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Abstract

Feline infectious peritonitis virus (FIPV) is a coronavirus that causes sporadic fatal disease in cats
characterized by vasculitis, granulomatous inflammation and effusive pleuritis/peritonitis. Histologic
changes in lymphoid tissues include lymphoid hyperplasia, lymphoid depletion, histiocytosis, and
granuloma formation. Although viremia occurs, histologic lesions are not found uniformly through-
out lymphoid tissues. We used experimental infection of cats with a highly pathogenic FIPV isolate,
UCD8, to study histologic lesions, virus replication, and cytokine expression in multiple lymphoid
tissues during the effusive phase of disease. Viral RNA was found in 76% of central tissues (mediasti-
nal lymph node, spleen, mesenteric lymph node) examined, as compared to 27% of peripheral tissues
(popliteal lymph node, cervical lymph node, femoral bone marrow). All tissues positive for virus repli-
cation also demonstrated lymphoid depletion. Generally, affected tissues had lower levels of IL-4 and
IL-12–p40 mRNA and higher levels of IL-10 mRNA. Although no differences in IFN-� or TNF-�
mRNA were measured, TNF-� protein expression was greater in affected tissues and demonstrated
a shift in the source of TNF-� from macrophages to lymphocytes. Together, these results colocalize
FIPV replication, lymphocyte depletion in tissues, and alterations in cytokine transcription and transla-
tion. A possible role for TNF-� in the previously described FIPV-induced lymphocyte apoptosis is also
suggested.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Feline infectious peritonitis virus (FIPV) is a member of the Coronaviridae family and
causes sporadic, fatal disease in both domestic and wild cats (Barlough, 1988; De Groot
and Horzineck, 1995). The immunopathogenesis of FIPV infection is multifaceted and
correlates with the clinicopathologic features of the disease. Cats acquire the infection
either through excreted virus from other FIPV-infected cats or through mutation of an
endogenous enteric coronavirus (feline enteric coronavirus) that is ubiquitous and mini-
mally pathogenic among cats (Vennema et al., 1995, 1998). The increased pathogenicity of
FIPV, as compared to the feline enteric coronavirus (FCoV), may be related to an increased
macrophage tropism of FIPV (Pedersen, 1987; Stoddart and Scott, 1989). Infection and
replication of FIPV within macrophages allows rapid dissemination of the virus through-
out the body (Pedersen, 1987; Weiss and Scott, 1981c). Antibody against the virus is not
protective, but rather often enhances virus infection of macrophages, resulting in an ac-
celerated disease course (Addie et al., 1995; Pedersen and Boyle, 1980; Scott et al., 1995;
Vennema et al., 1990; Weiss and Scott, 1981a,b,c). In addition, antigen–antibody com-
plex deposition in organs contributes to the clinical disease (Jacobse et al., 1980). Gran-
ulomatous inflammation on serosal surfaces, vasculitis and effusive peritonitis/pleuritis
are the hallmark histopathologic features (Pedersen, 1987; Weiss and Scott, 1981c). In
contrast to the destructive effects of the inflammatory and humoral response, a strong
cell-mediated immune response is associated with immunity and recovery (Pedersen, 1987;
Weiss and Cox, 1989). Although the inflammatory cytokines IL-1 and IL-6 have been
shown to increase with FIPV infection, a comprehensive study of type 1, type 2, and in-
flammatory cytokines has not been performed to date (Goitsuka et al., 1987, 1988, 1990,
1991). We have evaluated the cytokine response in multiple lymphoid tissues of FIPV-
infected cats and suggest a role for cytokines in the immunopathogenesis of the histologic
lesions.

2. Methods

2.1. Animals, inocula, and sample collection

Six specific pathogen-free (SPF) cats, 7–9 months of age, were inoculated by intraperi-
toneal (IP) route with FIPV strain UCD1. These same six cats and an additional six
SPF cats were then inoculated IP with ascites fluid from a cat that succumbed to in-
fection with FIPV isolate UCD8 (Hickman et al., 1995; Vennema et al., 1995). Ani-
mals were humanely euthanatized if they lost 10% of body weight, developed persistent
anorexia, were unresponsive to medical therapy (e.g. fluids, antibiotics, nursing care),
or developed effusive peritonitis or pleuritis. Mesenteric lymph node biopsy was per-
formed on all cats prior to exposure to FIPV and complete necropsies were performed
after euthanasia. Lymphoid tissues were processed for histopathology and RNA extrac-
tion as described below. Blood was collected by venipuncture for complete blood counts
and routine immunophenotypic analysis using flow cytometry as previously described
(Dean et al., 1996).
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2.2. Histopathology

Formalin-fixed, parafin-embedded biopsy and necropsy tissues were stained with hemato-
xylin–eosin and then evaluated by a single pathologist in a blinded fashion. Lesions were
scored on a scale of 0–3+.

2.3. RNA extraction and FIPV RT-PCR

Fresh lymph node biopsies and necropsy tissues collected into cold tissue culture medium
were disassociated into a single cell suspension in PBS using a cell dissociator sieve (Sigma,
St. Louis, MO). The cells were pelleted (2000×g) for 10 min and then resuspended in 1 ml
Trisolv (Biotecx Laboratories Inc., Houston, TX) for total RNA extraction according to the
procedure recommended by the manufacturer. RNA was resuspended in 40–60�l DEPC
water with 0.5�l RNase inhibitor and 1�l DNase. The extracted RNA was incubated for
1 h at 37◦C to remove DNA, and then heated for 5 min at 99◦C to inactivate DNase.
RNase inhibitor was added to samples before storage at−70◦C. RNA concentration was
determined spectrophotometrically by measuring theA260 in a microcuvette (GeneQuant
II, Pharmacia, Piscataway, NJ). To determine the distribution of virus within lymphoid
tissues in vivo, viral RNA was detected by RT-PCR (Foley et al., 1997; Poland et al., 1996).
Amplification of FIPV RNA from feces was performed as previously described (Foley et al.,
1997; Poland et al., 1996).

2.4. Cytokine transcript quantification

Transcription levels of IL-2, IL-4, IL-10, IL-12–p40, TNF-�, and IFN-� were determined
by quantitative-competitive RT-PCR as previously described (Dean et al., 1998). Briefly,
a standard curve was generated by performing RT-PCR on a series of samples containing
10-fold dilutions of native RNA template with a constant amount of competitor RNA. To
quantify cytokine RNA in unknown samples, a competitive RNA template was added to
1�g RNA from unknown samples, reverse transcribed, amplified by PCR, then analyzed by
densitometry on agarose gel. For each cytokine mRNA quantification, the standard curve
samples and unknown samples were processed simultaneously to eliminate batch to batch
variability. A common cocktail for each batch of RT reactions and PCR reactions was used
to minimize sample to sample variability. All RT reactions were 20�l and PCR reactions
were 50�l. Competitor RNA, synthesized native RNA, and unknown RNA were always
standardized so that the RNA was added to the RT reaction in 5�l aliquots. Samples from
PCR reactions were then separated by electrophoresis through a 3% Metaphor agarose gel
(FMC Bioproducts, Rockland, ME). The gel was stained in ethidium bromide and an image
of the gel was captured using a FOTODYNE Eclipse enclosed darkroom (FOTODYNE
Inc., Hartland, WI). Band intensities were determined by Collage densitometry software
(FOTODYNE Inc., Hartland, WI). A standard curve was constructed by plotting the log
ratio of native to MIMIC band intensities versus the number of copies of native RNA
(Zachar et al., 1993). Cytokine mRNA copy number was determined by interpolation from
the standard curve.
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2.5. Cytokine immunohistochemistry

Parafin-embedded tissues were sectioned at 4–5�m, deparaffinized and hydrated. Slides
were protease (P-1547, Sigma, St. Louis, MO) treated for 25 min at 37◦C, washed then
blocked with normal goat and horse serum. Monoclonal antibodies against feline IL-10 or
TNF-� (prepared by G. Dean) were applied for 1 h at room temperature. These antibodies
were generated against purified feline recombinant IL-10 or TNF-� and the specificity
was demonstrated by western blot and immunocytochemistry on COS-7 cells transfected
with the feline cytokine (data not shown). Anti-FCoV spike-protein monoclonal antibody
(prepared by N. Pedersen) was used for virus detection. Isotype-matched antibodies were
used as negative controls. Slides were washed then incubated with goat anti-mouse-FITC
(Sigma, St. Louis, MO) for 30 min at room temperature. Slides were washed and then
mounted using Vectashield/DAPI (Vector Laboratories, Burlingame, CA).

2.6. Statistical analysis

All statistical analyses were carried out using the Student’st-test. AP-value<0.05 was
considered significant.

3. Results

3.1. FIPV infection and clinical course

Six specific pathogen-free cats were inoculated by intraperitoneal route with FIPV strain
UCD1. This strain was previously reported to cause fatal peritonitis in four of the four cats
(Pedersen, 1976). Although all six cats in the current study seroconverted, none demon-
strated any clinical signs of infection. These six and an additional six SPF cats were then in-
oculated IP with ascites fluid from a cat that succumbed to infection with FIPV isolate UCD8
(Hickman et al., 1995; Vennema et al., 1995). The clinical signs, survival time and serologic
data for all 12 cats are shown inTable 1. The failure of UCD1 to cause peritonitis was un-
expected; however, the inoculum used in this study was derived from tissue culture adapted
UCD1 that had been repeatedly passed, and it is possible that mutations occurring over time
in tissue culture attenuated this strain. Ten of the 12 cats inoculated with UCD8 demonstrated
severe clinical signs necessitating euthanasia, while 2 cats showed no clinical signs of dis-
ease. Cats exposed to UCD1 and succumbing to disease after inoculation with UCD8 had a
significantly shortened survival time as compared to cats that succumbed to disease but were
only exposed to UCD8 (mean of 4.6 days versus 8.6 days,P = 0.004, Student’st-test). This
is consistent with several previous reports demonstrating antibody-dependent enhancement
of disease progression in seropositive cats subsequently exposed to FIPV (Pedersen and
Boyle, 1980; Scott, 1987; Scott et al., 1995; Vennema et al., 1990; Weiss and Scott, 1981a,b).

3.2. Tissue distribution of FIPV RNA and histologic lesions

Despite overwhelming systemic disease, virus was not detected uniformly through-
out lymphoid tissues (Table 2). Both central lymphoid tissues (mesenteric lymph node,
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Table 1
Animals, inocula, and clinical outcome

Cat no. Inoculum DPIa Abb Clinical signs

95143 UCD1 NA Yes None
95304 UCD1 NA Yes None
95064 UCD1 NA Yes None
95139 UCD1 NA Yes None
95137 UCD1 NA Yes None
95141 UCD1 NA Yes None
95143 UCD1/8 3 Yes Fever, lethargy, anorexia, dehydration, moribund
95304 UCD1/8 3 Yes Fever, lethargy, anorexia, dehydration, moribund
95064 UCD1/8 5 Yes Fever, lethargy, anorexia, dehydration, moribund
95139 UCD1/8 5 Yes Fever, lethargy, anorexia, dehydration, moribund
95137 UCD1/8 7 Yes Fever, lethargy, anorexia, ascites
95141 UCD1/8 8 Yes None
96015 UCD8 8 Yes Fever, lethargy, anorexia, dehydration
96016 UCD8 9 Yes Fever, ocular/nasal discharge, dyspnea,

dehydration, lethargy, anorexia, ascites
96051 UCD8 9 Yes Fever, lethargy, anorexia, ascites
95550 UCD8 13 Yes Fever, lethargy, anorexia, dehydration
95553 UCD8 15 Yes None
96014 UCD8 15 Yes Fever, lethargy, anorexia, ascites

aDPI: days post-inoculation animal was euthanatized.
bAb: feline coronavirus seroconversion.

mediastinal lymph node, spleen and thymus) and peripheral lymphoid tissues (popliteal
lymph node, cervical lymph node, and femoral bone marrow) were examined. Virus was
found in 75% of central tissues (36 of 48 tissues examined) compared to 27% of peripheral
tissues (9 of 33 tissues examined) (Table 2). Shedding of virus in feces was demonstrated
in 3 of 12 cats.

Histological lesions colocalized with virus. Lymphoid depletion, lymphoid necrosis/
apoptosis, and pyogranulomatous inflammation were more prevalent in central tissues while
lymphoid hyperplasia was more likely to occur in peripheral lymphoid tissues (Table 2). In

Table 2
Summary of histologic lesion and FIPV RT-PCR in multiple lymphoid tissues

Tissue Lymphoid
hyperplasia

Lymphoid
depletion

Histiocytosis Vascular
necrosis

Lymphoid
necrosis

Granulomas RT-PCR
positive

Mesenteric LNa 5/12 7/12 11/12 4/12 7/12 4/12 9/12
Mediastinal LN 0/12 8/12 12/12 2/12 4/12 6/12 10/12
Spleen 4/12 0/12 4/12 1/12 3/12 6/12 6/12
Popliteal LN 7/12 2/12 10/12 2/12 2/12 1/12 3/9
Cervical LN 8/12 2/12 6/12 1/12 1/12 2/12 5/12
Thymus 0/12 0/12 0/12 0/12 6/12 0/12 8/12
Bone marrow N/A N/A N/A N/A N/A N/A 1/12
Feces N/A N/A N/A N/A N/A N/A 3/12

aLymph node.
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all tissue where virus was detected by RT-PCR, lymphoid depletion or necrosis/apoptosis
was observed. No lymphoid depletion or necrosis/apoptosis was evident in tissue nega-
tive for viral RNA. In these studies, we did not determine whether lymphocyte destruction
was due to necrosis versus apoptosis. Both processes have been previously described in
FIPV-infected cats (Haagmans et al., 1996). Recent studies have shown apoptosis is a
common feature in the pathogenesis of infection for several Coronaviridae members (An
et al., 1999; Belyavsky et al., 1998; Liu et al., 2001; Sirinarumitr et al., 1998). FIPV,
in particular, induces lymphocyte apoptosis predominantly in the CD3+ T-cell popula-
tion (Haagmans et al., 1996). Depletion of circulating lymphocytes is also a common
feature of FIPV infection and was observed in this study as well (Fig. 1). However, the
lymphopenia was not due to depletion of a specific phenotype as CD4+ T-
cells, CD8+ T-cells, and B-lymphocytes were markedly reduced in all cats with clinical
disease (data not shown).

Fig. 1. FIPV-infected cats develop a marked lymphopenia. White blood cell counts (WBC), neutrophil counts
(Neuts) and lymphocyte counts (Lymphs) are shown at pre-infection (pre) and terminal (term) time points. The
box represents the median 75th percentile (horizontal line is median) and the ‘whiskers’ show the upper and lower
12.5th percentile.∗P = 0.003, significantly different from WBC-pre;∗∗P < 0.0001, significantly different from
Lymphs-pre.
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3.3. Cytokine expression

To investigate the cytokine response in lymphoid tissues, transcription levels of IL-2,
IL-4, IL-10, IL-12–p40, TNF-�, and IFN-� were determined by quantitative-competitive,
reverse transcriptase PCR. Different cytokine profiles were correlated with the presence or
absence of virus. Virus positive mesenteric lymph node, mediastinal lymph node and spleen
had significantly greater expression of IL-10 and lesser expression of IL-4 (P = 0.034 and
<0.0003, respectively) as compared to virus negative tissues (Fig. 2). Interleukin-12 was
lower in infected central lymphoid tissues but only statistically significantly lower in mesen-
teric lymph node (P = 0.014). No significant differences were observed in transcription
of IFN-� (P = 0.19) or TNF-� (P = 0.27). Virus positive peripheral lymph nodes (cer-
vical and popliteal) and thymus had less dramatic cytokine alterations (data not shown).
Thus, viral replication, histologic lesions, and changes in cytokine transcriptional levels
were colocalized in lymphoid tissues. In addition, an increased IL-10:IL-12–p40 ratio was
observed suggesting a bias towards a type 2 cytokine response (Fig. 3).

Since IL-10 transcripts were markedly elevated in infected tissues and TNF-� reg-
ulation also occurs at the post-transcriptional level, we sought to further localize

Fig. 2. FIPV associated changes in cytokine mRNA expression. Cytokine transcription levels in FIPV positive
(N = 28) and negative (N = 27) central lymphoid tissues (mesenteric lymph node, mediastinal lymph node,
spleen) were quantified by competitive RT-PCR. Results are shown as the number of cytokine mRNA molecules/�g
of total RNA (Y-axis). Bars represent standard error of the mean.
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Fig. 3. IL-10:IL-12 ratio in FIPV positive and negative tissues. IL-10:IL-12 ratios were markedly higher in most
FIPV positive tissues.

production of these cytokines along with viral antigen in mediastinal lymph node. Se-
rial sections of paraffin-embedded mediastinal lymph node taken at necropsy on each
cat were stained with monoclonal antibodies against FCoV spike-protein, feline IL-10,
and feline TNF-�. FCoV spike-protein was found in scattered cells that were morpho-
logically consistent with macrophages (Fig. 4). FCoV antigen positive cells were ob-
served in areas of histiocytosis, predominantly in the subcapsular and medullary sinuses
of lymph nodes, and within granulomas. In some areas, diffuse, punctate, extracellular
staining was observed that suggested free viral antigen within the tissues. No additional
assays were performed to confirm the presence of extracellular virus or antigen. No virus
antigen positive cells were observed in mesenteric lymph node biopsies taken prior to
infection.

Despite the dramatic upregulation of IL-10 mRNA, IL-10 production was limited to
few cells scattered throughout the lymphoid tissues (Fig. 4B). IL-10 positive cells were
morphologically consistent with macrophages (Fig. 4B). TNF-� expression patterns varied
depending on the histologic appearance and virus status of the mediastinal lymph node tis-
sues. In virus negative tissues or tissues without lymphoid depletion and necrosis/apoptosis,
TNF-� expression was limited to scattered macrophages and lymphocytes (Fig. 4C). How-
ever, those tissues positive for FIPV antigen with lymphoid depletion and necrosis/apoptosis
showed a shift in TNF-� expression. In such tissues, lymphocytes were the predominant
source of TNF-� and demonstrated high levels of TNF-� production (Fig. 4E and H).
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Fig. 4. Localization of FIPV antigen, IL-10, and TNF-� in mediastinal lymph nodes. (A) FIPV spike-protein was
observed within macrophages scattered throughout the lymph node (magnification, 100×). (B) IL-10 positive
macrophages in a FIPV positive node (magnification, 200×). (C) TNF-� expressing macrophages (wide arrow)
and lymphocytes (narrow arrow) in a FIPV negative node. (D) A cellular follicle stained with hematoxylin–eosin
in a FIPV positive node with areas of necrosis/apoptosis is shown in (E) to have high levels of TNF-� production
from lymphocytes (magnification, 100×). (F) A lymphocyte-depleted follicle stained with hematoxylin–eosin has
many scattered FIPV spike antigen positive cells (G) and TNF-� expressing lymphocytes (H) (magnification,
100×).
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4. Discussion

Taken together these data colocalize FIPV antigen (and replication), TNF-� expression,
and lymphocyte depletion. We postulate that excessive TNF-� production by activated
T-cells may induce lymphoid depletion via apoptosis. Studies of FIPV and other Coron-
aviridae support apoptosis as a key pathogenic mechanism. Furthermore, Haagmans et al
have shown ascites from FIPV-infected cats induces apoptosis in activated lymphocytes
from uninfected cats, as does TNF-� (Haagmans et al., 1996). In those studies, attempts
to inhibit TNF-� in the ascites and prevent apoptosis were unsuccessful, however, only
anti-human TNF-� antibodies were employed. It is possible that the anti-human antibodies
did not inhibit the feline TNF-� or that the mechanism of apoptosis is different depending
on whether the lymphocytes are from FIPV-infected versus non-infected cats.

The role of TNF-� in lymphocyte apoptosis is well documented. Naı̈ve T-cells resist
apoptosis but become highly susceptible when cell cycling is initiated in response to antigen
(Boehme and Lenardo, 1993; Lenardo, 1991; Russell et al., 1991). Lymphocyte activation
results in upregulation of the death domain of the TNF-� receptor (TNFR) superfamily
and their ligands. This is an important mechanism for downregulating the immune response
normally. In this situation, TNF-� is mainly produced by activated T-cells and macrophages
(Chicheportiche et al., 1997; Marsters et al., 1996; Tartaglia and Goeddel, 1992). It is
possible that the apoptosis observed in FIPV-infected lymphoid tissues is due to excessive
TNF-� induced apoptosis of FIPV antigen-stimulated lymphocytes. Further studies are
required to conclusively demonstrate this as an important mechanism for FIPV-associated
lymphocyte destruction in vivo.

Two hypotheses have been proposed to explain why most cats fail to generate a protective
cell-mediated response against FIPV. The first hypothesis suggests apoptotic destruction of
activated T-cells could undermine the cell-mediated response. It is clear that lymphocyte
apoptosis is an important feature of FIPV disease and the consequent lymphopenia leads
to immunosuppression. Similar lymphocyte apoptosis and immunosuppression has been
described in sepsis and acute measles infection (Ayala et al., 1995; Bone, 1996; Hotchkiss
et al., 1997; Okada et al., 2000; Wang et al., 1994). Our data supports a scenario of lymphoid
destruction in the presence of FIPV antigen that may be mediated by lymphocyte-produced
TNF-�. The second hypothesis suggests that cytokine expression could be biased toward a
type 2 profile. The humoral response observed in FIPV-infected cats and high IL-10:IL-12
ratios measured in infected central lymphoid tissues supports such a bias. However, low
IL-4 mRNA levels in infected tissues are more consistent with a mixed cytokine profile.
Therapeutic approaches to limit lymphocyte destruction could allow a protective type1
cytokine profile and cell-mediated response to occur and perhaps this could be achieved by
blocking TNF-� activity.
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