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Abstract: Probiotic supplementation reduces the risk of necrotizing enterocolitis (NEC) and late-onset
sepsis (LOS) in preterm infants, but it remains to be determined whether this reduction translates into
a reduction of other complications. We conducted a systematic review and meta-analysis to evaluate
the possible role of probiotics in altering the risk of bronchopulmonary dysplasia (BPD). Fifteen
randomized controlled trials (4782 infants; probiotics: 2406) were included. None of the included
studies assessed BPD as the primary outcome. Meta-analysis confirmed a significant reduction of
NEC (risk ratio (RR) 0.52, 95% confidence interval (CI) 0.33 to 0.81, p = 0.004; random effects model),
and an almost significant reduction of LOS (RR 0.82, 95% CI 0.65 to 1.03, p = 0.084). In contrast,
meta-analysis could not demonstrate a significant effect of probiotics on BPD, defined either as
oxygen dependency at 28 days of life (RR 1.01, 95% CI 0.91 to 1.11, p = 0.900, 6 studies) or at 36 weeks
of postmenstrual age (RR 1.07, 95% CI 0.96 to 1.20, p = 0.203, 12 studies). Meta-regression did not
show any significant association between the RR for NEC or LOS and the RR for BPD. In conclusion,
our results suggest that NEC and LOS prevention by probiotics does not affect the risk of developing
BPD in preterm infants.
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1. Introduction

Bronchopulmonary dysplasia (BPD), a chronic lung disease of prematurity, is considered one
of the major complications of premature birth [1–4]. The incidence of BPD is inversely proportional
to gestational age, with rates reaching up to 60–90% in extremely preterm infants (22–25 weeks
gestation). Infants suffering from BPD are at increased risk of death and long-term pulmonary and
neurodevelopmental morbidities [5–7].

The pathogenesis of BPD is initiated by the arrest in alveolar and lung vascular development,
due to premature birth, and sustained by inflammatory events that play a paramount role in the
progression of BPD [3,4,8,9]. The initiation of the inflammatory response can already occur in utero,
in the setting of chorioamnionitis [3,4,10,11]. Nevertheless, postnatal stimuli, such as the ex-utero
higher oxygen partial pressures, the need for oxygen administration or mechanical ventilation, and
the occurrence of postnatal infections (including late onset sepsis (LOS) and necrotizing enterocolitis
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(NEC)), perpetuate inflammation and lead to the establishment of BPD [12–14]. A dysregulation of the
immune system, toward a sustained status of inflammation which is characteristic of very preterm
infants, completes the multifactorial pathophysiological picture [15].

Several treatments, most of which focused on anti-inflammatory or homeostasis-restoring
properties, have been attempted in order to prevent or treat BPD [16]. However, meta-analyses
could confirm a reduction of BPD only for vitamin A and dexamethasone [16,17]. Moreover, vitamin A
showed only a modest effect [17], while the use of dexamethasone is limited in preterm infants by its
well-known long- and short-term side effects [18]. Adequate timing, dose, and formulation of steroid
therapy is still under investigation in preterm infants at risk for BPD. Lately, regenerative medicine has
received a great deal of attention as a promising therapeutic option for complications of prematurity,
including BPD [19,20]. However, the knowledge of stem cell function is still incomplete, and further
studies are needed to elucidate the impact of several manufacturing aspects that may determine the
success or failure of this therapy [19,20]. In summary, despite the continuous advances in neonatal
care, BPD remains a significant burden for the premature population, lacking a safe, effective and
easily available treatment.

Probiotics are defined as live micro-organisms which, when administered in adequate amounts,
confer a health benefit on the host [21,22]. Probiotic supplementation in preterm infants is one of
the most studied interventions in neonatal medicine [23–30]. Many randomized controlled trials
(RCTs) involving the use of probiotics have been performed in the last years. Several meta-analyses
combined these RCTs and demonstrated that probiotic supplementation reduces mortality, NEC, and
LOS, as well as the time to achieve full enteral feeding in preterm infants [23–31]. Although until now
no study has been performed to analyze the effect of probiotics on BPD as primary outcome, a number
of RCTs included BPD as a secondary outcome. There are several hypothetical mechanisms by which
probiotics may exert a protective effect against BPD: (1) by reducing postnatal inflammatory processes
such as NEC and LOS; (2) by modulating the immune function [32,33]; (3) by improving the nutritional
status and growth of the infants [30,31,34]; and (4) through the antioxidant properties of probiotics [35].
Therefore, in the present systematic review we aimed to collect and analyze the current evidence on
the effects of probiotic supplementation on the risk of developing BPD in preterm infants.

2. Materials and Methods

A protocol was developed prospectively that detailed the specific objectives, criteria for study
selection, the approach to assessing study quality, clinical outcomes, and statistical methodology.
The study is reported according to the PRISMA checklist [36].

2.1. Data Sources and Search Strategies

A comprehensive literature search was undertaken using PubMed, EMBASE and CENTRAL
(the Cochrane Central Register of Controlled Trials, The Cochrane Library) from their inception to 1 July
2017. Combinations of the following terms (including MeSH terms) were used to search for relevant
publications: (probiotic(s) OR lactobacillus OR saccharomyces OR bifidobacterium OR streptococcus)
AND (“preterm infant” OR “premature infant” OR “extremely low birth weight infant” OR “very low
birth weight infant”). Language was not restricted. Additional strategies to identify studies included
manual review of reference lists of key articles that fulfilled our eligibility criteria, use of the “related
articles” feature in PubMed, use of the “cited by” tool in Web of Science and Google Scholar, and manual
review of reference lists of meta-analyses on probiotics in preterm infants [23–25,27,28,30,34,37–44].
The search method used to identify all relevant articles was discussed and developed by two authors
(EV-M and EV) and the final search string was approved by all authors.

2.2. Eligibility Criteria and Study Selection

The initial search was performed by two reviewers (EV-M and EV), who eliminated clearly
irrelevant articles based on the title and abstract as defined by the pre-set selection criteria. The final
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selection of articles was made by mutual consideration of both authors. Studies were included if they
were RCTs involving the use of probiotics in preterm infants (gestational age, GA < 37 weeks) and
reported results on BPD. BPD was defined as dependence on supplementary oxygen either at 28 days
of life (BPD28) or at a postmenstrual age (PMA) of 36 weeks (BPD36) [2]. However, the use of another
BPD definition was not an exclusion criterion.

Studies were reviewed to ensure that study populations did not overlap by checking subject
sources and studying time-frame. Where two or more studies reported on the same population, the
most recent study was preferentially used (provided it reported data on BPD) to avoid duplicate data.

2.3. Data Extraction and Assessment of Risk of Bias

Two groups of investigators (EV-M/EV and MP/GC) extracted the data independently by using a
data collection form designed for this review. Data extracted included: gestational age (GA) and birth
weight (BW) of participants, patient inclusion criteria, study design (age at the first day of intervention,
duration of intervention, dosage, and type of probiotic), and outcomes of interest (BPD, LOS, NEC,
and mortality).

Two reviewers (EV-M and EV) independently assessed risk of bias in each trial by using the
Cochrane “Risk of Bias Assessment Tool” [45]. For each domain (allocation sequence, allocation
concealment, blinding of participants and outcome assessors, incomplete outcome data, selective
outcome reporting, and other potential sources of bias) the risk of bias was assessed as low, high,
or unclear. Potential discrepancies during the data extraction process and assessment of risk of bias
were resolved by discussion and consensus among all reviewers.

2.4. Statistical Analysis

Studies were combined and analyzed using comprehensive meta-analysis V3.0 software (Biostat
Inc., Englewood, NJ, USA). We used a random-effects model to account for anticipated heterogeneity,
resulting from the differences in methodology between studies. However, analysis using a fixed-effect
model was also carried out to ensure that the model used for the meta-analysis would not affect the
results. Effect size was expressed as Mantel–Haenszel risk ratio (RR) and 95% confidence interval (CI).
Statistical heterogeneity was assessed with the Cochran’s Q statistic and by the I2 statistic, which is
derived from Q and describes the proportion of total variation that is due to heterogeneity beyond
chance [45]. An I2 value of 0% indicates no observed between-study heterogeneity, and large values
show increasing between-study heterogeneity. The risk of publication bias was assessed by visual
inspection of the funnel plot and using an Egger test. To identify any study that may have exerted a
disproportionate influence on the summary effect, we calculated the summary effect excluding studies
one at a time. To explore differences between studies that might be expected to influence the effect size,
we performed subgroup sensitivity analysis and univariate random-effects meta-regression (method
of moments) [46,47]. A potential pitfall with meta-regression analysis is that with few trials and many
possible covariates, false positive findings and data dredging can happen [47]. We chose to prespecify
NEC, LOS, and mortality as covariates to analyze with meta-regression to protect against this issue.
A probability value of less than 0.05 (0.10 for heterogeneity) was considered statistically significant.

3. Results

There was no substantial disagreement between reviewers on articles for inclusion, data
extraction, and risk of bias assessment. Based on the titles and abstracts of 1456 citations, we
identified 63 potentially relevant studies, of which 15 met the inclusion criteria [48–62] (Figure 1).
The main characteristics of the studies are shown in Table 1. The 15 studies included 4782 infants
of which 2406 infants received probiotics. Twelve studies [48–51,53–58,60,62] included very preterm
(GA < 32 weeks) and/or very low BW (VLBW) infants (<1500 g). One study [48] included extremely
low BW preterm infants (<1000 g). Two studies included larger preterm infants; one [52] included
infants with GA < 34 weeks and the other [59] included infants with GA < 37 weeks. The included
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studies randomized infants to different preparations, times of initiation, and duration of therapy
(Table 1). Details of the risk of bias analysis are depicted in Appendix A, Table A1. None of the
included studies reported serious adverse events potentially associated with the use of probiotics.
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Table 1. Characteristics of the included studies.

Study Participants
Sample Size, GA (Weeks), BW (g)

Intervention Duration of Intervention Primary Outcome BPD Definition
Probiotics Control

Akar 2017 [49]
GA ≤ 32 weeks or

BW ≤ 1500 g

n = 124 n = 125 Lactobacillus reuteri vs.
no probiotics

From first feed until discharge Neurodevelopmental
outcome

BPD36GA: 28.9 (2.1) GA: 28.6 (2.5)
BW: 1138 (257) BW: 1142 (267)

Al Hosni 2012 [48] BW 501–1000 g
n = 50 n = 51 Lactobacillus rhamnosus +

Bifidobacterium infantis vs.
no probiotics

Once daily from the time of
initiation of enteral feeds, until

discharge or 34 weeks PMA

% infants <10th centile at 34
weeks PMA

BPD36GA: 25.7 (1.4) GA: 25.7 (1.4)
BW: 778 (138) BW: 779 (126)

Costeloe 2016 [62] GA < 31 weeks

n = 650 n = 660
Bifidobacterium breve
BBG-001 vs. placebo

Commenced within 48 hours of
birth, until 36 weeks PMA

or discharge
NEC ≥ stage 2, LOS, death BPD36, Severe

BPD
GA (median): 28.0

(IQR: 26.1–29.4)
GA (median): 28.0

(IQR: 26.1–29.6)
BW: 1039 (312) BW: 1043 (317)

Demirel 2013 [50]
GA ≤ 32 weeks and

BW ≤ 1500 g

n = 135 n = 136 Saccharomyces boulardii vs.
no probiotics

Once daily from the time of
initiation of enteral feeds, until

discharge
NEC ≥ stage 2 or death BPD28GA: 29.4 (2.3) GA: 29.2 (2.5)

BW: 1164 (261) BW: 1131 (284)

Dilli 2015 [51]
GA < 32 weeks and

BW < 1500 g

n = 100 n = 100 Bifidobacterium lactis vs.
placebo

From day 8 of life, once daily
until discharge or a maximum of

8 weeks
NEC ≥ stage 2 BPD28, BPD36GA: 28.8 (1.9) GA: 28.2 (2.2)

BW: 1236 (212) BW: 1147 (271)

Fujii 2006 [52] GA < 34 weeks

n = 11 n = 8
B. breve M-16V vs. placebo From several hours after birth

until discharge

Serum cytokine levels and
expression of Transforming
growth factor beta signaling

Smad molecules

BPD28
GA: 31.3 (3.2) GA: 31.2 (2.0)

BW: 1378 (365) BW: 1496 (245)

Jacobs 2013 [53]
GA < 32 weeks and

BW < 1500 g

n = 548 n = 551 B. infantis + Saccharomyces
thermophilus + B. lactis

vs. placebo

From enteral feed ≥ 6 mL/day
until discharge or term

corrected age.
LOS BPD28, BPD36GA: 27.9 (2.0) GA: 27.8 (2.0)

BW: 1063 (259) BW: 1048 (260)

Lin 2008 [54]
GA <34 weeks and

BW < 1500 g

n = 217 n = 217 Lactobacillus acidophilus +
Bifidobacterium bifidum vs.

no probiotics
From first feeding, for 6 weeks. Death or NEC ≥ Stage 2 BPD36BW: 1029 (246) BW: 1077 (214)

Manzoni 2009 [55] BW < 1500 g
n = 151 n = 168 L. rhamnosus GG +

lactoferrin vs. placebo
From day 3 of life, for 6 weeks or

until discharge LOS BPD36GA: 29.8 (2.8) GA: 29.5 (3.2)
BW: 1138 (253) BW: 1109 (269)

Saengtawesin 2014 [56] GA ≤ 34 weeks and
BW ≤ 1500 g

n = 31 n = 29 L. acidophilus + B. bifidum vs.
no probiotics

From first enteral feed until 6
weeks of age or discharge

NEC ≥ Stage 2 BPD28GA: 31.0 (1.8) GA: 30.6 (1.8)
BW: 1250 (179) BW: 1208 (199)
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Table 1. Cont.

Study Participants
Sample Size, GA (Weeks), BW (g)

Intervention Duration of Intervention Primary Outcome BPD Definition
Probiotics Control

Sari 2012 [57]
GA <33 or BW <

1500 g

n = 86 n = 88 Lactobacillus sporogenes vs.
no probiotics

From first enteral feed
until discharge

Growth and
neurodevelopment at

18–22 months
BPD36GA: 29.7 (2.5) GA: 29.8 (2.3)

BW: 1241 (264) BW: 1278 (273)

Serce 2013 [58]
GA ≤ 32 weeks and

BW ≤ 1500 g

n = 104 n = 104
S. boulardii vs. placebo From first enteral feed

until discharge
NEC ≥ Stage 2 or death

or LOS
BPD36GA: 28.8 (2.2) GA: 28.7 (2.1)

BW: 1126 (232) BW: 1162 (216)

Stratiki 2007 [59] GA 27–37 weeks

n = 41 n = 36

B. lactis vs. no probiotics From day 2 to discharge Intestinal permeability by
the sugar absorption test Undefined

GA (median): 31
(range: 27–37)

GA (median): 30.5
(range: 26–37)

BW (median): 1500
(range: 900–1780)

BW (median): 1500
(range: 700–1900)

Totsu 2014 [60] BW < 1500 g
n = 153 n = 130

B. bifidum vs. placebo Commenced within 48 h of birth
and continued until discharge

Postnatal day when enteral
feed exceeding 100

mL/kg/day
BPD28, BPD36GA: 28.6 (2.9) GA: 28.5 (3.3)

BW: 1016 (289) BW: 998 (281)

Underwood 2009
(CUL) [61] 1

GA < 35 weeks and
BW 750–2000 g

n = 30 n = 29 L. rhamnosus GG + inulin
vs. placebo

From first feed until 28 days
or discharge

Weight gain BPD36GA: 29.5 (2.6) GA: 29.3 (2.6)
BW: 1394 (356) BW: 1393 (363)

Underwood 2009
(PBP) [61] 1

GA < 35 weeks and
BW 750–2000 g

n = 31 n = 29 L. acidophilus +
Bifidobacterium longum +
B. bifidum + B. infantis +

inulin vs. placebo

From first feed until 28 days or
discharge

Weight gain BPD36
GA: 30.2 (2.4) GA: 29.3 (2.6)

BW: 1461 (372) BW: 1393 (363)

1 Culturelle® (CUL) and ProBioPlus DDS® (PBP) were the names assigned by the authors to the probiotic preparations. BPD: bronchopulmonary dysplasia; BPD28: bronchopulmonary
dysplasia, defined as oxygen dependence at 28 days of life; BPD36: bronchopulmonary dysplasia, defined as oxygen dependence at 36 weeks post-menstrual age; Severe BPD: defined as
any baby at 36 weeks PMA still receiving mechanical ventilator support or in at least 30% oxygen or more than 0.1 L/min of low flow oxygen. BW: birth weight; GA: gestational age;
IQR: interquartile range; NEC: necrotizing enterocolitis; PMA: postmenstrual age; LOS: late-onset sepsis. Data for GA and BW given in mean (standard deviation), unless noted otherwise.
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BPD was not the primary outcome in any of the included studies. Six studies [53,55,58,60–62]
clearly defined BPD as BPD28 and/or BPD36, whereas nine studies did not [48–52,54,56,57,59].
A clarification on BPD definition was kindly provided by the authors of eight studies [48–52,54,56,57].
After these clarifications, data on BPD28 were available from six studies [50–53,56,60]. We decided to
pool the study of Stratiki et al. [59] that did not specify a BPD definition, with studies reporting BPD28.
Neither the individual studies nor the meta-analysis could detect a significant effect of probiotic
supplementation on BPD28 (RR 1.01, 95% CI 0.91 to 1.11, p = 0.900, Figure 2). The use of a fixed effect
model instead of a random effects model did not significantly affect the results of the meta-analysis (RR
1.00, 95% CI 0.91 to 1.10, p = 0.999). In sensitivity analyses, excluding one study at a time, the summary
RR ranged from 0.99 (95% CI 0.89–1.10, p = 0.900), when the study of Totsu et al. [60] was excluded,
to 1.04 (95% CI 0.86–1.25, p = 0.703), when the study of Jacobs et al. [53] was excluded (Appendix A,
Table A2). The study of Fujii et al. [52] included larger infants than the other five studies (Table 1).
However, when this study was excluded, overall results were not substantially affected (RR 1.01, 95%
CI 0.91–1.11, p = 0.983). Exclusion of the study by Stratiki et al. [59], in which BPD was not clearly
defined, did not significantly affect results (RR 1.01 95% CI 0.91–1.11, p = 0.829). Further sensitivity
analysis and assessment of publication bias were not performed for BPD28 due to the low number
of studies.
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Figure 2. Random effects meta-analysis: Probiotic supplementation and risk of BPD28
(bronchopulmonary dysplasia, defined as oxygen dependence at 28 days of life). MH: Mantel–Haenszel;
CI: confidence interval.

Data on BPD36 were available from 11 studies [48,49,51,53–55,57,58,60–62]. The study of
Underwood et al. [61] randomized infants into three different groups: a placebo group and two
treatment groups based on different probiotic preparations (Table 1). For the purposes of this analysis,
the two treatment groups of the trial of Underwood et al. [61] were considered as two separate studies.
The study of Lin et al. [54], showed a significant increase of the BPD36 risk in the infants receiving
probiotics (RR 1.38, 95% CI 1.01 to 1.88, p = 0.043). In contrast, neither the other individual studies nor
the meta-analysis could detect a significant effect of probiotic supplementation on BPD36 (RR 1.07,
95% CI 0.96 to 1.20, p = 0.203, Figure 3). Although some degree of asymmetry was observed by visual
inspection of the funnel plot, Egger's test could not show any evidence of publication bias (Figure 4).
The use of a fixed effect model instead of a random effects model did not significantly affect the results
of the meta-analysis (RR 1.08, 95% CI 0.98 to 1.18, p = 0.123). In sensitivity analyses, excluding one
study at a time, the summary RR ranged from 1.04 (95% CI 0.93–1.17, p = 0.488), when the study of
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Lin et al. [54] was excluded, to 1.09 (95% CI 0.97–1.23, p = 0.138), when the study of Al Hosni et al. [48]
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One study [62] also included, besides BPD36, the category severe BPD (defined as any baby
at 36 weeks PMA still receiving mechanical ventilator support or in at least 30% oxygen or more
than 0.1 L/min of low flow oxygen) (Table 2). They report that the probiotics group did not have a
significantly different risk of severe BPD compared to the control group (RR 1.21, 95% CI 0.90 to 1.62,
p = 0.200).
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Table 2. Subgroup analysis of probiotics and risk of BPD.

Subgroup k BPD Definition Sample Size MH RR 95% CI p

Studies where Lactobacillus was part of
the supplementation 6 BPD36 1335 1.01 0.80–1.29 0.904

Studies where Bifidobacterium was part of
the supplementation

5 BPD28 1601 1.00 0.90–1.11 0.999
4 BPD36 2781 1.10 0.90–1.33 0.346

Single-strain supplementation 4 BPD28 773 0.97 0.79–1.18 0.763
7 BPD36 2372 1.08 0.88–1.32 0.480

Multiple-strain supplementation 2 BPD28 1159 1.01 0.90–1.13 0.829
5 BPD36 2012 1.06 0.87–1.29 0.574

Studies with infants mean BW < 250 g 5 BPD28 1913 1.01 0.91–1.11 0.893
9 BPD36 4091 1.08 0.96–1.22 0.195

Studies with low risk of bias on random
sequence generation and
allocation concealment

9 BPD36 3752 1.08 0.97–1.19 0.155

Studies with low risk of bias on
incomplete outcome data 10 BPD36 3927 1.09 0.96–1.23 0.188

Studies with low risk of bias on
selective reporting 9 BPD36 3493 1.06 0.94–1.18 0.344

BPD: bronchopulmonary dysplasia; BPD28: bronchopulmonary dysplasia, defined as oxygen dependence at 28 days
of life; BPD36: bronchopulmonary dysplasia, defined as oxygen dependence at 36 weeks post-menstrual age;
CI: confidence interval; k: number of studies included; MH RR: Mantel–Haenszel risk ratio.

For the outcome BPD36, we conducted additional sensitivity analysis by excluding studies that
had uncertain/high risk of bias in the different domains. In addition, we carried out subgroup analyses
of studies where Bifidobacterium was part of the supplementation, studies where Lactobacillus was
part of the supplementation, studies where multiple-strain supplements were used, studies where
single-strain supplements were used, and studies where infants had a mean BW < 1250 g. No subgroup
analysis could demonstrate a significant effect of probiotics on BPD36 (Table 2).

All the included studies reported data on NEC (Table 3) and, when pooled, we observed that
probiotics significantly reduced the risk of developing NEC (RR 0.52, 95% CI 0.33–0.81, p = 0.004,
Table 4). This significant reduction of NEC was also observed when we pooled the studies that reported
BPD28 (RR 0.40, 95% CI 0.18–0.88, p = 0.022), and when we pooled the studies that reported BPD36
(RR 0.48, 95% CI 0.29–0.81, p = 0.006, Table 4). We performed meta-regression analyses (methods of
moments) to investigate the possible correlation between the effect size for NEC and the effect size
for BPD. As shown in Figure 5, meta-regression could not detect a statistically significant correlation
between the reduction in NEC produced by the probiotics and the effect size for BPD36.

All the included studies reported data on LOS (Table 3), and meta-analysis demonstrated a
close to significant reduction of LOS in the probiotics group (RR 0.82, 95% CI 0.65–1.03, p = 0.084,
Table 4). Similarly, the meta-analysis of studies that reported BPD28 found a close to significant effect of
probiotics on LOS (RR 0.79, 95% CI 0.63–1.00, p = 0.054), and the meta-analysis of studies that reported
BPD36 found a close to significant reduction in LOS (RR 0.80, 95% CI 0.62–1.04, p = 0.090, Table 4).
We performed meta-regression analyses (methods of moments) to investigate the possible correlation
between the effect size for LOS and the effect size for BPD36. As shown in Figure 6, meta-regression
could not detect a statistically significant correlation between the reduction in LOS produced by the
probiotics and the effect size for BPD36.
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Table 3. NEC, LOS and mortality in the included studies.

Study NEC (Affected/Total)
NEC Definition

LOS (Affected/Total)
LOS Definition

Mortality (Affected/Total) Mortality Definition
Probiotics Control Probiotics Control Probiotics Control

Akar 2017 [49] 1/124 6/125 NEC stage ≥ 2 8/124 19/125 Culture-proven sepsis 14/200 16/200 Death before 18–24 month follow-up

Al Hosni 2012 [48] 2/50 2/51 NEC stage ≥ 2 13/50 16/51 Culture-proven sepsis 3/50 4/51 Death before 34 weeks PMA

Costeloe 2016 [62] 61/650 66/660 NEC stage ≥ 2 73/650 77/660 Culture-proven sepsis > 72 h 54/650 56/660 Death during primary hospitalization

Demirel 2013 [50] 6/135 7/136 NEC stage ≥ 2 20/135 21/136 Culture-proven sepsis 5/135 5/136 Death after 7 days of life

Dilli 2015 [51] 2/100 18/100 NEC stage ≥ 2 8/100 13/100 Culture-proven sepsis > 72 h 3/100 12/100 Not defined

Fujii 2006 [52] 0/11 0/8 Not defined 1/11 1/8 Not defined 0/11 0/8 Death during primary hospitalization

Jacobs 2013 [53] 11/548 24/551 NEC stage ≥ 2 72/548 89/551 Culture-proven sepsis > 48 h 30/548 31/551 Death during primary hospitalization

Lin 2008 [54] 4/217 14/217 NEC stage ≥ 2 40/217 24/217 Culture-proven > 72h 2/217 9/217 Death during intervention (6 weeks)

Manzoni 2009 [55] 0/151 10/168 NEC stage ≥ 2 7/151 29/168 Culture-proven sepsis > 72 h 6/153 12/168 Death during primary hospitalization

Saengtawesin 2014 [56] 1/31 1/29 NEC stage ≥ 2 2/31 1/29 Not defined 0/31 0/29 Death during primary hospitalization

Sari 2012 [57] 3/86 7/88 NEC stage ≥ 2 24/86 19/88 Not defined 5/110 8/111 Death before 18 to 22 months of age

Serce 2013 [58] 7/104 7/104 NEC stage ≥ 2 19/104 25/104 Culture-proven sepsis 5/104 4/104 Death during primary hospitalization

Stratiki 2007 [59] 0/41 3/36 NEC stage ≥ 2 0/41 3/36 Culture-proven sepsis 0/41 0/36 Not defined

Totsu 2014 [60] 0/153 0/130 NEC stage ≥ 2 6/153 10/130 Culture-proven sepsis ≥ 1 week 2/153 0/130 Death during primary hospitalization

Underwood 2009
(CUL) [61] 1 1/30 1/29 NEC stage ≥ 2 4/30 4/29 Culture-proven sepsis > 72 h 0/30 0/29 Death during primary hospitalization

Underwood 2009
(PBP) [61] 1 1/31 1/29 NEC stage ≥ 2 2/31 4/29 Culture-proven sepsis > 72 h 0/31 0/29 Death during primary hospitalization

1 Culturelle (CUL) and ProBioPlus DDS (PBP) were the names assigned by the authors to the probiotic preparations. LOS: late-onset sepsis; NEC: necrotizing enterocolitis.
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Table 4. Random effects meta-analysis of probiotics and LOS, NEC and mortality.

Meta-Analysis k BPD
Definition

MH Risk
Ratio

95% CI Z p
Heterogeneity

Q p I2

Probiotics NEC
15 All 0.52 0.33 to 0.81 −2.88 0.004 22.0 0.055 40.9%
7 BPD28 0.40 0.18 to 0.88 −2.29 0.022 6.3 0.175 37.0%

12 BPD36 0.48 0.29 to 0.81 −2.73 0.006 20.4 0.025 51.1%

Probiotics LOS
15 All 0.82 0.65 to 1.03 −1.73 0.084 26.8 0.031 44.0%
7 BPD28 0.79 0.63 to 1.00 −1.93 0.054 3.6 0.72 0.0%

12 BPD36 0.80 0.62 to 1.04 −1.70 0.090 24.5 0.011 55.1%

Probiotics
mortality

11 All 0.84 0.66 to 1.07 −1.38 0.169 10.4 0.410 3.4%
4 BPD28 0.78 0.37 to 1.66 −0.65 0.518 5.2 0.155 42.8%

10 BPD36 0.82 0.62 to 1.07 −1.45 0.146 10.3 0.328 12.5%

BPD: bronchopulmonary dysplasia; BPD28: bronchopulmonary dysplasia, defined as oxygen dependence at
28 days of life; BPD36: bronchopulmonary dysplasia, defined as oxygen dependence at 36 weeks post-menstrual
age; CI: confidence interval; k: number of studies included; LOS: late onset-sepsis; MH: Mantel–Haenszel;
NEC: necrotizing enterocolitis.

All the included studies reported data on mortality (Table 3), but meta-analysis could not
demonstrate a significant reduction of mortality in the probiotics group (RR 0.80, 95% CI 0.60–1.06,
p = 0.114, Table 4). Moreover, the meta-analysis of studies that reported BPD28 could not find a
significant effect of probiotics on mortality (RR 0.78, 95% CI 0.37 to 1.66, p = 0.518), and neither
could the meta-analysis of studies that reported BPD36 (RR 0.77, 95% CI 0.56 to 1.05, p = 0.101).
We performed meta-regression analyses (methods of moments) to investigate the possible correlation
between the effect size for mortality and the effect size for BPD36. This meta-regression could not
detect a statistically significant correlation between the changes in mortality produced by the probiotics
and the effect size for BPD36 (coefficient 0.04, 95% CI −0.13 to 0.21, p = 0.638).
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4. Discussion

Inflammatory events, such as NEC and LOS, are not only life-threatening for (very) preterm
infants but also may mediate major short- and long-term adverse outcomes [63,64]. Current evidence
indicates that probiotic supplementation significantly reduces NEC and LOS in preterm infants, but
our data suggest that this decrease is not accompanied by a concomitant reduction in BPD. The present
meta-analysis could not demonstrate any significant effect of probiotic supplementation on the risk of
developing of BPD. Similarly, in a recent meta-analysis we found that probiotics did not significantly
affect the risk of retinopathy of prematurity (ROP) [44]. However, our results should be interpreted
with caution since the included RCTs showed relevant methodological differences in terms of enrolment
criteria, timing, dose, and formulation of the probiotics used. Moreover, BPD was not the primary
outcome in any of the studies and the number of RCTs of probiotics reporting on BPD as secondary
outcome was relatively small. In addition, none of the included studies specifically targeted the most
vulnerable population for BPD (infants < 28 weeks GA).

Inflammatory processes such as NEC and LOS may increase the risk of developing BPD
through direct and indirect mechanisms. Proinflammatory cytokines may exert a direct effect on
lung development or sensitize the lung to the effects of oxygen, mechanical ventilation, or other
stressors [8,9,15,65]. On the other hand, infants suffering from NEC and LOS often require more
aggressive and prolonged mechanical ventilation, that may lead to increased lung injury [8,9,15,65].
It has been suggested that avoiding postnatal infection is more important than avoiding invasive
mechanical ventilation to decrease the inflammatory response in developing lungs [65]. Studies
directed at evaluating the impact of quality improvement efforts to reduce LOS in preterm infants
showed that a reduction in LOS is accompanied by decreased rates of BPD [66,67]. However, BPD is a
multifactorial condition in which genetic predisposition, as well as prenatal and prenatal conditions
all play a role [1–4]. In an interesting study, Lapcharoensap et al. showed a positive relationship
between the reduction in LOS and the reduction in BPD with a coefficient of determination (r2) of 0.08,
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suggesting that only the 8% of the reduction of BPD is attributable to the reduction in nosocomial
infection rates [67].

The 15 studies included in our meta-analysis represent a subset of the larger number of RCTs
included in the meta-analyses on probiotics for NEC and LOS prevention. Therefore, we analysed
whether the protective effects of probiotics on NEC and/or LOS were also present in the RCTs included
in our study. Pooling the 15 studies showed a significant reduction of NEC (RR 0.52, 95% CI 0.33 to
0.81) and a close to significant reduction of LOS (RR 0.82 95% CI 0.65 to 1.03) in the probiotics group.
We speculated that studies with higher protective effects against NEC and/or LOS would show more
effect on the development of BPD. However, meta-regression did not show a significant correlation
between the RR for NEC and LOS and the RR for BPD. This suggests that the reduction in postnatal
inflammatory events did not translate into a reduction of BPD.

Several meta-analyses showed that probiotics reduce mortality among VLBW infants [23,25,38].
It has been suggested that improved survival of VLBW infants may result in increased numbers of
patients with BPD [68]. In the group of studies included in our meta-analysis, we could not observe a
significant effect of probiotics on mortality (RR 0.80, 95% CI 0.60 to 1.06). In addition, meta-regression
could not show a significant correlation between the RR for mortality and the RR for BPD. Therefore,
our data suggest that the effect of probiotics on mortality did not affect the rate of BPD in the RCTs.
Nevertheless, a robust conclusion from meta-regression would require a larger number of included
studies [46,47].

One important limitation inherent to any meta-analysis on BPD is the heterogeneity of the
definition of the condition [16,69,70]. In a systematic review which included 47 RCTs of drugs for
BPD, 34% did not identify the definition of BPD that was used. Of the trials that defined BPD, 22 used
oxygen dependency at 36 weeks PMA, with two trials refining that definition with a test of oxygen
need [16]. Fourteen trials provided data on oxygen requirement and four trials used both oxygen
supplementation at 28 days and oxygen supplementation at 36 weeks PMA [16]. Similarly, in our
meta-analysis only six out of 15 RCTs reported a definition of BPD. Upon request, the authors of eight
studies kindly clarified their definition. Even after clarification, there was marked heterogeneity in BPD
definition. As pointed out by Jobe and Bancalari [69], current definitions of BPD lack precision and do
not have good predictive values for later pulmonary and neurodevelopmental outcomes. There are
substantial efforts being made to develop better diagnostic criteria for BPD [69], but it will take time
before these improved definitions of BPD are reflected in RCTs and meta-analyses.

As mentioned above, the RCTs included in our analysis had important differences in the type,
amount, and timing of probiotic supplementation. The choice of probiotic strain(s) is crucial and
meta-analyses on probiotics have been criticized because, in most of them, probiotics administered for
treatment/prevention of a specific disease or condition were all evaluated together [26,71–73]. It is
now generally accepted that different bacterial strains of the same genus and species, verified also by
genomic information, may exert completely different effects on the host [72]. Separate meta-analyses
analysing the effects of well-defined individual, single-strain or multiple-strain probiotic preparations
appear to be more appropriate, but the important heterogeneity of the RCTs makes this approach very
difficult [26,71–73]. We attempted to explore whether the studies using Lactobacillus or Bifidobacterium
species showed a different effect on BPD. We also performed a separate analysis for multi-strain
probiotics because recent meta-analyses suggest that the use of more than one strain has a stronger effect
in the prevention of NEC [74]. None of these subgroup analyses suggested a significant preventive
effect of probiotics on BPD. However, the number of studies included in the subgroup analysis was
low, making the results inconclusive.

Besides their effect on NEC and LOS prevention, there are some other mechanisms of action
ascribed to probiotics which may directly counteract the disruption of lung development prompting
to BPD [26,75]. In the first place, the immature immune system of premature infants is unable to
balance pro-inflammatory responses, leading to a sustained status of inflammation that contributes
significantly to several neonatal diseases, including BPD [15]. A decreased number of T regulatory
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cells (Tregs), which constitute the anti-inflammatory lymphocytic subset, and higher proportions
of activated pro-inflammatory T cells have been related with the development of BPD [76,77].
Probiotics seem to have a role in improving Treg generation, expansion and activity, while decreasing
activation/proliferation of the pro-inflammatory lymphocytic subsets. These effects may result
in the recovery of the immune homeostasis with polarization of the immune system toward an
anti-inflammatory phenotype [78,79]. Secondly, it has been suggested that each additional day of
antibiotic therapy in the first 2 weeks of life in VLBW infants may be associated with an increased
BPD rate and severity [80]. This could be explained by the antibiotic-induced decrease in diversity
of lung microbiota which has been linked to BPD development [81]. Probiotics are known to restore
intestinal microbiota after antibiotic therapy [82] and to produce a strong suppressive effect on airway
inflammation [83]. Lastly, poor nutrition is associated with lung underdevelopment and the occurrence
of BPD [84]. In experimental NEC, probiotic supplementation reversed the detrimental effects of
combined hyperoxia and suboptimal nutrition on lung vascular endothelial growth factor (VEGF)
levels, suggesting that this strategy may help improve lung vasculogenesis [85].

In conclusion, our study could not demonstrate any significant effect of probiotic supplementation
on the risk of developing of BPD. Given the remarkable theoretical benefits of probiotics
supplementation in ameliorating several aspects of BPD pathogenesis and the limitations of the
analysis, our data should be seen as a starting point rather than definitive results. The main merit of
our study was to collect, for the first time, the available data on the role of probiotic supplementation
in the prevention of BPD, and to revise the possible specific mechanisms of action. Nevertheless,
further experimental and clinical data are needed to draw more solid conclusions. Particularly, more
studies designed to select the optimal probiotic preparation, dosing, and duration of therapy are still
needed [29]. These studies should compare probiotic strains that have been reported to be safe and
effective in previous trials [73] and include outcomes, such as BPD, which can be indirectly affected by
the changes in immunity and nutritional status induced by probiotic supplementation.
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Appendix A

Table A1. Risk of bias assessment of studies included in meta-analysis.

Study
Random
Sequence

Generation

Allocation
Concealment

Blinding of
Participants

and Personnel

Blinding of
Outcome

Assessment

Incomplete
Outcome

Data

Selective
Reporting

Other
Bias

Akar 2017 [49] LR UR LR LR UR UR UR

Al Hosni 2011 [48] UR UR LR LR LR LR LR

Costeloe 2016 [62] LR LR LR LR LR LR LR

Demirel 2013 [50] LR LR LR LR LR LR LR

Dilli 2015 [51] LR LR LR LR LR LR LR

Fujii 2006 [52] UR UR HR UR LR UR UR

Jacobs 2013 [53] LR LR LR LR LR LR LR

Lin 2008 [54] LR LR LR LR LR UR LR
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Table A1. Cont.

Study
Random
Sequence

Generation

Allocation
Concealment

Blinding of
Participants

and Personnel

Blinding of
Outcome

Assessment

Incomplete
Outcome

Data

Selective
Reporting

Other
Bias

Manzoni 2009 [55] LR UR LR LR LR LR LR

Saengtawesin 2014 [56] UR UR HR HR UR UR UR

Sari 2012 [57] LR LR LR LR LR LR LR

Serce 2013 [58] LR LR LR LR UR UR LR

Stratiki 2007 [59] UR UR LR LR UR UR LR

Totsu 2014 [60] LR UR LR LR LR LR LR

Underwood 2009 [61] LR LR LR LR LR LR LR

HR: High risk of bias; LR: Low risk of bias; UR: Unclear risk of bias.

Table A2. Sensitivity analyses for BPD28: results of random effects meta-analyses when removing
one study.

Removed Study Statistics with Study Removed

MH RR Lower Limit 95% CI Upper Limit 95% CI Z-Score p

Demirel 2013 [50] 1.01 0.92 1.12 0.21 0.832
Dilli 2015 [51] 1.02 0.92 1.13 0.37 0.708
Fujii 2006 [52] 1.01 0.91 1.11 0.15 0.878

Jacobs 2013 [53] 1.04 0.86 1.25 0.38 0.703
Saengtawesin 2014 [56] 1.00 0.90 1.10 −0.09 0.931

Totsu 2014 [60] 0.99 0.89 1.10 −0.22 0.829
Stratiki 2007 [59] 1.01 0.91 1.11 0.11 0.916

BPD28: bronchopulmonary dysplasia, defined as oxygen dependence at 28 days of life; CI: confidence interval;
MH RR: Mantel–Haenszel risk ratio.

Table A3. Sensitivity analyses for BPD36: results of random effects meta-analyses when removing
one study.

Removed Study Statistics with Study Removed

MH RR Lower Limit 95% CI Upper Limit 95% CI Z-Score p

Akar 2017 [49] 1.09 0.97 1.21 1.45 0.146
Al Hosni 2012 [48] 1.09 0.97 1.23 1.48 0.138
Costeloe 2016 [62] 1.07 0.93 1.22 0.94 0.350

Dilli 2015 [51] 1.08 0.97 1.21 1.43 0.153
Jacobs 2013 [53] 1.09 0.96 1.24 1.32 0.188

Lin 2008 [54] 1.04 0.93 1.17 0.69 0.488
Manzoni 2009 [55] 1.08 0.96 1.20 1.32 0.187

Sari 2012 [57] 1.07 0.96 1.20 1.25 0.213
Serce 2013 [58] 1.07 0.96 1.20 1.26 0.209
Totsu 2014 [60] 1.05 0.93 1.17 0.76 0.448

Underwood 2009 (CUL) [61] 1 1.08 0.97 1.20 1.34 0.179
Underwood 2009 (PBP) [61] 1 1.08 0.97 1.20 1.36 0.173

1 Culturelle (CUL) and ProBioPlus DDS (PBP) were the names assigned by the authors to the probiotic preparations.
BPD36: bronchopulmonary dysplasia, defined as oxygen dependence at 36 weeks post-menstrual age; CI: confidence
interval; MH RR: Mantel–Haenszel risk ratio.
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