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Abstract
The lack of standardised methodologies in microplastic research has been addressed in recent years as it hampers the comparison
of results across studies. The quantification of microplastics in the environment is key to the assessment of the potential eco-
toxicological impacts that this new category of emerging pollutants could have on terrestrial and aquatic species. Therefore, the
need for protocols that are robust, simple and reliable together with their standardisation are of crucial importance. This study has
focused on removal of organic matter with Fenton reagent from wastewater and sludge samples. This step of analysis was
optimised by implementing a multi-digestion treatment on these samples that have high concentration of complex mixtures of
organic matter, which interfere with microplastic enumeration. Moreover, this study targeted the detection of microplastics in the
sub-hundred-micron size range due to the potential higher risks associated with smaller-sized particles and the limited data
available from previous wastewater research. To show the validity of the method, triplicate samples of raw sewage, final effluent
and sludge were independently spiked with two different sizes and types of microplastic polymers. Due to the various analytical
stages required for the isolation of microplastics, time is a limiting factor in sample processing. The sequential digestion with
Fenton reagent represents an inexpensive and time-efficient procedure for wastewater research providing effective degradation of
organic material. These advantages over other currently available methods mean the method is suitable for analysis of large
numbers of samples allowing robust monitoring data sets to be generated.
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Introduction

Various studies have identified that microplastic (MP) re-
search suffers from the lack of standardised methodologies,
from sampling to the characterisation of MP particles in envi-
ronmental samples [1–7]. The analytical procedures currently
used to isolate microplastics (MPs) are dependent on the type
of matrix being studied. However, methodologies for extrac-
tion and quantification of MPs within the same environmental

compartment can vary significantly between studies, hamper-
ing the comparison of spatial and temporal patterns of MP
abundance. Both sampling strategies and equipment can affect
the quality and quantity of MPs reported [2, 8–13]. A wealth
of studies on MPs has focused on marine habitats and
highlighted the need for future research to investigate further
their environmental implications and potential impacts on
aquatic organisms. In comparison, the body of knowledge in
terrestrial and freshwater ecosystems is limited, although sev-
eral studies addressed this issue in recent years [6, 14–17].
Among several other land-based sources of MP pollution,
wastewater treatment plants (WWTPs) have received atten-
tion as they have been identified as terrestrial pathways of
MP emissions into aquatic ecosystems [4, 5, 18–27].
Therefore, assessment of the presence and quantification of
MPs in effluent discharges and sewage sludge applied to land
is a high priority, to enable the risks to be assessed.

It is important that MP detection methodologies are devel-
oped that are simple, accurate and efficient, in terms of both
time and cost, so that these dynamic and highly variable
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wastewater system flows can be effectively monitored
[28–30]. With regard to the size definition of MPs, no official
consensus has yet been reached. However, 1 mm or 5 mm are
the most commonly used upper size limits [31–33]. The lower
size bound has less consensus, and the definition of
nanoplastics has to be taken into account. It has recently been
suggested that a cut-off of 1 μm is considered [31, 34, 35].
Some studies have shown that around 60% of MPs found in
the final effluent ofWWTPs were smaller than 100 μm [4, 21,
23, 25, 36–38]. However, the sub-hundred-micron size range
has not been frequently fully investigated because of the large
mesh size often used for sample collection as well as technical
challenges associated with examining smaller size fractions
[6, 12, 29, 39]. The large surface area-to-volume ratio makes
the assessment and quantification of smaller-size-range MPs
important in understanding their potential eco-toxicological
impacts [30, 40–44]. Difficulties in reaching consensus to-
wards a methodological standardisation are hindered by
wastewater and sludge being complex and organic-rich matri-
ces. Degradation of organic matter is a major limiting step in
the extraction process in terms of the time and costs associated
with removal.

The following section reviews the methods currently ap-
plied to decompose the organic component for the detection of
MPs in wastewater. It then discusses optimised digestion treat-
ment, followed by density separation with zinc chloride
(ZnCl2) and analysis of the samples through Fourier transform
infrared (FT-IR) spectroscopy. The performance of the chem-
ical characterisation of MPs is imperative to correctly identify
and quantify these pollutants in the environment [45–47].
Several techniques can be applied to identify polymer types,
with the most widely used being spectroscopy methods such
as FT-IR and Raman spectroscopy [47–49]. These techniques
are non-destructive and allow for a relatively fast identifica-
tion of MPs in environmental samples, when used in combi-
nation with automated chemical imaging processing to obtain
information on abundance, size and polymer type. Moreover,
when Raman and FT-IR spectroscopy are coupled with mi-
croscopy, particles down to a size of 1 μm and 10–20 μm can
be detected, respectively [48–51]. These two analytical tools
present their own advantages and disadvantages related to size
resolution, measurement time and spectra acquisition modes.
They therefore are considered complementary techniques, and
the choice mainly resides on the scope of the research [48,
52–54]. In this study, micro FT-IR (μFT-IR) was chosen for
MP characterisation as the targeted size range was between 38
and 100 μm.

Current digestion methods in wastewater research

The quality of an analytical methodology resides in the reli-
ability of each step: from sampling, to organic and inorganic
matter removal, and quantitative and qualitative MP

identification techniques. Establishing the optimal digestion
method for an application requires four factors to be consid-
ered: (1) the removal efficiency of the technique and digestion
time; (2) the potential damage to MP particles including spec-
tral changes before and after the treatment (if spectroscopic
analyses are performed); (3) cost; and finally, (4) the recovery
rate in spiking experiments. The most common methodolo-
gies in wastewater research are hydrogen peroxide (H2O2) and
Fenton reagent where iron (II) sulphate (FeSO4) acts as a
catalyst to oxidise the organic component in the presence of
H2O2 [7, 29, 55–58]. This is also referred to as the wet perox-
ide oxidation (WPO) method that was developed by the
National Oceanic and Atmospheric Administration Marine
Debris Program [59]. Other widely used methods to extract
MPs from biota, sediments and seawater include alkaline (e.g.
sodium hydroxide, NaOH; potassium hydroxide, KOH), acid-
ic (e.g. hydrochloric acid, HCl; nitric acid, HNO3; perchloric
acid, HClO4) and enzymatic treatments (e.g. protease-K) [11,
60, 61]. However, it has been shown that acids and alkalis can
degrade some plastic polymers such as polyester fibres (PES),
nylon (PA), polyethylene (PE), polyvinyl chloride (PVC),
polyethylene terephthalate (PET), poly methyl methacrylate
(PMMA) and polyurethane (PU) [58, 62–65].

In an important study, Hurley et al. (2018) investigated the
impact of four reagents (H2O2 at 60 °C and 70 °C, Fenton,
NaOH and KOH) on organic-rich samples such as soil and
sludge matrices. They confirmed that NaOH treatment was
inappropriate due to damaging effects on multiple polymer
types. KOH caused less damage to MPs (except for polycar-
bonate), but both KOH and NaOH were found to be unsuit-
able due to their low efficiency at degrading cellulose and
chitin, which are common components of soil and sludge.
As for 30% H2O2, visual changes of the MP polymers were
observed at both test temperatures (60 °C and 70 °C), whereas
no impact was found when Fenton reagent was used (<40 °C)
[55]. Although higher temperatures would promote degrada-
tion of organic matter [66], recent work has argued that tem-
peratures above 60 °C cause losses of some plastic polymers.
For this reason, a maximum temperature of 50 °C represents a
safe cut-off to avoid any losses [22, 64, 67, 68]. Organic
degradation rates using the WPO method were also greater
than the H2O2 treatment alone, even at 70 °C. This might be
explained by Fenton reagent requiring a low pH (range 2–4) to
maximise degradation of organic material, allowing a more
successful degradation than H2O2 treatment alone [55, 68,
69]. This has also been confirmed by visual comparison of
different filtered sludge samples after separate treatment with
H2O2 and Fenton reagent [58].

Other studies have also shown that PE, polypropylene
(PP), PET and PES, PVC, polystyrene (PS), PU and PA are
resistant to WPO, with no change observed to MP size and
spectra before and after treatment. Together these polymers
account for 92% of global plastic demand [22, 55, 56, 58, 63,
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64, 68, 70, 71]. It is important to perform MP recovery exper-
iments to validate the methodology applied, although it is
challenging to cover the wide range of polymers present in
the environment. Studies using Fenton reagent that have
spiked their samples with a known concentration of MPs have
obtained relatively high extraction efficiency. Moreover,
when WPO is performed in combination with density separa-
tion using ZnCl2 solution, the combination of both techniques
and the order in which they are conducted do not impact
recoveries [5, 7, 55, 72–74].

Finally, enzymatic treatments have been proved to be effi-
cient at purifying organic material from wastewater samples.
However, these methods have the disadvantage of being cost-
ly and time-consuming (taking up to 2 weeks or longer) and
are not feasible for the processing of large numbers of samples
[7, 38, 39, 75, 76]. Interestingly, this was further investigated
by Rodrigues et al. (2018) who compared Fenton reagent
alone and in combination with enzymes and concluded that
both are equally effective, but WPO represented the ideal
compromise due to simplicity and time and cost-
effectiveness of the procedure [56].

Multiple digestions with Fenton reagent

A variation of the WPO technique has been suggested and
presented by Dyachenko et al. (2017) [72]. They performed
sequential digestions with Fenton reagent and obtained clean-
er samples from their experiments, but highlighted the need
for validation of this technique with samples spiked withMPs.
In wastewater research, spiking experiments have sometimes
been conducted with aqueous samples to avoid background
interference or by testing manufactured MPs >100 μm [55,
72, 77]. Among those studies where the WPO method was
applied and recovery experiments were performedwith waste-
water and sludge samples, the smallest sizes investigated
ranged from 63 to 90 μm (Table 1) [5, 39, 78].

Another recent study reported using a multiple digestion
method, but no details were given about the procedure and
recoveries obtained [5]. The aim of this study was to optimise
the digestion technique with Fenton reagent, by carrying out
multiple digestions based on the work of Dyachenko et al.
(2017) [72]. To verify the method’s reliability, three different
types of environmental matrices (raw sewage, final effluent
and sludge) underwent one or more WPO treatments.
Furthermore, recovery experiments with MP sizes down to
38–50 μm were conducted in triplicate on a separate set of
samples using the same environmental matrices, which were
also subjected to one or multiple digestion cycles. The paper
presents a detailed description of the optimised technique that
it is simple, cost-effective and more time-efficient compared
to current alternative methods.

Materials and methods

Microplastic extraction

Sample collection and storage

Wastewater and sludge samples were obtained from a munic-
ipal secondary wastewater treatment plant in the South of
England, UK, that discharges into a nitrogen-sensitive water-
course. It serves a population equivalent of approximately
410,000 and treats almost 190,000 m3 d−1 of wastewater un-
der dry weather flow. After passing through a 6 mm screen,
raw sewage undergoes primary sedimentation followed by
secondary treatment in an activated sludge process configured
for biological nitrogen removal, with aerobic and anaerobic
zones to promote nitrification and subsequent denitrification.
The activated sludge mixed liquor is then passed through a
final sedimentation tank before the final effluent is discharged.
The primary and secondary sludge are mixed before anaerobic

Table 1 Reported MP recovery experiments using Fenton reagent. Sample type and spiking materials are shown along with recoveries

Size and polymer type of manufactured MPs used Type of sample used for recovery Recovery (%) Reference

200 μm PS beads Blank aqueous sample 87 [72]

850–1000 μm PE beads Sludge and soil close to 100 [55]

425–500 μm PE beads Sludge and soil 92–98 [55]

322–395 μm PET fibres Sludge and soil 79–86 [55]

100 μm PS beads Raw 77.7 [39]

80–150 μm high-density PE particles Raw 57.6 [39]

90 μm PS beads Not specified 89.34 [5]

1000 μm PS beads Not specified 99.02 [5]

2–4 mm PVC, PP and low-density PE particles Influent, waste activated sludge and effluent 100 [77]

< 63 μm low-density PE particles Milli-Q water 93.6 [77]

63–90 μm PA particles Sludge 52.4 [78]
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digestion, pH amendment and disposal to land. Samples were
collected on the same day in August 2019 at three stages of the
treatment: raw sewage after 6 mm screens (500 ml), final
effluent (2.5 L) and sewage sludge (10 g, wet weight: com-
posed of 5 g of primary sludge and 5 g of secondary sludge).

Compared to other MP studies in wastewater research,
smaller sample volumes were taken as it was intended to in-
vestigate MPs within the 38–100 μm size range [67, 79]. The
sample volumes and weights were informed by preliminary
tests (see Supplementary Information (ESM_1), Table S1),
which had shown high concentrations of micro-particles.
These volumes were appropriate to target the 38–100 μm
MP size range and to avoid excessive numbers of MPs being
retained on the filters, which would have hampered the iden-
tification and characterisation of the particles in the final step
of the extraction process (see section "µFT-IR analysis"). On
the day of collection, wastewater samples were transported to
the laboratory in plastic storage containers (made of high-
density PE) and sludge samples in glass bottles, where sam-
ples were filtered through 38 μm stainless steel sieves
(Endecotts Ltd., London, UK). The material retained on the
sieves was rinsed three times with ultrapure water (Milli-Q
Direct 8 Water Purification System; Merck Millipore) and
stored in the freezer at −18 °C until further analysis. The
sludge sample was immediately weighed and stored in the
freezer. All samples were stored in plastic jars previously
cleaned and rinsed thoroughly three times with ultrapure wa-
ter. Subsequently, the samples were defrosted at room temper-
ature and poured into glass beakers, which were loosely cov-
ered with foil and transferred into an oven set at 50 °C to
remove the excess water, until ca. 25–50 ml of sample was
left in the beaker.

Organic matter removal

The first step of analysis was the removal of the organic matter
with Fenton reagent, which was performed under a fume
hood. As mentioned above, samples were not completely
dried but kept damp as this facilitated the digestion reaction.
Raw sewage, final effluent and sludge samples were all treated
in the same way. All reagents were freshly prepared each time
and filtered (except for H2O2) prior to analysis to reduce con-
tamination; 100 ml of 0.05M FeSO4 solution (iron II sulphate
heptahydrate, ACS reagent, >99%; Sigma-Aldrich) [75] was
prepared and poured into the glass beaker, followed by the
addition of 100 ml of 30% H2O2 (hydrogen peroxide 30%
w/v, 100 volumes, Extra Pure SLR, Fisher Chemical; Fisher
Scientific). FeSO4 was pre-filtered using cellulose nitrate
membrane filters (Sartorious™ cellulose nitrate membrane
filters, 47 mm, and 0.45 μm pore size). Temperature, pH
and H2O2/FeSO4 ratio are important factors that play a key
role in the catalytic oxidation. As this combination generates
an exothermic reaction, temperature was kept below 50 °C

using an ice bath to preserve the MP polymers. A 1 M sodium
hydroxide solution (sodium hydroxide, Extra Pure, SLR, pel-
lets, Fisher Chemical; Fisher Scientific), pre-filtered using a
PTFE membrane filter (0.2 μm pore size), was used to main-
tain pH between 3 and 4, to prevent the reduction of soluble
iron species reactingwith H2O2 [39, 69]. To avoid overflow of
the high volumes of H2O2 and FeSO4, 600 ml glass beakers
were used to treat raw and sludge sewage samples, while
400 ml glass beakers were used for final effluent samples.
During the digestion, samples were loosely covered with foil.
The total reaction time, measured by the presence of visible
bubbles in the samples, ranged from half an hour up to 2 h,
after which only small bubbles were present. The samples
were then left to cool overnight covered with foil. In order to
dissolve the excess of ferric precipitates present in the mixture,
ca. 10 ml of sulphuric acid was slowly added with a glass
pipette to each sample (ca. 250 ml). The solution was gently
stirred with the same pipette for a few seconds prior to filtra-
tion through a 38 μm sieve to rinse off the reagents. The
materials retained on the mesh of the sieve were transferred
into a beaker after being rinsed three times with ultrapure
water. Hexane treatment, as suggested by Dyachenko et al.
(2017), was not used as it could have affected polystyrene
and polycarbonate particles [72, 80]. The final effluent sample
underwent one digestion cycle, sludge underwent two cycles
and raw sample underwent three cycles, due to the visible
organic matter present in solution after implementing the first
digestion. In each cycle, 100 ml of FeSO4 and 100 ml of H2O2

were added once again to the beakers, and the procedure was
repeated.

Density separation and filtration

Density separation was performed using zinc chloride solution
(ZnCl2; 98 +%, extra pure, ACROS Organics™) with a den-
sity of 1.7 g cm−3 to remove inorganic debris and allow ex-
traction of the heavier polymers [74]. ZnCl2 solution was
freshly prepared each time and filtered before use over
0.7 μm glass microfiber filters (Fisherbrand™ Microglass
Fiber Filter Discs, 47 mm; Fisher Scientific). At the end of
the last digestion cycle and after filtration through a 38 μm
sieve, samples were rinsed three times with ZnCl2 instead of
ultrapure water, to prevent a change in density. Samples were
first poured into small beakers and then into 100 ml glass
separation funnels previously rinsed three times with ZnCl2,
kept closed with lids and left to settle for a minimum of 15 h,
after which 2/3 of the solution was drained out through the
valve [81]. The remaining solution was poured into a sieve
stack with a 100 μm sieve on top and a 38 μm sieve below to
discard the fraction larger than 100 μm. The separation
funnels were rinsed three times with ultrapure water to ensure
all particles were transferred from the funnel to the sieves.
Finally, the samples collected on the 38 μm sieve were rinsed
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with copious amounts of ultrapure water to wash the ZnCl2 off
and poured into small glass beakers. However, sometimes,
residues of ZnCl2 were still present in solution. To avoid
any interference with the spectral acquisition, two drops of
HCl acid were added with a glass pipette to the sample to
dissolve the residual salts. Immediately after, the samples
were vacuum-filtered using a 13 mm glass filter holder
(Cole-Palmer Advantec 311100 All-GlassMicroanalysis filter
holder, 13 mm; item #WZ-06644-84) fitted with a 25 mm
silver membrane filter (Sterlitech, 5 μm pore size) for the
subsequent μFT-IR analysis. After filtration, the silver filters
were dried overnight (>15 h) in an oven at 50 °C and then
stored in small petri dishes in the dark.

μFT-IR analysis

Once microplastics had been extracted through digestion and
density separation, the subsequent analysis steps were per-
formed at the UK Centre for Ecology and Hydrology
(UKCEH, Wallingford) and following the protocol reported
by Horton et al. (2021) [78]. The spectroscopic analysis was
carried out using a PerkinElmer Spotlight™ 400 μFT-IR imag-
ing system, in reflectance mode using a liquid nitrogen-cooled
linear array detector, covering the IR spectral range from 4000 to
700 cm−1. The spectral resolution was 8 cm−1, using four scans
per pixel, and the pixel resolution was 25 μm, representing a
good compromise between mapping time and signal-to-noise
quality of the spectra. This study used 38 μm as lower size
cut-off to give good detection at the 25 μm resolution. A back-
ground spectrum collection was also carried out on a clean area
of the silver filter, and the settings used were the same as for the
samples, except for the number of scans per pixel (90 scans/
pixel). An optical image of an area of ca. 13 × 13 mm was first
generated (Fig. 1a). Because of the size limit of the spectrum
image file created by theμFT-IR imaging system, a filter surface
area of 11.6 mm× 11.6 mm was mapped, which was equal to
92% of the whole filter area being scanned [82–84]. This was
considered sufficient to reliably estimate MP concentrations and
polymer types present in the samples [85]. The analysis of one
sample on the μFT-IR took between 2.5 and 3 h. Once the
spectra map images were acquired and the spectra of the parti-
cles generated, they were analysed through siMPle software to
obtain information about MP numbers, polymer type and size
[84]. An image with a map of the pixels representing the MPs
that have been identified was also obtained (Fig. 1b), and the
spectrum for each of the MPs was visualised and compared to a
spectral reference database (Fig. 1c).

siMPle has been developed by Aalborg University
(Denmark) in collaboration with Alfred Wegener Institute
(Germany) by combining the software MPhunter [82] with
the automated analysis of Primpke et al. 2017 [86]. siMPle
is freely available for download together with a reference da-
tabase (https://simple-plastics.eu/) [84]. In this study, the

AAU pipeline has been used for image analysis, and it is
based on a score threshold system [78, 81, 82, 84, 87]. This
software is used to compare the infrared spectra collected from
the μFT-IR against the spectra of the reference database for
automated analysis. A score for each particle is obtained based
on the quali ty of this match, ranging from 0.01
(misassignment) to 1 (certain assignment). This score is gen-
erated by an algorithm, through which the raw spectra, their
first derivatives and their second derivatives are correlated by
a Pearson correlation. This yields three Pearson’s correlation
coefficients, to which the user assigns global weights (k0, k1,
k2) [84]. The score is calculated by using the equation reported
in Liu et al. (2019) [82]. In this study, the Pearson’s correla-
tion coefficient for the first probability threshold was set at 0.
60, and the default settings of siMPle were used (k0 = 0, k1 =
1, k2 = 1). The second and third probability thresholds, which
help define the size of the particle, were left unmodified. At
present, there are no guidelines in the literature as to the most
appropriate thresholds [81]; therefore, we manually evaluated
and compared the spectra across different polymers types by
assigning different weights and score thresholds. A threshold
setup of 0.60 using the first and the second derivatives of the
raw spectra data yielded the best fit.

Method validation

Recovery experiments

In order to validate the multiple digestion steps, recovery ex-
periments (positive controls) were carried out with two polymer
types of manufactured MPs of different sizes. As the targeted
MP size in this study is in the 38–100 μm range, two sizes of
38–50 μm and 100 μm were chosen for testing. PMMA parti-
cles of 38–50 μm in size (Merck Sigma-Aldrich, product no.
463183) and 100 μm PS beads (Merck Sigma-Aldrich, product
no. 56969) were separately added to two sets of raw sewage
(500 ml), final effluent (2.5 L) and sludge (5 g, wet weight)
samples, processed in triplicate. The PS stock solution was
prepared by dissolving 100 μl of PS in 100 ml of ultrapure
water. For the PMMA stock solution, 0.01 g of PMMA was
dissolved in ultrapure water and filtered through the 38 μm
sieve, as the presence of PMMA particles smaller than 50 μm
(down to 15 μm) was observed under the microscope in pre-
liminary experiments. Particles were collected from the sieve
and dissolved in 100 ml of ultrapure water. A 1:50 dilution was
made to obtain the final PMMA working solution. The first set
of raw, final effluent and sludge samples was spiked with 2 ml
of PMMA final working solution, while the second set of sam-
ples was spiked with 1 ml of PS stock solution. The stock and
final working solutions were stirred gently on a magnetic mixer
prior to use. At the same time, separate controls for PMMA and
PS particles were performed to limit themargin of variability, as
a high variation in the numbers of MPs added to each triplicate
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sample had been observed in preliminary tests, due to agglom-
eration and fragmentation. Controls were carried out by
vacuum-filtering 2 ml of final working solution and 1 ml of
stock solution respectively over black polycarbonate filters
(0.2 μm pore size, 25 mm, Whatman™, Nuclepore™) using
a 25mmMillipore glass filter holder to facilitate counting at the
microscope.

Subsequently, raw, final effluent and sludge samples
underwent the digestion and the density separation treatments
described in sections "organic matter removal" and "density
separation and filtration", followed by the recovery filtration
step described above. The filtration through the 100 μm sieve
was not performed after density separation to avoid the reten-
tion of the 100 μm beads on the sieve. Final effluent samples
received one digestion cycle, sludge underwent two cycles
and raw samples underwent three cycles, as per
section"organic matter removal". Prior to filtration, 40 μl of
sodium dodecyl sulphate (SDS; dodecyl sulphate sodium salt,
99%, Acros Organics™) solution (4 g/L) was added to the
final extract solution (50 ml) to prevent agglomeration of vir-
gin MP particles. Finally, for both controls and samples, the
whole surface of each filter was screened, and particles were
visually counted under the light microscope (Olympus BH2-
RFCA; ×32 and ×100 magnification for the PS beads and
PMMA particles, respectively) (Fig. 2).

Procedural blanks and contamination

Careful attention was paid to prevent airborne contamination
in the field and the laboratory. Plastic containers and glass
bottles for wastewater and sludge collection were covered
with lids at all times on site, except for when collection was
carried out. Field blanks were taken in triplicate in order to
monitor the potential extent of contamination on site by using
ultrapure water in glass bottles. In the lab, all surfaces were
wiped down with a high-level disinfectant (Chemgene
HLD4L) prior to the experiments. All treatments were run
under a fume hood, except for the initial filtration step through
the sieves before sample storage. Lab coats made of 100%
cotton were worn at all times. To mitigate airborne contami-
nation, samples, glassware and equipment were always cov-
ered with aluminium foil both in and out of the fume hood,
except for when the reagents were poured into the beakers.
However, we acknowledge that although the use of materials
made of plastic was minimised, it could not be completely
avoided. All glassware and equipment (e.g. stainless steel
sieves and filter rigs) were cleaned using a 2% Decon™ de-
tergent solution (Decon 90; Fisher Scientific) before and after
use to prevent cross-contamination among samples.
Glassware and equipment were then rinsed thoroughly with
reverse osmosis water and then rinsed three times with

Fig. 1 aOptical image of the raw sample created by the μFT-IR imaging system; b spectra map of the MPs identified in the raw sample; c example of a
particle spectrum identified as belonging to the acrylates-polyurethanes-varnish polymer group (orange line) and its reference spectrum (blue line)
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ultrapure water prior to use. Procedural blanks (in triplicate)
were taken by using ultrapure water and underwent two diges-
tion cycles and the same treatment to which the samples were
subjected, covering all the steps from sample preparation to
filtration in order to assess contamination from plastic con-
tainers and air deposition. The blanks were vacuum-filtered
using a 13 mm glass filter holder unit (Cole-Palmer Advantec
311100 All-Glass Microanalysis filter holder, 13 mm; item
#WZ-06644-84) over 25 mm silver membrane filters
(Sterlitech, 5 μm pore size). Both field and procedural blanks
were analysed via μFT-IR, and the acquired infrared spectra
were run through siMPle software using the same settings
reported in section "µFT-IR analysis".

Results and discussion

Method validation

Recovery experiments were carried out to assess the efficien-
cy of a multi-digestion-steps procedure with Fenton reagent.
Raw, final effluent and sludge samples were separately spiked

with PS beads (100 μm) and PMMA particles (38–50 μm),
and experiments were performed in triplicates per sample
type. A mean count of the MPs added in the controls was
calculated within each set of triplicates. This value was then
used to obtain the recovery (%) for each replicate based on the
count of MPs recovered in the correspondent spiked sample.
The mean recovery by sample type for PMMA and PS beads
are shown in Fig. 3. In particular, with regard to PMMA par-
ticles, the mean recovery for raw, final effluent and sludge was
78.8 ± 23.2%, 60.9 ± 16.3% and 82.2 ± 9.9% (see ESM_1,
Table S2), respectively. As for the PS beads, it was 106.1 ±
5.5% for raw wastewater, 84.3 ± 19.4% for final effluent and
67.1 ± 10.3% for sludge (see ESM_1, Table S3). As the
spiked concentration was unknown, a control was carried
out for each sample to estimate the number of manufactured
MPs that were being added. In particular, the recovery for the
PS beads in the raw samples was over 100%. This is possibly
an artefact of the inherent variability of the spiking process
when adding the manufactured MPs. Table S3 (see ESM_1)
shows that the number of MPs recovered in the raw samples
slightly exceeded the average number counted in the controls.
The results of the spiking experiments show that multiple
digestions do not cause loss of MPs. The majority of studies
that have conducted recovery experiments have tested
manufactured particles that were larger than the size range of
the MPs being investigated. In this experiment, the MP sizes
selected included the lower and upper limit cut-off of the

Fig. 2 Photos of manufactured MPs used in the recovery experiments
taken under the light microscope (Olympus BH2-RFCA): a PMMA,
×100 magnification; b PS, ×32 magnification

Fig. 3 Mean recovery by sample type for a PMMA particles and b PS
beads
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targeted size range (38–100 μm) and underwent all the steps
of the analysis.

In order to reduce the inherent variability of preparing controls
during the spiking process, a mean value of MPs counted in the
controls was used. The recoveries obtained fall within the 60–
100% range of recovery efficiency that has been reported in the
literature (Table 1). In our study, smaller-sized manufactured
particles (38–50 μm) were tested in real environment samples.
It is important to note that when performing recovery experi-
ments, the sizes of the spiked MPs should be chosen based on
the targeted size range investigated, and that environmental sam-
ples should be used instead of clean aqueous solutions (Table 1).
The recovery experiments have shown the validity of this meth-
od with efficient recovery of the added manufactured MPs. The
size of the manufactured particles used in the spiking experi-
ments could affect their recovery, as smaller particles are more
likely to adhere to the vacuum filtration unit funnel due to a
greater surface charge resulting from their higher surface-to-
volume ratio. However, the surface characteristics of MPs pres-
ent for a long time in the environment might differ from those of
virgin plastic. Furthermore, the surface particle properties can
also vary based on the polymer type [88]. Therefore, future work
is required to explore the influence of polymer type and size on
the recovery of manufactured MPs, as well as other factors such
as other surfactant solutions and their interactions with both pris-
tine and environmentally weathered MPs. Previous research has
used SDS solution, and this has often been coupled with sonica-
tion. This may facilitate the recovery of particles [38, 39], but the
brittle nature of MPs means that they could potentially break
down in an ultrasonic bath. Therefore, the use of more invasive
techniques has been avoided in this study [1, 10].

Analysis of MPs

Here we report the results on the MP concentrations of the non-
spiked samples after analysis with siMPle software. Three types
of environmental samples were collected and treated with single
digestion (final effluent) or multiple digestions (raw and sewage
sludge). As mentioned in section "µFT-IR analysis", 92% of the
surface area of the filter was analysed via μFT-IR. The total
concentration of MPs present in each sample was estimated by
extrapolating the number ofMPs found to the whole surface area
of the filter. Estimates of MP counts ranged from 2102.16 MPs
l−1 in raw wastewater, to 129.13 MPs l−1 in final effluent and
1979.74 MPs g−1 of dry weight in sewage sludge (Table 2).

Procedural blanks were performed in triplicate, and the mean
of MP concentration was 7.25 MPs l−1 (Table 2). Field blanks
were also analysed to monitor the contamination, and the results
show an average of 2.37 MPs l−1 (Table 2).

The raw data of both samples and procedural blanks obtain-
ed from siMPle software on polymer type, shortest and longest
dimensions of the particles and their estimated mass and vol-
ume are reported in the Supplementary Information (ESM_2).
MP concentrations have not been corrected for recovery as only
two polymer classes (PS and PMMA) were tested [39]. It is
acknowledged that these results do not reflect the behaviour of
all the different classes of polymers. Sequential digestions with
Fenton reagent could also be applied for batch processing and
monitoring purposes. For instance, up to 10 samples (with sim-
ilar volumes to those used in this study) could be processed by
one person in 1 day. If three digestions are performed, it would
take a total of 3 days to digest 10 samples. Compared to recent
studies where enzyme purification has been performed, the di-
gestion time alone ranged from 4 days up to 13 days depending
on the amount and type of enzymes used [38, 39, 76]. In the
method presented in this paper, the density separation and fil-
tration of 10 samples over silver filters could be performed in
2 days and theμFT-IR analysis in 2–3 days. Therefore, the total
duration of the analysis process for 10 samples would be 7–
8 days. Other chemical analysis methodologies for polymer
characterisation could be performed as an alternative to μFT-
IR or to complement this technique, such as μRaman,
pyrolysis-gas chromatography-mass spectrometry and
thermos-extraction and desorption gas chromatography-mass
spectrometry [89]. However, in the present study, the suitability
of silver filters has not been tested with other techniques, as this
was beyond the scope of this work. We acknowledge that the
processing time for this last step of analysis could vary depend-
ing on what method is applied and the research question, sub-
sequently affecting the whole duration of the analysis. For in-
stance, μRaman, compared to μFT-IR, is more time-
consuming (up to several days for one sample). This is mainly
due to its lower detection thresholds (down to 1 μm), leading to
a smaller area of the filter being scanned, and to Raman imaging
systems and particle-finding algorithms that are in early stages
of development [89]. With regard to thermal degradation
methods, they have the disadvantage of not measuring particle
size, but the advantage of providing information about
chemicals and additives present on MPs. According to
Primpke et al. 2020, these methods are less time-efficient

Table 2 Estimates of MP counts
(per litre or grams of dry weight)
obtained in the raw sewage, final
effluent and sludge samples
examined and average of MPs l−1

present in procedural and field
blanks

Sample type Estimate of MPs l−1

(or MPs g−1 of dry weight*)
Average of MPs l−1 in
procedural blanks

Average of MPs l−1 in
field blanks

Raw 2102.16 7.25 2.37
Final effluent 129.13

Sludge *1979.74

3796 Cunsolo S. et al.



compared to Raman and FT-IR [89]. It should be further
highlighted that all these methods for the analytical characteri-
sation of MPs are complementary as they differ in the benefits
that they offer. Given the scope of this study, μFT-IR was
chosen because it provides a reliable and fast polymer charac-
terisation for the analysis of MPs >10 μm, and unlike thermal
degradation methods, it is non-destructive.

Conclusions

This study has demonstrated the optimisation of the digestion
treatment with Fenton reagent by performing multiple diges-
tion cycles to targetMPs in the sub-hundred-micron size range
in wastewater and sludge samples. In order to validate the
method, recovery experiments were conducted in triplicate
testing two polymer types of different sizes. It has been shown
that the WPO treatment performed in multiple cycles repre-
sents a valid alternative to current methods and a good com-
promise as a low-cost and time-efficient procedure, which also
preserves the microplastic particles. The development of
methodologies that are reliable, simple and relatively fast to
perform is important for the accurate detection and quantifi-
cation of MPs in the environment. Future research could in-
vestigate other polymer types and the recovery of smaller
manufactured MPs.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00216-021-03331-6.
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