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Asthma is a common lung disease affecting 300 million people worldwide. Allergic

asthma is recognized as a prototypical Th2 disorder, orchestrated by an aberrant

adaptive CD4+ T helper (Th2/Th17) cell immune response against airborne allergens,

that leads to eosinophilic inflammation, reversible bronchoconstriction, and mucus

overproduction. Other forms of asthma are controlled by an eosinophil-rich innate

ILC2 response driven by epithelial damage, whereas in some patients with more

neutrophilia, the disease is driven by Th17 cells. Dendritic cells (DCs) and macrophages

are crucial regulators of type 2 immunity in asthma. Numerous lipid mediators including

the eicosanoids prostaglandins and leukotrienes influence key functions of these cells,

leading to either pro- or anti-inflammatory effects on disease outcome. In this review,

we will discuss how eicosanoids affect the functions of DCs and macrophages in the

asthmatic lung and how this leads to aberrant T cell differentiation that causes disease.
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PRIMER ON EICOSANOIDS, PROSTAGLANDINS AND
LEUKOTRIENES

Eicosanoids are an important class of biologically active molecules, comprising prostanoids,
leukotrienes (LTs) and lipoxins that have important pro- and anti-inflammatory effects in
asthma. Under a variety of non-specific activation stimuli, such as pro-inflammatory mediators
and other stress, the precursor molecule arachidonic acid (AA) is released from membrane
phospholipids by cytosolic phospholipase A2. AA can be enzymatically converted either to
prostanoids [prostaglandin (PG) and thromboxane] by COX enzymes or to LT and lipoxins by
lipoxygenases (LOXs) (Figure 1).

Prostanoids The COX isozymes (constitutive COX-1 and inducible COX-2) catalyze the
formation of PGG2, which is then reduced to the intermediate PGH2 through peroxidase activity.
Various cell-specific PG synthases convert PGH2 to biologically active products, such as PGE2,
PGI2, PGD2 and PGF2a and thromboxane (TXA2) (1). The differential expression and the
distribution of these enzymes within cells present at sites of inflammation will determine the
profile of prostanoid production. For instance, mast cells predominantly generate PGD2 through
their expression of hematopoietic PGD synthase (hPGDS). Through microsomal PGE2 synthase
(mPGES-1), PGE2 is produced by virtually all lung cell types, but the most abundant sources
are epithelial cells, fibroblasts, and macrophages (1). Prostanoids act in both paracrine and
autocrine fashion through G protein-coupled receptors (GPCRs) on the surface of target cells.
Interestingly, the distribution of prostanoid receptors on immune cells differs from the distribution
of prostanoid-specific synthases. Prostanoid synthases are mainly expressed on innate immune
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cells, whereas prostanoid receptors are expressed on both
innate and adaptive immune system leukocytes (2). So, during
inflammation, activated innate immune cells will produce
prostanoids that act on lymphocytes in a paracrine manner and
also modulate their own function in an autocrine way (3).

Leukotrienes are generated by LOX enzymes. The different
LOX enzymes are named based on their positional specificity
of AA oxygenation. For instance, 12-LOX oxygenates AA at
carbon 12, resulting in 12-hydro(peroxy)eicosatetraenoic acid
[12-H(P)ETE] (4). Since the human leukocyte-type 12-LOX is
very similar to reticulocyte-type 15-LOX, these enzymes are often
referred to in the literature as 12/15-LOXs (5). Furthermore,
mice do not express 15-LOX and only express the leukocyte-
derived 12-LOX. Because murine 12-LOX is also able to generate
15-H(P)ETE, the enzyme is often designated as 12/15 LOX as
well (6).

5-lipoxygenase (5-LOX) generates the leukotriene LTA4, an
unstable intermediate, which is converted to the chemoattractant
LTB4 or to nonchemotactic LTC4 by the cytosolic LTA4 hydrolase
enzyme or leukotriene C4 synthase (LTC4S) respectively. LTC4

is exported to the extracellular space and is further converted to
the unstable LTD4 and subsequently to the stable end-metabolite
LTE4 (7). LTC4, LTD4 and LTE4 belong to the so-called cysteinyl
leukotrienes, due to the presence of the amino acid cysteine
in their structure. There are at least three different cysteinyl
leukotriene receptors (CysLTR1, CysLTR2, and CysLTR3). LTE4
preferably binds CysLTR3 (8), whereas LTC4 binds CysLTR2 and
LTD4 binds both CysLTR1 and CysLTR2 (9, 10).

Leukotrienes are predominantly produced by leukocytes,
hence their name. However, the specific profile of LTs produced
depends on the cell type. Neutrophils produce exclusively
LTB4, whereas mast cells, basophils and eosinophils mainly
produce cysLTs. Macrophages and DCs synthesize both LTB4 and
cysLTs (11).

Lipoxins (LXA4 and LXB4) are short-lived eicosanoids that
are derived from arachidonic acid through sequential activity
of 5-LOX and 12/15-LOX. 15-LOX is a key enzyme for lipoxin
generation in the human lung and is expressed by many cells
during inflammation, including macrophages, eosinophils and
bronchial epithelial cells (12–14).

EICOSANOIDS HAVE MULTIPLE EFFECTS
IN ALLERGIC ASTHMA

Asthma is a chronic inflammatory disease of the airways,
characterized by reversible bronchoconstriction, airway
remodeling and mucus production. Most childhood-onset
asthma and half of the adult-onset asthma cases are allergic,
identified by a positive skin prick test or the detection of
serum IgE antibodies against common antigens, such as plant
and tree pollen, animal dander, house dust mites (HDM)
and fungal spores. Virtually all cell types relevant to Th2
pathology such as Th2 cells, ILC2s, mast cells, basophils,
epithelial cells, smooth muscle cells and fibroblasts generate
LT and/or PG mediators, and/or express receptors for those
eicosanoids (Figure 2). Among prostanoids, PGD2 released from

mast cells, has long been implicated in allergic diseases (15).
PGD2 is known to have chemotactic effects on eosinophils,
basophils, Th2 lymphocytes and ILC2s acting via the
DP2/CRTh2 receptor (16, 17) and in this way contributes
to airway hyperresponsiveness, IgE and cytokine secretion
(18–20). PGD2 levels and the number of CRTH2+ cells
are increased in bronchoalveolar lavage (BAL) fluids from
severe asthmatics compared to those with milder disease (21).
Several CRTH2 antagonists have shown encouraging results
in clinical trials for asthma, further supporting for the role
of PGD2 in allergic diseases and its potential as a therapeutic
target (22).

Although cyclooxygenase and its products, PGs, have been
traditionally linked to all four cardinal signs of inflammation
(redness, swelling, heat, pain), prostanoids may also have an
inhibitory role on inflammatory cells. This discrepancy can
be explained by the fact that typical inflammation hallmarks
are the result of actions on microvasculature, hypothalamus
and nerves, rather than on immune cells. In mouse models
of asthma, PGs have pleiotropic effects. PGI2 can abolish
asthma development by inhibition of DC activation and Th2
cell migration (23–25), whereas PGE2 can reduce mast cell
secretory responses (26–29) and chemotaxis of eosinophils (30).
Furthermore, both PGI2 and PGE2 can inhibit cytokine release
of both Th1 and Th2 CD4T cells and macrophages (31, 32).
Treg differentiation and function is also promoted by PGE2
(33, 34).

Prostanoids are also able to inhibit airway remodeling and
mucus secretion in asthma models in vivo (35–37). It has been
shown that PGE2 induces fibroblast apoptosis (38), abolishes
myofibroblast differentiation (39) and inhibits proliferation of
airway smooth muscle cells (40).

In asthma patients, inhalation of exogenous PGE2 or its
analogs results in bronchodilatation and protection against
early- and late-phase bronchoconstriction induced by various
asthma triggers (41–43). Despite the benefits of inhaled
PGE2, it has also been reported that prostanoids can induce
irritancy of the upper airway resulting in a reflex cough.
However, this can be overcome by treatment with a receptor-
selective agonist, as cough is exclusively mediated via the EP3
receptor (44).

In contrary to the bronchodilatory properties of the
prostaglandin PGE2, CysLTs are an important cause of allergen-
induced bronchoconstriction (45). Indeed, treatment with
Cysteinyl LT receptor 1 antagonists (LTRAs) attenuates allergen-
induced increases in airway hyperresponsiveness (46, 47).
Furthermore LTRAs partially attenuate allergen-induced airway
eosinophilia (47, 48), demonstrating a more extensive role for
LTs in asthma. Indeed, CysLTs that are also released from
mast cells, particularly LTE4, can cause eosinophil chemotaxis
in allergic asthmatics (49). Interestingly, CysLT levels are
also increased in BAL fluid (50) and in urine after allergen
challenge (51). Currently, LTRAs (such as montelukast) are
clinically available. Although these drugs are superior to
placebo at decreasing asthmatic symptoms and exacerbations,
LTRAs are not recommended as first line therapy for asthma.
The reason for this is that they are generally inferior to
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FIGURE 1 | Schematic overview of eicosanoid biosynthesis. Arachidonic acid that is released from membrane phospholipids by cytosolic phospholipase A2 (PLA2),

can be enzymatically converted either to prostaglandins (PG) and thromboxane (TXA2) by COX enzymes or to LT and lipoxins (LXA4) by lipoxygenases (LOXs).

inhaled corticosteroids in anti-inflammatory and clinical effects1.
Furthermore, about one third of the asthma patients does not
respond to LTRAs (52).

Another type of leukotriene, LTB4, through its actions on
the BLT1 receptor, is an activator and chemoattractant for
different cell types such as T cells (53, 54) and DCs (55).
OVA-induced allergic inflammation was completely abolished
in BLT1 deficient mice, demonstrating the importance of BLT1
and its ligand LTB4 in the development of allergic airway
inflammation (56).

Lipoxins have a pro-resolution role in allergic airway
inflammation. In severe asthmatics, blood LXA4 levels
and leukocyte LXA4 generation are reduced compared
to those with milder disease (57–59). In a mouse model
of asthma, administration of a stable analog of LXA4

resulted in a diminished airway hyperresponsiveness and
pulmonary inflammation (60, 61). Similar results were obtained
with resolvins and protectins. Those mediators are also

1National Institutes of Health; National Heart, Lung, and Blood. National Asthma
Education and Prevention Program Institute, Expert panel report 3: guidelines for
the diagnosis and management of asthma. No. 07–4051 Available from: http://
www.nhlbi.nih.gov/guidelines/asthma/asthgdln.htm 2007.

generated by LOX enzymes, but are derived from omega-3
polyunsaturated fatty acids instead of the substrate arachidonic
acid (62–64).

Finally, absence of all eicosanoids impairs the induction of
a Th2 response and reduces airway inflammation. This has
been shown with mice lacking group V secretory phospholipase
A2 (sPLA2), which is the enzyme that releases AA from
membrane lipids and catalyzes the first step of eicosanoid
generation. Deletion of sPLA2 attenuates cell migration and
airway hyperresponsiveness, whereas sPLA2 overexpression is
associated with severe asthma (65–68). An impaired antigen
capture activity and maturation of DCs is responsible for the
inhibition of asthma development in sPLA2−/− mice (69).

CURRENT INSIGHTS IN ALLERGIC
ASTHMA PATHOGENESIS: A CENTRAL
ROLE FOR DENDRITIC CELLS

In allergic asthma, airway DCs take up allergens across the
epithelial barrier and subsequently activate Th2 immunity in
the draining lymph nodes, leading to IgE responses and to
Th2 effector cells that control eosinophilic airway inflammation,
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FIGURE 2 | Eicosanoids have multiple effects in allergic asthma. In response to allergens and/or instructive cytokines by epithelial cells and innate immune cells,

dendritic cells activate Th2 immunity in the draining lymph nodes, leading to IgE responses and to Th2 effector cells that control eosinophilic airway inflammation,

goblet cell metaplasia and bronchial hyperreactivity upon return to the lung. Virtually all cell types relevant to Th2 pathology such as Th2 cells, ILC2s, mast cells,

basophils and epithelial cells, generate leukotriene/prostaglandin mediators, and/or express receptors for those eicosanoids. The figure represents a schematic

overview of eicosanoid functions described in this review.

goblet cell metaplasia and bronchial hyperreactivity upon return
to the lung (70, 71). The central role for DCs in the development
of allergic asthma has been demonstrated in numerous studies.
Adoptive transfer of GM-CSF-cultured bone marrow-derived
DCs (BMDCs) or splenic DCs that were pulsed with ovalbumin
(OVA) antigen in vitro can sensitize mice, leading to a Th2
response and eosinophilic inflammation upon challenges with
OVA aerosol (72, 73). Likewise, DCs originating from the lungs
of allergen-exposed mice are also able to induce sensitization
when transferred to naive recipients (74, 75). This holds also
true for chronic asthma models as repeated DC injection into
the lung induces irreversible airway remodeling, characterized
by subepithelial collagen deposition and increased peribronchial
airway smooth muscle volume (76).

In addition to these studies demonstrating that DCs are
sufficient for induction of Th2 immunity in the lung, DCs are
also required for inducing a Th2 response to allergens, even
in very young mice before weaning (77). Depletion of lung
DCs in CD11c-DTR transgenic mice during the first exposure
to the inhaled HDM allergen impeded the development of
lung eosinophilia and Th2 cytokine production (74). Likewise,
DCs are also required for optimal Th2 immunity against other
allergens, such as papain and helminths (78, 79).

Beside the crucial role of DCs in inducing Th2 immunity
in naïve animals, DCs have also a non-redundant role during
the secondary immune response (76, 80). During the challenge
phase, DCs are closely located to antigen-specific T cells around

the airways and large blood vessels (81). Here, they might secrete
chemokines to attract effector T cells or they might restimulate
resident memory T cells by providing costimulatory molecules
(75, 82).

Murine lungs in steady state contain three major subsets
of DCs with specific phenotype and functions; pDCs, IRF8-
dependent XCR1+ CD103+ cDC1s and IRF4-dependent
CD11b+ SIRPα+ cDC2s. However, during inflammation
monocyte-derived DCs (MCs) emerge, coming from monocytes
that migrate to the local tissue and upregulate the expression of
CD11c and MHC-II (75, 83). They can be distinguished from
CD11b+ cDCs by the expression of the Fc receptors CD64
and MAR1 (75). Various studies have shown that CD11b+
cDC2s are the responsible DC subtype for Th2/17 induction
upon allergen challenge (75, 84–86). MCs rather play a role
during the effector of the immune response, by interacting
with effector Th2 cells that migrate back to the lung or with
resident-memory T cells (87). In contrast to CD11b+ cDC2s,
CD103+ cDC1s play a redundant role in the HDM-driven
asthma model (75). There is even literature suggesting that
cDC1s induce a tolerogenic response to inhaled allergens
(88–90). An immunoregulatory role has also been described
for pDCs. Indeed, it has been shown that pDCs in the lung are
essential to induce inhalation tolerance to harmless antigens
like OVA (91, 92). Furthermore, depletion of pDCs during
sensitization or challenge to OVA or HDM allergen might
exacerbate inflammation, as immunoregulatory regulatory
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T cells fail to function properly in the absence of pDCs
(91, 93, 94).

Although DCs express PRRs and can sense the environment
directly, the epithelium has been shown to be equally important
in activating DCs in response to allergens (95). As this is beyond
the scope of this review, we refer to Hammad and Lambrecht
for a recent review describing the role of epithelial cytokines in
the activation of DCs during allergic inflammation (96). In brief,
DCs get activated by epithelial cytokines like IL-33, GM-CSF, IL-
1a, IL-25, and thymic stromal lymphopoietin (TSLP). The same
cytokines also activate ILC2s, basophils and Th2 effector cells to
become cytokine producing cells and contribute to the initiation
of a Th2 response (70, 71, 97). The release of epithelial cytokines
is elicited by environmental stimuli of asthma, such as HDM,
viruses, diesel particles and cigarette smoke. On the other hand,
protective environments, such as farm dust or lipopolysaccharide
exposure, have the potential to suppress this cytokine release and
DC activation (98).

EICOSANOIDS AFFECT THE MIGRATION
OF DENDRITIC CELLS

The control of DC migration is pivotal for the initiation of
cellular immune responses. Upon activation by inflammatory
stimuli, DCs upregulate the chemokine receptor CCR7 and
home to lymphoid organs, where the CCR7 ligands CCL19 and
CCL21 are expressed. This migratory capacity of DCs requires
environmental instruction by PGE2. PGE2 has no effect on
the expression of CCR7 on DCs, but couples CCR7 expression
to signal transduction pathways such as activation of cAMP-
dependent protein kinase A (PKA) and Rho Kinase (99). These
signals allow the DCs to start migration, among other by
inducing a rapid disassembly of podosomes (100). Surprisingly,
PGE2 was only required at early time points of maturation to
enable DC chemotaxis, whereas PGE2 addition has no effect
during terminal maturation. Mouse DCs exclusively rely on EP4
receptor triggering for migration, whereas human MCs require
a signal mediated by EP2 or EP4 either alone or in combination
(101, 102).

In contrary to PGE2, PGD2, and PGI2 inhibit the maturation
and migration of DCs. In the skin, Angeli and colleagues
showed that parasite-derived PGD2 inhibits the migration of
epidermal Langerhans cells to the skin draining lymph nodes and
affects the subsequent cutaneous inflammatory reaction (103).
Similarly, intratracheal instillation of FITC-OVA together with
PGD2 inhibits the migration of FITC+ lung DC to draining
LNs. Activation of the DP1 receptor was responsible for this
inhibition (104). DP1 activation also lowers the expression of
costimulatory molecules on DCs and enhances the induction of
Foxp3+ Treg cells, resulting in an abolished asthma phenotype
(34). Inhalation of iloprost, a stable PGI2 analog, also suppressed
the cardinal features of asthma by interfering with the function of
lung myeloid DC. Furthermore, iloprost-treated DCs no longer
induced Th2 differentiation from naive T cells or boosted effector
cytokine production in primed Th2 cells, showing that the effect
of iloprost was DC intrinsic (23).

CysLT enhance the migration of DCs. Indeed, DCs lacking
the LTC4 transporter multidrug resistance-associated protein 1
(MRP1) failed to migrate to the lymph nodes, whereas exogenous
LTC4 or LTD4 could restore this migration. However, these
CysLTs only promoted optimal chemotaxis to the chemokine
CCL19, but not to other related chemokines (105). On the other
hand, lipoxins were able to inhibit DC migration (106).

EICOSANOID SIGNALING IN DCS
MODULATES INSTRUCTION OF T CELL
DIFFERENTIATION

Upon DC-T cell encounter, DCs produce cytokines that drive
Th differentiation. The secretion pattern of these cytokines, and
thus the Th1/Th2 balance can be modulated by a variety of
biologically active mediators synthesized by innate and adaptive
immune cells. Eicosanoids such as PGE2 exert a great impact on
this regulation. For instance, the ratio of PGE2 and IL-12, both
produced by APCs, may control the balance between Th1 and
Th2 immunity (107). Basically, it has been shown that PGE2 is a
potent inhibitor of IL-12 production (108) and in this way favors
a Th2 response (109–112). PGE2 also inhibits the secretion of
TNF-α frommurine DCs (113, 114). The inhibitory role of PGE2
on DC cytokine secretion can also be indirect by inducing IL-10
secretion (108, 113, 115). Due to its inhibitory effect on IL-12,
PGE2 also indirectly inhibits IFN-γ secretion by T cells and NK
cells (110, 116).

Beside the Th2 inducing role for PGE2, it has also been
reported that PGE2-treated DCs can induce Th1 and Th17
responses. Adding PGE2 together with TNF-α to human
BMDCs stimulates IL-12 production by DCs, favoring
a Th1 response (117–121). PGE2 also stimulates IL-23
production by cultured BMDCs and promotes in this way
Th17 differentiation (122, 123).

Prostanoids can also directly modify production of Th
cytokines from polarized T cells. PGE2 can favor Th2 immunity
by inhibiting IL-2 and IFN-γ production by Th1 cells, but not
the production of IL-4 by Th2 cells (124, 125). However, in a
mouse model of asthma, PGE2 has also been shown to inhibit
Th2 responses via direct effects on the EP2 receptor on T cells
(126). Furthermore, PGE2 regulates Th17 cell differentiation and
cytokine secretion directly through EP2/EP4 receptor signaling
on T cells (127). Via DP1, PGD2 can block the expression of
the Th1 cytokine IFN-γ. Furthermore, Th2 cytokine secretion is
increased through CRTH2 signaling (128). On the other hand,
PGI2 can directly inhibit production of Th2 cytokines from
Th2 polarized mouse splenic CD4+ cells (32, 129), thus directly
exhibiting lower levels of Th2 response.

Less is known about the role of leukotrienes on T cell
polarization. Machida et al. reported that in vitro treatment with
LTRAs modifies the cytokine profile of DCs (130). By in vivo
administration of LTRAs, Okunishi and colleagues showed that
LTs promote DC antigen presentation and both Th1 and Th2
polarizing cytokine secretion (131).

Furthermore, using LTC−/−
4 and CysLTR1−/− mice, it has

been demonstrated that leukotrienes are crucial for the initiation
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of a Th2 response upon HDM-dependent Dectin-2 activation on
DCs (132). Through CysLTR1, LTD4 can induce IL-4 secretion by
ILC2s, contributing to Th2 polarization as well (133). CysLTR1
can also be up-regulated in activated CD4+ T cells themselves
and can mediate their chemotaxis to LTD4, but whether cysLTs
exert a direct effect on cytokine production by CD4+ T cells
remains unclear (134). This is different from the leukotriene
LTB4, which increases cytokine production by T cells (135), but
does not affect antigen presentation and cytokine production
by DCs (55). Strikingly, mice deficient in CysLTR2 or adoptive
transfer of DCs lacking CysLTR2 developed markedly enhanced
Th2 immunity toHDM. In fact, CysLTR2 negatively regulates cell
surface expression and receptor signaling of DCs (136). Thus, the
biologic activity of CysLTs can be tightly regulated by competition
between the different expressed CysLT receptors.

12/15-LOX enzymes, required for lipoxin synthesis, are also
involved in the modulation of Th2 cytokine secretion. In
response to IL-13, DCs secrete the lectin Ym1/2 that might
interact with 12/15-LOX in or at the surface of T cells. 12/15-
LOX generates 12-HETE that has been shown to reduce Th2
cytokine secretion both in vivo and in vitro. Furthermore,
12-HETE attenuated airway eosinophilia in an OVA-induced
allergic asthma model. However, DC-secreted Ym1/2 was able to
decrease the expression of 12-HETE, suggesting that the asthma-
promoting effects of Ym1/2 might be explained by inhibiting
12/15-LOX on T cells (137).

EICOSANOIDS ALSO AFFECT
ANTIGEN-PRESENTING B CELLS AND
ILC2S

The most described function of B cells is their production
of antigen-specific immunoglobulins. However, in addition to
antibody production, activated B cells also play a role as accessory
antigen-presenting cells. Although they are not as potent as
DCs in priming naïve T cells, they are abundantly present
in T-cell inductive sites, express costimulatory molecules and
produce cytokines that activate DCs and naïve T cells (138–141).
Their antigen-presenting and Th2-promoting effects have also
been demonstrated in murine asthma models, with a particular
role during secondary challenge and when the antigen dose is
limiting (142).

Numerous studies have shown that eicosanoids are required
for both the development and function of B lymphocytes (143–
147). PGE2 is necessary for IgE production both in vitro
and in vivo, by affecting IgE class switching (145, 148–151).
Furthermore, PGE2 has been demonstrated to regulate B cell
proliferation (152). Interestingly, PGE2 is also able to lower
MHCII expression on B cells (148), but whether this affects
antigen presentation is still unclear. Leukotrienes, in particular
LTD4, can enhance immunoglobulin production as well (153).
In contrast, lipoxins have the opposite effect as 12/15-LOX
deficiency protects mice from allergic airway inflammation by
increasing secretory IgA levels (147).

Strikingly, ILC2s have also been shown to present antigen
(154, 155). In response to the parasitic worm Nippostrongylus

brasiliensis, MHC class II expression on ILC2s was required for
the induction of an efficient Th2 response. ILC2s express the
costimulatory receptors CD80 and CD86, acquire and process
antigen and interact with antigen-specific T cells. During this
interaction, T cell-derived IL-2 promotes ILC2 proliferation and
IL-13 production (155) and this can be affected by eicosanoids.
PGD2 and CysLTs stimulate Th2 cytokine production from ILC2s
(133, 156, 157), whereas other lipid mediators have suppressive
roles on ILC2 function. The pro-resolving mediator LXA4 could
inhibit ILC2 activation (156) and both PGE2 and PGI2 were
able to attenuate ILC2 proliferation, Th2 cytokine generation and
resulting type 2 immune response (158, 159).

EICOSANOIDS MODULATE THE
TOLEROGENIC ROLE OF MACROPHAGES
IN THE ALLERGIC LUNG

Lung macrophages can be divided into alveolar macrophages
(AMs) and interstitial macrophages (IMs). AMs are most
abundantly present and are situated in the alveolar lumen,
while IMs are located inside the lung interstitium. During
inflammation, a third population emerges, as monocyte-
derived macrophages infiltrate the alveolar and interstitial areas.
Macrophages express different eicosanoid receptors, such as
the receptors for PGE2 and PGD2. Furthermore, macrophages
produce both prostaglandins and leukotrienes themselves,
allowing autocrine regulation (160).

AMs are sessile, long-lived, and self-renewing cells that
derive from fetal monocytes under the influence of GM-
CSF (161–164). Several studies have clearly demonstrated that
resident AMs induce a tolerogenic response to inhaled antigens
(164–171). Use of liposomal clodronate to deplete resident
AMs in an OVA or HDM-induced asthma model, favored
a Th2 response and subsequently resulted in increased BAL
eosinophilia and inflammatory cytokine levels (167, 168). One
possible mechanism for this inhibitory role of macrophages is the
secretion of SOCS1 and SOCS3 in exosomes and microparticles.
The uptake of these particles by alveolar epithelial cells inhibits
their activation in a JAK/STAT-dependent way (169). PGE2 is
a major epithelium-derived factor mediating SOCS secretion
(170) and in this way inhibiting the development of allergic
lung inflammation (171). Indeed, in a HDM-dependent asthma
model, adoptive transfer of PGE2-treated macrophages led to a
reduction in eosinophilia in the allergic lung (171).

Pulmonary inflammation was also reduced if macrophages
lacked group V sPLA2, which is the enzyme releasing AA from
membrane lipids and is required for both PG and LT synthesis
(172). Those macrophages generated less PGE2, resulting in a
diminished transglutaminase activity of M2 macrophages (173).
Furthermore, by activating the EP4 receptor on macrophages,
PGE2 inhibits TNF-α and IL-12 cytokine secretion (31). The
ability of lungmacrophages to prevent Th2 induction in response
to inhaled allergens has also been demonstrated in rats. The
replacement of AM of sensitized animals by AM from naive
animals completely abolished Th2 polarization by inhibition of
DC allergen capture and migration to the lymph nodes (174).
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Although PGE2 suppresses type 2 inflammation in most
settings, a recent study demonstrated that PGE2 also has pro-
inflammatory effects in murine macrophages. Mice lacking
microsomal PGE2 synthase 1 (mPGE1) had an attenuated
asthma phenotype compared to wild-type controls in response
to repetitive inhalation challenges with an extract from the
allergenic mold Alternaria alternata, which could be explained
by a diminished IL-33 production by murine macrophages (175).

The pro-inflammatory prostanoid PGD2 binds both the
DP1 and DP2 receptor on lung macrophages. DP signaling
enhances migration and TNF-α secretion of both alveolar and
interstitial macrophages. Furthermore, PGD2 also induces
KC secretion from macrophages, resulting in neutrophil
recruitment in the lung and this neutrophilia could be abolished
by macrophage depletion (176). Interestingly, PGD2 synthesis
by macrophages is also involved in the enhancement of airway
inflammation by virus infections. Respiratory infections with
RNA viruses, such as rhinovirus or respiratory syncytial
virus (RSV), are associated with asthmatic exacerbations
(177). To study the mechanism behind this association,
Shiraishi and colleagues administered poly I:C, a synthetic
dsRNA, intratracheally in OVA-sensitized rats. Those rats
developed an exacerbated asthma phenotype and had elevated
PGD2 synthesis in the lung, particularly in AMs. CRTH2-
deficient animals did not exhibit a dsRNA-induced increase
in eosinophil accumulation, demonstrating the necessary
role for PGD2 in dsRNA-induced enhancement of airway
inflammation (178).

RSV infection of mice deficient in 5-LOX, an enzyme
required for lipoxin synthesis, resulted in stronger lung pathology
compared to wildtype mice, due to a lack of alternatively
activatedmacrophages (179, 180). Treatment with LXA4 partially
restored this, supporting a pro-resolution role for lipoxins in viral
respiratory tract infections (180).

Just as described for DCs, AMs produce leukotrienes
in response to HDM-driven Dectin-2 activation. Both an
inhibitor of LT production and Dectin-2 blockade could
prevent the development of bronchial hyperreactivity and airway

inflammation, demonstrating the required role for Dectin-2
dependent leukotriene production in the initiation of allergic
airway inflammation (181).

SUMMARY

Allergic asthma is a chronic lung disease, driven by a prototypical
Th2 response against airborne allergens. Dendritic cells (CD11b
+ cDC2s) are indispensable and sufficient for the development of
allergic asthma, whereas macrophages have merely a tolerogenic
role. Eicosanoids, leukotrienes and prostaglandins, influence key
functions of these cells. However, given the diverse spectrum of
eicosanoids and given the cell-type dependent expression profile
of eicosanoid receptors, it is not surprising that the effects of
PG/LT can be very distinct depending on the inflammatory
context. A particular eicosanoid can have a pro-inflammatory
effect on a certain cell type, whereas it can act anti-inflammatory
on another. Furthermore, one particular cell type will be exposed
to both pro-inflammatory and anti-inflammatory eicosanoids
and the balance between those will determine the cellular
outcome. Leukotriene receptor antagonists are already in clinical
use for the treatment of asthma. In addition, given the multiple
roles of prostaglandins in the pathogenesis of asthma, PG
a-/antagonists may also have a promising therapeutic effect.
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