7], drug-drug interactions [8], or drug-target effects [9, 10], in order to detect

pharmaceutical-related toxicities for different phenotypes [11, 12], based on different source of

safety data [13, 14], suggesting its fundamental role in toxicity prediction.
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Of various real-world adverse drug event knowledge bases, FAERS is very comprehensive. It

is a spontaneous reporting system that collects and houses adverse events reported by clinicians,

patients and drug manufacturers from all over the world. It details other capturable information

such as drug exposures, disease indications, demographic information and clinical outcomes.

FDA started collecting these data in 1968 and currently there are over 5 million accumulated

reports, with a rapid growth rate every year [15]. FAERS brings a rich opportunity to detect

novel post-marketing ADRs, reveal populations that are not well represented in clinical trials,

and better serve early development pipeline by studying lessons and extracting knowledges from

post-marketed drugs. Numerous studies have demonstrated the significant power of FAERS to

discover pharmacovigilance signal and its influence to premarketing research phases [16–18].

Among all the causes of regulatory actions, including denial of approval, black box warnings

and withdrawal from the marketplace, DILI is the most frequent cited reason [19]. Wysowski

[20] et al found that 12 out of 76 drugs (16%) approved between 1969 and 2002 that required a

black box warning or removed from the market are attributable to DILI. Similar studies was

performed by Lasser et al [21]. Whereas there are liver signals that escape detection during cur-

rent standard in-vitro and in vivo tests, the risk of false positives may lead to unnecessary attri-

tion as well. While DILI is a multifactorial phenomenon with all mechanisms still not fully

understood, an in silico test that bases on compound physicochemical and structural attributes

is believed to be able to capture most of the unknown mechanism-independent factors, and to

provide insights into the complex dynamics of liver injury as early as in the screening stage.

Numerous computational models have been developed in the past to predict toxicological

properties of a given compound that cause DILI. However, such efforts have limited utility so

far due mainly to the fact many of these models cannot be applied to novel compounds. A

number of papers have reported notable performance for predicting ADRs based on similarity

calculation by considering compound structural similarities [22–24], target structural similari-

ties [25], side effect similarities [26] or a combination of all [7, 27]. However, intrinsic limita-

tions of similarity-based methods are that certain evaluations of similarities cannot be fully

captured for novel compounds. For example, the International Classification of Diseases

(ICD) code has not been annotated or the target has not been determined. Furthermore, the

similarity calculation can explain how similar of two compounds in terms of a particular prop-

erty, but it is not interpretable in terms of what is the underlying influence of this property to

each compound. Other papers assemble comprehensive features that reflect variations among

compounds, and then apply these features into different modeling systems to predict toxicity

[5, 28, 29], but most of these approaches focus on approved and withdrawn drugs, either with

limited tests on or nonapplicable to compounds that still in early development phase.

In consideration of aforementioned points, we proposed a novel predictive model specifi-

cally designed to identify drugs with high likelihoods related to DILI, based on selected fea-

tures of their physicochemical and structural properties. This way, it is possible to readily

apply the model to compounds as early as possible during the development. Based on cross-

validation, the model demonstrated a robust performance with a reasonable level of sensitivity

and specificity. To test the potential application of this model in early-stage compound screen-

ing, all the internal attrition small molecules due to DILI are assessed, and the model shows

good prediction ability and feasible utility. In addition, we validated our model on an indepen-

dent set of benchmark drugs, suggesting its potential for real world detection of ADR signals.

Results

Details of our analytical approach and data source are described in Methods. Briefly, we work

only on FAERS reports of hepatobiliary disorder. All drugs that are either significantly involved
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in these reports (positive) or totally clean (negative) are included as a set of training compounds.

A comprehensive set of 818 descriptors (including physicochemical and structural properties)

were generated for each of positives and negatives using our in-house cheminformatics tool.

The training compounds were then fit into a Support Vector Machine (SVM) with recursive

feature extraction. The SVM model with optimized parameters and selected features was then

applied to any future use scenarios. The flowchart of this method is illustrated in Fig 1.

Signal detection from FAERS

The overall data collection (2004–2015) resulted in 2,542,867 individual reports, involving a

total of 1,208 unique drugs in 13,665 unique events after mapping drug names to DrugBank

(https://www.drugbank.ca/). Since our focus was on DILI in this study, we were particularly

interested in those reports that are liver related. All the events that are reported in Preferred

Term (PT) in MedDRA system (https://www.meddra.org/) were aligned to their hierarchical

System Organ Category (SOC) terms and the total number of reports from each individual PT

terms were accumulated correspondingly.

Following the procedure described in the Methods, we identified a total of 620 drugs that

have at least one report as primary suspect involving end-organ of “hepatobiliary disorder”.

Fig 1. Flowchart of the SVM model.

https://doi.org/10.1371/journal.pone.0231252.g001
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The total number of reports for each drug were applied to calculate whether this drug has

strong association with hepatobiliary disorder, based on both Relative Reporting Ratio (RRR)

and corresponding P-value, see Methods. The distribution of reports number, RRR and -log

(P-value) are shown in Fig 2.

We finally narrowed down 155 drugs that were regarded as “positives” for liver-related

events, with each had at least 13 reports in hepatobiliary disorder, RRR> 1, and P-

value < 0.05. Meanwhile, we selected 164 drugs that were regarded as “negatives” for liver-

related events, with each had no single report in hepatobiliary disorder and have been in mar-

ket for at least 10 years.

Compound-based attributes

For each of these 155 positive compounds and 164 negative compounds, we generated a com-

prehensive molecular profile based on their physicochemical and structural properties. The

tool used for generating the molecular profile includes the most common descriptors in

ADMET modeling are developed in Amgen and implemented in MOE (https://www.

chemcomp.com/Products.htm). In total, 818 descriptors were used for such a profile. Ranking

order them according to their relevance to the DILI predictor in a univariate manner is possi-

ble. Rather, we treated them equally and used all 818 descriptors as input for feature selection

and predictive model building.

Model performance characterization

We built SVM models with recursive feature extraction using the input of 818 descriptors

from each training set containing equal number of positive drugs and negative drugs. In total,

we examined 500 such training sets, each of them with the same positive set (155) and ran-

domly selected negatives with the same number of positives (155) from the entire negative

Fig 2. Statistical association between drugs and “hepatobiliary disorder” reports. (a) Distribution of number of reports. (b) Distribution of–log10(P-value). (c)

Distribution of reporting ratio. (d) Relations of reports number, -log10(P-value) and reporting ratio.

https://doi.org/10.1371/journal.pone.0231252.g002
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compound pool (164). For every compound selected in any training set, we calculated 818

descriptors using our internal tool, see Methods. Each of these 500 training sets resulted in

multiple SVM models, with each individual model was trained and tested under different

parameter combinations of cost and top. Each parameter combination was evaluated by aver-

aging their performance across these 500 training sets, and the best combination of cost and

top were selected when the averaged area under curve (AUC) got maximized over 500 times,

which is 0.69 when cost = 1, top = 15, see Fig 3. In the circumstance of cost = 1, top = 15, the

averaged performance over 500 training sets are: Sensitivity = 70%, Specificity = 70%, False

Positive Rate (FPR) = 30%, False Negative Rate (FNR) = 30%, Accuracy = 70%, Positive Pre-

dictive Value (PPV) = 71%. Correspondingly, the averaged probability to distinguish positive

and negative is 0.48, which illustrates the possibility of a compound to be positive, with higher

means larger possibility and lower otherwise.

Feature frequency distribution

It is expected that some of these 818 molecular descriptors are highly redundant. By recursively

eliminating correlated features, the performance of the model improved, as seen in Fig 4,

which shows a series of the receiving operating characteristic (ROC) curves from one of the

training sets by fixing cost = 1 but iteratively decreasing top values from 731 to 10.

It is noted that on average, the best performance can be achieved when the number of top

features is within the vicinity of 15 (top = 15). However, the top 15 features from each of the

500 training sets are not always identical. Amongst the union set of all feature candidates from

500 trials, we ranked them by their frequency of presence. We then selected the top 15 features

with the highest frequency for the final model to be used for independent validation, see Fig 5.

Note that the top ranked feature (atom information content) appeared 476 times (95.2%) and

the 15th ranked feature appeared 135 times (27%) out of 500 trails respectively.

Fig 3. Heatmap of AUC under different cost and top settings. Each row is individual cost values while each column represents individual top
values, and each cell is the averaged AUC over 500 training sets. The best averaged AUC is 0.69, when cost = 1, top = 15.

https://doi.org/10.1371/journal.pone.0231252.g003
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In-house small molecules testing

As a realistic check of the final predictive model trained based on FAERS, we systematically

queried 4,400 internal small molecules in Amgen compound database, and fitted them into

our trained final SVM model, and outputted the likelihood of each compound being positive.

Since most of these internal compounds do not involve in any development pipeline and lack

of confirmed and solid evidence of its liabilities to cause DILI, it would be challenging to

directly evaluate all these internal compounds against our predictive model. In order to get an

estimation, we have performed the following two steps. As the first step, we compared the pre-

dictive model with test results from one of Amgen’s liver safety panel—human Bile Salt Export

Pump (BSEP) assay, so that we could obtain an approximate performance estimation of our

predictive model. Specially, we first compared the IC50 value of these compounds tested

Fig 4. ROC from one of the training set. These ROC curves are obtained when fixing cost = 1 and iteratively decreasing top values from

731 to 10. In each ROC plot, the AUC value is calculated, and the corresponding sensitivity and specificity are marked.

https://doi.org/10.1371/journal.pone.0231252.g004

PLOS ONE Predictive model for drug induced liver injury in humans

PLOS ONE | https://doi.org/10.1371/journal.pone.0231252 April 15, 2020 6 / 14

https://doi.org/10.1371/journal.pone.0231252.g004
https://doi.org/10.1371/journal.pone.0231252


through BSEP assay with the likelihood values predicted by the final SVM model, to see how

concordant they are. As the second step, we then tested our model against all internal small

molecules that have been terminated either in preclinical and clinical stages due to liver related

issues, to get a more accurate and refined estimation of the model performance.

Of those 4,400 compounds, 3,023 of them can be conclusive by BSEP, either positive

(IC50< = 25) or negative (IC50> = 100), and 1,377 of them are not determinate

(25<IC50<100). 2,399 out of those 3,023 compounds have the same output from both BSEP

assay and SVM model, which results in a concordance rate as high as 79%, the remaining 624

compounds are in disagreement between these two systems, leading to a discordant rate of

21%. Even we have in vitro (BSEP) and in silico (SVM model) results available, the gold-stan-

dard criteria for DILI liabilities cannot be confirmed till preclinical or clinical tests are com-

pleted for each candidate.

To further evaluate the SVM model performance, we made manual inquiry into those 4,400

internal small molecules to identify the ones terminated in different phases of our develop-

ment pipeline due specifically to liver related issues. As the result, we identified 12 such small

molecules, as summarized in Table 1.

For these 12 terminated compounds due to liver-related issues, our trained SVM model pre-

dicted 8 in positive category and 4 in negative class, leading to a sensitivity of 67% (8/12) and

FNR of 33% (4/12). The most promising evidence is from Compound A, as its development

was halted during Phase I human trials due to an observed transaminase elevation [30]. Notice-

ably, for Compound A, there was no preclinical evidence of liver injury in all animal studies

including mice, rats, hamsters, rabbits and non-human primates. Additionally, all assay-based

tests, including in vitro cytotoxicity, mitochondrial toxicity, covalent binding, and reactive

metabolite formation data, did not suggest a plausible mechanism for liver injury in humans.

Fig 5. Top 15 features selected by SVM model. The features are ranked by selection frequency descending order, while frequencies are

marked at the right side of the bar.

https://doi.org/10.1371/journal.pone.0231252.g005
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However, transaminase elevations occurred in 5 of 8 healthy volunteers during Phase 1 trial of

twice daily dosing with 100mg/dose, and returned to normal upon cessation of Compound A

treatment. Compound A was consequently found to involve in multiple hepatocellular trans-

porters, including BSEP. According to our predictive model, the probability of Compound A to

cause liver injury is as high as 75%, demonstrating the powerful foresight of this in silico SVM

model for DILI that is undetected during preclinical phases with animal studies.

The remaining 7 positives predicted by SVM were all with high probabilities and were all

stopped for development during pre-clinical stages due to various liver-related safety issues.

Interestingly, none of them were conclusive from BSEP assay results, which plays significant

role in current liver toxicity safety panel assessment. This demonstrates the potential power of

the in silico model in terms of identifying liver toxicity related safety concern in very early

stage once the candidate compound is made and its molecular profile is available. For positive

candidate compounds predicted by this in silico model, we can then subject them to selected

low-throughput assays to further confirm the liver-related injuries and study the underlying

mechanisms.

Independent validation

To further valid the in silico model we developed, a separate set of 285 benchmark drugs were

selected and annotated for their known association with DILI and tested independently with

this final SVM model. Of these 285 drugs, 265 were curated internally by liver experts in refer-

ence with available literature. We found that 63 of them have confirmed connections with liver

injury, either from public literature or previous studies, and the rest 222 of them are consid-

ered as negative. When applying our model to these 285 benchmark drugs, we achieved a sen-

sitivity of 63% (40 out of 63), specificity of 66% (146 out of 222), FPR of 34% and FNR of 37%.

This predictive model is sensitive in detecting drugs that are withdrawn due to liver related

issues. For example, Tolrestat is an aldose reductase inhibitor which was approved for the con-

trol of certain diabetic complications (https://www.drugbank.ca/drugs/DB02383). While it

was approved in several countries, it failed a Phase III trial in the U.S. due to liver toxicity and

never received FDA approval. It was discontinued by Wyeth in 1997 because of the risk of

severe liver toxicity and death. Its probability for causing DILI is 0.74 predicted by our model.

Table 1. In-house small molecules testing.

AMG ID BSEP SVM Model Comments

Output IC50 Output Probability

A Pos 9 pos 0.75 Killed in Phase I due to elevated transaminases

B Inconclusive 44 pos 0.76 Killed in RPT, mild to minimal hepatic lipidosis

C Inconclusive 89 pos 0.73 Killed in PT, inflammations found including liver, repurposed for oncology

D Inconclusive 39 pos 0.71 Killed in RPT, hepatic vacuolation

E Inconclusive 57 pos 0.61 Killed in RPT, hepatic vacuolation

F Inconclusive 35 pos 0.60 Killed in RPT, hepatic lipidosis and glucokinase translocation

G Inconclusive 29 pos 0.60 Inactive in RPT, hepatic/biliary injury

H Inconclusive 68 pos 0.50 Inactive in RPT, hepatic/biliary injury

I Pos 23 neg 0.34 Killed in Phase I, elevated transaminases

J Pos 25 neg 0.28 Killed in Phase I, elevated transaminases

K Pos 19 neg 0.29 Inactive in RPT, hepatocellular degeneration, necrosis and loss

L Neg 100 neg 0.45 Killed in PT, hepatobiliary injury

BSEP, bile salt export pump; SVM, support vector machine; RPT, research product team; PT, project team.

https://doi.org/10.1371/journal.pone.0231252.t001
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Another withdrawn drug we successfully predicted is Ticrynafen (https://www.drugbank.ca/

drugs/DB04831), a diuretic drug with uric acid-lowering (uricosuric) action, formerly mar-

keted for the treatment of hypertension. It was withdrawn in 1982, shortly after its introduc-

tion to the market, after case reports in the United States indicated a link between the use of

ticrynafen and hepatitis [31]. Its probability to be positive is 0.69 according to our model.

Other terminated drugs with known associations with liver injury and predicted as positives

are Pirprofen (withdrew in 1990, probability = 0.66), Fenclozic acid (withdrew in 1970, proba-

bility = 0.60), and Benoxaprofen (withdrew in 1982, probability = 0.59). All these examples

suggest the powerful predictive ability of this SVM model trained based on FAERS data to

detect DILI.

Our predictive model is also helpful to recognize drugs that have contraindications of liver

deficiency conditions. Take Chlordiazepoxide as an example, its use should be avoided in indi-

viduals with severe liver deficiencies such as hepatitis and liver cirrhosis. Zafirlukast is also

contraindicated in patients with hepatic impairment including hepatic cirrhosis, it has a prob-

ability of 0.70 to cause liver problems. Other such positive drugs include but not limited to

Docetaxel, Paclitaxel and Temsirolimus. All these positive discoveries give us more complete

perspectives about the potential toxicological effects of a candidate compound, it also gives us

better strategy to apply when potentially unsafe drugs cannot be avoided.

Discussion

Accurate and timely prediction of drug induced liver injury remains a challenging research

topic with a great potential impact in drug R&D. A number of efforts have been made to build

in silico models that can predict DILI [32–34]. Since the datasets and feature selection vary, a

direct comparison between these methods and our approach may be inaccurate. However, the

common drawback of these methods is they have limited utility in drug development espe-

cially at the early stages, which is also the motivation to build this model, i.e., to provide a

translational tool of toxicity review of DILI liabilities for new compounds that entering our

pre-clinical pipeline as early as possible.

We demonstrated that evaluating profiles of compounds including physicochemical and

structural properties can capture mechanism-independent attributes, prune the prediction as

accurate as possible and identify potentially important liabilities as early as possible. By build-

ing this SVM model with recursive feature extraction based on hepatobiliary disorder reports

in FAERS, we characterized its performance with reasonable sensitivity and specificity after

cross validation. In our initial estimation, we found acceptable sensitivity of the model to

uncover in-house attrition small molecules due to liver related issues in both preclinical and

clinical studies. In a following independent test on benchmark drug molecules, we illustrated

the power of the model to reveal withdrawn drugs with liver issues and drugs having contrain-

dication with liver deficiencies.

The current version of model is based solely on compound attributes. In the future, we may

be able to integrate compound’s target and downstream influences into one predictive model.

By expanding our current underlying principle, which assumes that compounds with similar

chemical structure exhibit similar profile for adverse hepatic reactions, we would further

expect that compounds with similar in vitro protein binding profiles and downstream pathway

profiles tend to exhibit similar profile for side effects as well.

In summary, we performed an extensive mining of available post-marketed DILI reports

housed in FAERS. From these filtered data we identified positives and negatives, and we then

developed training sets of drugs to build a SVM model using compound chemical, physical

and structural properties as input. An internal attrition test and another independent
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validation show a great potential of this in silico model to identify possible safety concerns.

This approach, if further validated in future studies, would be implemented in as early as in

lead development stage to screen compounds for liver-related liabilities.

Methods

FAERS data source and pre-processing

The data used in this analysis covers adverse events from January 2004 to September 2015,

which comprises millions of reports and offers the opportunity to examine the legacy data

(2004Q1-2012Q3) as well as new events (2012Q4-present). Of the drugs and events included

in each report, we only considered drugs reported as “primary suspect” and assumed that all

events involved in this report come from the primary suspect drug.

In FAERS, all suspect phenotypes are coded using standard terminology of MedDRA, but

all drug names are entered in freestyle including generic names and trade names with misspell-

ings or names together with dose/purchase information. We further mapped the primary sus-

pect drug name with DrugBank, and limited our analysis to drugs that can have an exact

match with DrugBank.

In order to calculate any following statistical analysis, all drug-event pairs found between

January 2004 and September 2015 were first constructed. We then consolidated each drug-

event combination by adding their reported numbers together. A summarized matrix was

finally built, which constitutes all unique drug-event pairs and their corresponding total num-

ber of reports during the time span.

Statistical association

Using above summarized data, we constructed two-by-two contingency tables for each combi-

nation of drug-event pairs, see Table 2. To capture drug-event association strengths, we

included two pre-calculated measures of disproportionality analysis to identify drug-event

pairs that are strongly associated.

For the Relative Reporting Ratio (RRR) [35] calculation, we used:

RRR ¼
a � N

ðaþ cÞ � ðaþ bÞ

We then determined the statistical significance of the RRR by Fisher exact test.

In-house small molecules

We assembled a set of 4,400 compounds available for internally prospective testing, in which

one of Amgen’s liver safety panels—BSEP assay readouts are available. To have an initial sys-

tematical evaluation about activity prediction across these two platforms, determinations of

positives/negatives based on IC50 values from BSEP are matched towards the compound lia-

bilities assessed by the predictive model. Additionally, a narrowed down investigation about

Table 2. Two-by-two contingency table for drug-event pairs.

Reports for Event of Interest Reports for All Other Events Total

Reports for drug of interest a b a+b

Reports for all other drugs c d c+d

Total a+c b+d a+b+c+d = N

https://doi.org/10.1371/journal.pone.0231252.t002
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attrition small molecules due to liver related issues were further performed to verify the poten-

tial ability of this predictive model to support drug development pipeline. This results in 12

compounds, terminated in either pre-clinical or clinical stages.

Benchmark compounds

The literature was reviewed for compounds known to interfere with liver injury [36]. A collec-

tion of benchmarks with known liver liability but not included in training set were then manu-

ally picked, which results in 63 positive drugs that are either marketed or withdrawn, to

predict model’s sensitivity. Correspondingly, drugs with no known DILI associations, were

selected from this benchmark compound pool [36] to test model’s specificity. By excluding

compounds that already contributed in training, also excluding those that have any reports in

hepatobiliary disorder in FAERS, we finally got 222 negative compounds.

Compound descriptors

Compound descriptors are either numerical or categorical values computed from a com-

pound’s structural SMILES, using software MOE. We selected a comprehensive 818 descrip-

tors, which are the most common used descriptors in Amgen ADMET modeling. These

include but not limit to physical properties (e.g., Molecular Weight, slogP), atom counts and

bond counts (e.g., atom information content), pharmacophore features (e.g., a_acid), adja-

cency and distance matrix descriptors (e.g., diameter, petitjean) or sub-structure information.

SVM with recursive feature extraction

The positive sets are drugs that have at least 13 reports in hepatobiliary disorder, with RRR>1,

P-value<0.05, which results in 155 of them. A much larger set of negatives with total number

of reports equal to 0 is expected since lots of drugs do not have any reports in hepatobiliary dis-

order at all. However, some of the drugs are too new to be evaluated. We therefore introduced

“year of patent” as another parameter to narrow down negatives. Negatives need to have no

reports in hepatobiliary disorder and its year of patent has to be at least 10 years since now,

which means negatives are drugs that keep clean in hepatobiliary disorder for more than a

decade, which results in 164 of them.

To keep the training set perfectly balanced, we repeatedly selected a random sample of 155

compounds from the 164 negatives and used it together with the positives to re-train the

model. The random selections are done through an undersampling method. We repeat these

trials 500 times to obtain 500 different training sets, with each individual set is used with SVM

model separately. For each individual data set, we randomly select 90% of both positive and

negative compounds for training and use the remaining 10% of the compounds to evaluate the

model.

The R “e1071” package was used to perform SVM, while “OmicsMarkeR” package was used

to recursively extract features. There are 2 parameters to tune: i) cost value cost, which is a

trade-off between error penalty and margins, ii) number of features top, which indicates how

many top ranked features are selected. For one particular training set, multiple SVM models

were built for different combinations of these 2 parameters, with corresponding ROC curve,

AUC value, sensitivity, specificity, FPR, FNR, accuracy, PPV and probability (threshold to sep-

arate positive and negative) calculated. Each of the 500 training set was repeated above steps to

get all combinations of parameters tested.

For each unique combination of cost and top, a summarized performance over 500 training

set was averaged. To get one final SVM model in any future testing, the combination of cost
and top with the best averaged AUC value was selected as the final parameters, the
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corresponding averaged probability was considered as the probability to separate positives and

negatives, and the averaged performance (sensitivity, specificity, FPR, FNR, accuracy, PPV)

was calculated as the performance of our predictive model.

Even fixed cost and top, the top features selected by each training set is still not exact the

same. We first got all features that equal to top in each of the training set, ranked them by the

frequency of their selection by these 500 training sets, and only chose the top features that with

the highest frequency. These refined top features were used in our final SVM model for any

future analysis.
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