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Abstract: Human adipose-derived stem cells (ASCs) show immense promise for treating inflammatory
diseases, attributed primarily to their potent paracrine signaling. Previous investigations
demonstrated that short-term Rapamycin preconditioning of bone marrow-derived stem cells
(BMSCs) elevated secretion of prostaglandin E2, a pleiotropic molecule with therapeutic effects in the
experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS), and enhanced
immunosuppressive capacity in vitro. However, this has yet to be examined in ASCs. The present
study examined the therapeutic potential of short-term Rapamycin-preconditioned ASCs in the EAE
model. Animals were treated at peak disease with control ASCs (EAE-ASCs), Rapa-preconditioned
ASCs (EAE-Rapa-ASCs), or vehicle control (EAE). Results show that EAE-ASCs improved clinical
disease scores and elevated intact myelin compared to both EAE and EAE-Rapa-ASC animals.
These results correlated with augmented CD4+ T helper (Th) and T regulatory (Treg) cell populations
in the spinal cord, and increased gene expression of interleukin-10 (IL-10), an anti-inflammatory
cytokine. Conversely, EAE-Rapa-ASC mice showed no improvement in clinical disease scores,
reduced myelin levels, and significantly less Th and Treg cells in the spinal cord. These findings
suggest that short-term Rapamycin preconditioning reduces the therapeutic efficacy of ASCs when
applied to late-stage EAE.

Keywords: adipose tissue-derived stem cells (ASCs); multiple sclerosis (MS); experimental autoimmune
encephalomyelitis (EAE); Rapamycin; immunomodulation; inflammation; demyelination

1. Introduction

Multiple sclerosis (MS) is an inflammation-driven autoimmune disease caused by aberrant
activation and infiltration of peripheral immune cells into the central nervous system (CNS),
and subsequent destruction of myelin-producing oligodendrocytes [1]. MS affects an estimated
2.3 million people worldwide, with over 85% of patients presenting with the relapsing-remitting form
of the disease [2,3]. Many of these patients develop secondary progressive MS—at which point, disease
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progressively worsens without periods of remission, and most available therapies lose their efficacy [4].
The current treatments for MS are primarily disease-modifying and immunosuppressive drugs that
target the inflammation, but not the demyelination and neurodegenerative damage that cause the
primary symptoms of MS [5]. It is, therefore, imperative to explore safe and effective regenerative
therapies to address these significant limitations. The experimental autoimmune encephalomyelitis
(EAE) animal model is the best characterized for the study of pathogenic mechanisms in MS. In the EAE
mouse, the induction of myelin-specific autoreactive T cells results in a cascade of CNS inflammation,
demyelinating lesion formation, and ascending motor function deterioration that peaks 2 to 3 weeks
post-immunization [6].

Adipose tissue-derived stem cells (ASCs) are characterized by their multipotency and self-renewal
capacity. However, it is their potent immunoregulatory properties that make them a promising
therapeutic intervention for autoimmune, inflammatory, and neurodegenerative diseases [7]. ASCs have
significant benefits over other tissue sources of mesenchymal stem cells (MSCs), such as bone marrow,
due to their ease of harvest, higher stem cell yield, enhanced secretion of immune-modifying factors,
and reduced immunogenicity post-transplant [8,9]. Our lab has repeatedly demonstrated the beneficial
effects of ASC treatment in the EAE model of MS. We have shown that ASCs suppress proliferation of
type 1 T helper (Th1) cells, promote T regulatory (Treg) cells and alternatively-activated macrophages
(M2), dampen pro-inflammatory cytokine production, reduce CNS infiltration and demyelinating
lesions, and improve overall disease outcomes [10–13]. The mechanisms driving the ability of ASCs
to slow or reverse disease progression in EAE are not fully defined, but there is substantial evidence
that the primary benefit of ASC therapy is their paracrine modulation of immune cell populations
rather than their engraftment into CNS tissues and direct replacement of oligodendrocytes. Melief et al.
demonstrated the superior secretory activity of ASCs compared to BMSCs, which is associated
with better suppression of PBMC proliferation and differentiation into mature dendritic cells [14].
This secretory activity is also correlated with the therapeutic activity of ASCs in the EAE model,
as inhibition of secreted immunomodulatory factors including PGE2 mitigates immunoregulatory
capacity [15].

One study by Payne and collaborators demonstrated the superior homing ability of human ASCs
to the inflamed CNS in the EAE mouse model, which was correlated with improved disease scores,
reduced CNS infiltration and demyelination in ASC-treated animals [16]. However, an investigation
by Constantin et al. showed that while a small subset of IV-injected GFP-labeled ASCs were observed
in spinal cord tissues up to 6 weeks post-treatment, less than 2% co-expressed mature glial markers,
making it unlikely that engraftment and transdifferentiation of ASCs contributes significantly to their
therapeutic effects [17]. Another report showed persistence of injected cells in the CNS of EAE mice up
to 25 days post-injection but did not assess engraftment or differentiation [18]. Additionally, this study
based these assumptions on human transcript levels in the EAE rat brain, not on the visualization of
cells. Thus, most evidence of ASC therapy in EAE suggests that their primary benefit derives from
their homing to sites of inflammation, modifying innate and adaptive immune cells through paracrine
activity, and changing the populations that then infiltrate the CNS and determine the course of disease.

Despite substantial preclinical success, translation to human trials faces numerous obstacles due
to limited and variable ASC immunosuppression in the post-transplant pathological environment.
Furthermore, donor characteristics such as advanced age or obesity status negate the therapeutic effect
of ASCs, and strategies to restore their efficacy would reduce donor-to-donor variability and drastically
widen the potential donor pool [13,19,20].

To address these challenges, in vitro preconditioning strategies have been developed to improve
both the survival and immune response of MSCs to stressful stimuli [21]. One of the most successful
strategies is the immunosuppressive drug Rapamycin (Rapa), which is FDA approved for treatment of
several cancers, both alone and in combination with chemotherapeutic agents [22]. The preconditioning
of MSCs with Rapa results in substantial improvement of their immunoregulatory function in animal
models of graft vs. host disease and cutaneous wound healing [23,24]. Moreover, Rapa exposure
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has demonstrated an effective reversal of MSC senescence [25–27], resiliency to apoptosis-inducing
stimuli [28], and robust enrichment of immunomodulatory function [29–31]. Furthermore, short-term
Rapa exposure caused an increase in both cyclooxygenase-2 (COX2) and prostaglandin-E2 (PGE2) in
bone marrow-derived mesenchymal stem cells (BMSCs) in vitro [30]. PGE2, the synthetic byproduct
of COX2 enzymatic activity on arachidonic acid, is typically upregulated in response to inflammatory
conditions and modulates innate and adaptive immune cells [32,33]. This upregulation correlated
with enhanced suppression of proliferation of peripheral blood mononuclear cells (PBMCs) and
splenocytes [30]. However, it has yet to be determined whether the beneficial effects of Rapa seen
in vitro can be extrapolated to ASC therapy for EAE.

Recent in vivo evidence from a study of BMSC administration in EAE mice suggests that one
BMSC-derived signaling molecule, PGE2, may constitute a substantial part of the therapeutic efficacy
of MSC therapy in EAE [34]. Matysiak et al. found that PGE2 inhibition following BMSC treatment
significantly reduced the therapeutic effect [34]. Intriguingly, PGE2 has exhibited both beneficial and
harmful roles in EAE progression. In early preclinical phases, PGE2 receptor expression and secretion
are enhanced in monocytes and macrophages. This is associated with elevated inflammatory T cell
activation and pro-inflammatory cytokine production [35]. In the later prodromal phase of EAE,
expression of PGE2 receptors is increased on T cells, which demonstrate enhanced migration, expression
of matrix metallopeptidase 9 (MMP9), and invasion of the lumbar spinal cord [35]. Additionally, PGE2
and its receptors are elevated in active lesions in EAE and MS [36], and knockout studies show that PGE2
activity is crucial for the development of EAE [35,37]. However, it has been demonstrated that PGE2
can also suppress disease progression by protecting or restoring the integrity of the blood–brain barrier
(BBB) if administered during a critical window [37]. Importantly, the immunological consequences of
PGE2 overexpression during active EAE remain unexplored.

Faced with conflicting evidence on the contribution of PGE2 to EAE pathophysiology, and the
reported elevation of PGE2 following short-term Rapa in ASCs, the present study investigates
the consequences of this preconditioning strategy in the EAE model of CNS inflammation.
Following disease induction, treatments with either ASCs (EAE-ASC), Rapa-preconditioned ASCs
(EAE-Rapa-ASC), or vehicle control (EAE) were compared for their ability to improve symptoms and
performance on the rotarod task, mitigate CNS cellular infiltration and damaged myelin, and modify T
cell populations in the lymphoid organs and the spinal cord. The data demonstrate that while ASCs
can improve most of the examined disease outcomes when applied at days post-induction (DPI) 20,
Rapa-ASCs proved to be no more effective than vehicle treatment. These findings, though unexpected,
highlight the necessity of in vivo assessment of novel treatment strategies. These findings suggest that
further investigation of Rapa-ASCs earlier in EAE may yield greater insight into the dynamic role of
PGE2 in disease pathogenesis.

2. Materials and Methods

2.1. Induction of EAE with Myelin Oligodendrocyte Glycoprotein (MOG)35–55 Peptide

Reagents for EAE induction were prepared by diluting MOG35–55 peptide (2 mg/mL; Cat #:
AS-60130-5; AnaSpec, Fremont, CA, USA) in UltraPure™ DNase/RNase-Free distilled water
(ThermoFisher, Waltham, MA, USA) and emulsifying with equal parts of Complete Freund’s Adjuvant
(BD Biosciences, Franklin Lakes, NJ, USA) containing 8 mg/mL Mycobacterium tuberculosis H37RA
(Cat #: 231131; BD Biosciences, San Jose, CA, USA) by passage through glass Luer-Lok syringes
and a micro-emulsifying needle for 45 min. The emulsion was then transferred to 1 mL Luer-Lok
syringes with 27G 1

2 ” needles. Pertussis toxin was diluted in UltraPure™ water (2 ng/µL; Cat #:
181; List Biologicals Laboratories, Campbell, CA, USA) and transferred to syringes as described
above. Female 6–8-week-old C57Bl/6 mice (Charles River Laboratories, Wilmington, MA, USA) were
anesthetized using 5% isoflurane gas then given bilateral subcutaneous flank injections of 100 µL MOG
emulsion near the base of the tail (200 µL total per mouse). Concurrently, mice were given a single



Cells 2020, 9, 2218 4 of 17

intraperitoneal (IP) injection of 100 µL pertussis toxin. Mice received a second IP injection of 100 µL
pertussis toxin 48 h later to complete the EAE induction process. Sham-induced control mice received
equivalent injections of Hank’s balanced salt solution (HBSS; ThermoFisher, Waltham, MA, USA).
All animal procedures were authorized by the Institutional Animal Care and Use Committee at Tulane
University and followed state and federal National Institute of Health’s animal welfare guidelines.
Mice were given food pellets and water ad libitum. Using a standard clinical rating scale, mice were
scored daily for disease progression by blinded researchers starting at 1 day post-induction (DPI) and
going through DPI 30. Briefly, mice were given a score from 0 to 5: 0 no detectable signs of disease;
1, tail atony with abnormal gait; 2, hind limb weakness; 3, partial hind limb paralysis; 4, complete hind
limb paralysis; 5, moribund or dead.

2.2. Rotarod Analysis

To assess balance and coordination in vehicle-treated (EAE, n = 5), ASC-treated (EAE-ASC, n = 5)
and Rapa-preconditioned ASC-treated (EAE- Rapa-ASC, n = 6) mice, the Roatmex-5 rotarod system
(Columbus Instruments, Columbus, OH, USA) for small rodents was used as previously described
by others [38,39]. Each experimental mouse was subjected to three training sessions from DPI 3 to
5. Following that, the mice were tested weekly at a fixed rotational speed of 4 rpm for a maximum
time of 2 min. The latency to fall across three consecutive trials was recorded and group mean ± SEM
was reported.

2.3. Cells and Cell Culture

Primary human ASCs were purchased from LaCell LLC (New Orleans, LA, USA). Individual ASC
cell lines were fully characterized individually prior to being pooled [19,20,40–42]. ASCs from 5 healthy
donors were pooled and expanded in complete culture medium (CCM) consisting of Minimum
Essential Medium alpha (Cat #: 12561; Gibco, Grand Island, NY, USA) supplemented with 10%
heat-inactivated Hyclone characterized fetal bovine serum (FBS, Cat #: SH30396.03; ThermoFisher,
Waltham, MA, USA), and 1% Penicillin-Streptomycin (Cat #: 15140122; 10,000 U/mL, ThermoFisher,
Waltham, MA, USA) in a humidified, 5% CO2 incubator. Media was changed every 2–3 days until cells
achieved 70–80% confluence. ASCs were used at passage 5 for the experiments.

2.4. Preparation and Injection of Cells

Based on our previous EAE studies, DPI 20 was chosen for late-stage treatment [11]. On DPI 20,
cultured ASCs were washed with 1XPBS (ThermoFisher, Waltham, MA, USA) then treated for 4 h with
either control CCM (ASCs) or Rapamycin-supplemented CCM (Rapa-ASCs; 500 nM; Cat #: 553211;
Millipore Sigma, Burlington, MA, USA). Cells were then washed with 1XPBS, harvested with 0.25%
trypsin/1 mM EDTA (Cat #: 25200056; ThermoFisher, Waltham, MA, USA), and live cells were counted
using a trypan blue exclusion assay. Finally, 1 × 106 ASCs or Rapa-ASCs were resuspended in 100 µL
HBSS and transferred to 1 mL Luer-Lok syringes with 27G, 1

2 ” needles for IP injections as previously
described [11,19,20]. Mice with a clinical score of 2 or greater on DPI 20 were randomly assigned to
treatment groups and received 100 µL IP injections of 1 × 106: ASCs (EAE-ASC, n = 5), Rapa-ASCs
(EAE-Rapa-ASC, n = 6), or HBSS (EAE, n = 5) for vehicle control.

2.5. Tissue Harvest and Processing

EAE mice were euthanized by CO2 asphyxiation and the spleens and spinal cords of each mouse
were harvested. Lumbar sections of spinal cords (L3–L6) were removed and stored at room temperature
(RT) in neutral buffered formalin for subsequent paraffin embedding. Remaining spinal cord tissue was
homogenized in Qiazol lysis reagent (Cat #: 79306; Qiagen, Germantown, MD, USA) and immediately
stored at −80 ◦C for future experiments. EAE spleens were mechanically dissociated by passing
through a 100 µm cell strainer using the blunt ends of syringes into a 50 mL conical tube and centrifuged
at 2000 rpm for 5 min to pellet. The cells were then incubated with red blood cell lysis (company info)
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for 5 min at RT. Splenocytes were then washed with PBS, counted using trypan blue exclusion assay,
and processed for flow cytometric analysis or stored in Qiazol lysis reagent at −80 ◦C for subsequent
RNA isolation.

2.6. Flow Cytometric Staining and Analysis

Splenocytes were counted and resuspended in 1XPBS containing the cell viability indicator
GhostDye 780 (Cat #: 13-0865; Tonbo Biosciences, San Diego, CA, USA) and incubated for 30 min at
4 ◦C. Cells were then washed twice with flow staining buffer containing 1% bovine serum albumin
(BSA; Sigma-Aldrich, St. Louis, MO, USA), spun down and resuspended in flow staining buffer
to a final concentration of 1 × 106 cells/mL. Next, cells were stained with fluorescently conjugated
anti-mouse antibodies against CD3 (Cat #: 11-0032-82, ThermoFisher, Waltham, MA, USA), CD4 (Cat #:
56004282, Fisher Scientific, Lenexa, KS, USA), and CD8 (Cat #: 12008183, eBioscience, San Diego, CA,
USA). Samples requiring intracellular staining were incubated in a fixation/permeabilization solution
(Cat #: 88-8824-00; ThermoFisher, Waltham, MA, USA) and stained with a fluorescently conjugated
anti-mouse antibody against intracellular FOXP3 (Cat #: 12400-31; SouthernBiotech, Birmingham, AL,
USA). All other samples were washed and fixed using 1% paraformaldehyde. Samples were stored
at 4 ◦C until flow cytometric analysis could be performed using a Gallios Flow Cytometer (Beckman
Coulter). A minimum of 1 × 104 events per sample were captured and analyzed with Kaluza Analysis
2.1 software (Beckman Coulter).

2.7. RNA Isolation and Quantitative Reverse-Transcription PCR (qRT-PCR)

Homogenized EAE spleens and spinal cords stored in Qiazol at −80 ◦C were thawed and RNA was
extracted from each sample using the Qiagen RNeasy Plus mini kit (Cat #: 74136, Qiagen, Germantown,
MD, USA). A total of 1 µg of mRNA per sample was synthesized into cDNA using the Applied
Bioscience High-Capacity cDNA Reverse Transcription kit (Cat #: 4368814, ThermoFisher, Waltham,
MA, USA). qRT-PCR was performed with SsoAdvanced Universal SYBR Green Supermix (Cat #:
1725271, Bio-Rad, Hercules, CA, USA). Mouse-specific, exon-spanning primers were designed using
the Primer-BLAST online tool4 and synthesized by Integrated DNA Technologies (Coralville, IA, USA).
Forward and reverse primer sequences used for qRT-PCR are listed in Table 1. All reactions were
performed in duplicate. Analysis was completed using the 2−∆∆Ct method to calculate the relative
fold-change in transcript expression after normalization to the reference gene, β-actin. Data for all
groups were normalized to the vehicle control group (EAE) for relative quantification of mRNA
expression levels.

Table 1. Primer Sequences.

Gene Forward (5′–3′) Reverse (5′–3′)

Beta-actin GTGGGCCGCCCTAGGCACCA TTAGCACGCACTGTAGTTTCTC

TGF-β CGTCAGACATTCGGGAAGCA TGCCGTACAACTCCAGTGAC

IL-10 GCTCTTGCACTACCAAAGCC CTGCTGATCCTCATGCCAGT

IL-4 GGTCTCAACCCCCAGCTAGT GCCGATGATCTCTCTCAAGTGAT

Tbet CACTAAGCAAGGACGGCGAA TAATGGCTTGTGGGCTCCAG

GATA3 TGTCTGCGAACACTGAGCTG CGATCACCTGAGTAGCAAGGA

FOXP3 CCCATCCCCAGGAGTCTTG ACCATGACTAGGGGCACTGTA

2.8. Histological Analysis of Spinal Cords

Formalin-fixed lumbar spinal cords were paraffin embedded, cut into 5 µm thick sections,
and mounted on microscope slides. Sections were stained with hematoxylin (Cat #: 7231; ThermoFisher,
Waltham, MA, USA) and eosin (Cat #: 7111; ThermoFisher, Waltham, MA, USA) to assess cellular
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infiltration, or Luxol fast blue (LFB; cat# IW-3005, IHC World, Ellicott City, MD, USA) to determine
myelin content. Slides were imaged using a Zeiss Axio Scan.Z1 slide scanner (Carl Zeiss Microscopy;
Gottingen, Germany), and brightfield images were analyzed using the ZEN3.1 image analysis software
(Carl Zeiss Microscopy). Four animals were randomly selected from each group, and at least 6 spinal
cord sections across a 400 µm region were analyzed by a blinded researcher. Myelin content and
cellular infiltration were calculated as the number of positive pixels/total number of pixels and reported
as % total area.

2.9. Statistical Analysis

All data are presented as the mean ± SEM. GraphPad PRISM 8 (GraphPad; San Diego, CA,
USA) was used to perform all statistical analyses. Results of single time points were compared using
one-way analysis of variance (ANOVA), and results across several time points were compared using a
mixed effects model of repeated measures ANOVA followed by a Tukey’s post-hoc test. Asterisks (*)
denote statistical significance between the HBSS vehicle-treated control group and the ASC-treated
or Rapa-ASC-treated groups: * p < 0.05; ** p < 0.01; and *** p < 0.001. Pound signs (#) denote
statistical significance between the ASC-treated and Rapa-ASC-treated groups: # p < 0.05; ## p < 0.01;
and ### p < 0.001.

3. Results

3.1. ASCs, but Not Rapa-ASCs, Modestly Improved Rotarod Performance in EAE Mice

Human ASCs have shown considerable therapeutic ability in the EAE mouse model of
MS [10,15,18–20,43,44]. Thus, we investigated whether a novel Rapa preconditioning approach
enhanced or inhibited their immunomodulatory capacity. After the induction of EAE, mice were
scored daily for disease progression using a common clinical rating scale. At DPI 20, a time point
representing the height of disease severity, animals were randomly assigned to receive either control
ASCs (EAE-ASC, n = 5), 4-h Rapa-preconditioned ASCs (EAE-Rapa-ASC, n = 6) or vehicle control
treatment (EAE, n = 5) (Figure 1A). We demonstrate that the ASC-treated group showed a marked
improvement in disease scores compared to both vehicle control and Rapa-ASC groups by DPI 30,
indicating the successful reduction in disease severity (Figure 1B).

Motor coordination and balance were analyzed weekly by fixed speed rotarod testing, to assess
functional recovery. One week before treatment (DPI 14) and before assignment to groups randomly,
all EAE animals showed deficits in rotarod performance compared to sham-induced animals (Figure 1C).
Twenty-four hours after ASC treatment, on DPI 21, the EAE-ASC group resulted in the most significant
improvement on the rotarod task demonstrated by the increased latency to fall. All animals began to
show signs of improvement by DPI 28.
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Figure 1. Rapa-ASCs do not reduce disease severity when administered at late-stage EAE.
(A) Experimental design illustrating the timeline of EAE induction and schedule of clinical and
behavioral assessments. (B) Severity of disease progression for each group over the course of 30 days,
as determined by traditional clinical scoring system. (C) Balance and motor coordination evaluation
with a fixed speed rotarod performance test. Reported as latency to fall. All data are presented
as the mean ± SEM. Statistical analysis was performed using a mixed effects model of repeated
measures analysis of variance (ANOVA) and Tukey’s post-hoc multiple comparisons test. Statistical
differences between EAE and EAE-ASC are marked with * p < 0.05; ** p < 0.01. Statistical differences
between EAE-ASC and EAE-Rapa-ASC are marked with # p < 0.05. Abbreviations: EAE, experimental
autoimmune encephalomyelitis; Rapa, Rapamycin; MOG, myelin oligodendrocyte glycoprotein.

3.2. Reduced Myelin Content of the CNS in ASC-, but Not Rapa-ASC-Treated EAE Mice

One of the most critical pathological hallmarks of MS and EAE is the extravasation of peripheral
immune cells into the CNS and subsequent destruction of myelin in the spinal cord. In this study,
histological analysis of EAE lumbar spinal cord sections was used to assess cellular infiltration and
demyelination. As demonstrated by hematoxylin staining of cell nuclei, there was no quantifiable
difference in spinal cord cellularity in EAE mice receiving ASC treatments compared with vehicle-treated
EAE mice (Figure 2A,B). Conversely, intact myelin levels, measured by dark blue LFB staining,
were significantly enhanced in EAE-ASC mice compared to EAE controls (Figure 2C,D). Thus,
ASC treatment at DPI 20 is capable of either preventing further myelin damage or repairing the extant
damage. Furthermore, Rapa-ASC treatment resulted in substantially reduced myelin levels compared
to both vehicle and EAE-ASC mice, suggesting that Rapa-preconditioned ASCs may exacerbate rather
than mitigate the demyelination seen in the EAE spinal cord.
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Figure 2. Rapa-ASCs result in reduced intact myelin when administered during late-stage EAE.
Representative images of (A) hematoxylin and eosin-stained and (C) Luxol fast blue-stained
lumbar spinal cord sections from vehicle-treated EAE (EAE), ASC-treated EAE (EAE-ASC) and
Rapa-ASC-treated EAE (EAE-Rapa-ASC) mice. Quantitative comparison of (B) cellular infiltration
and (D) myelin content in spinal cord sections between each group (n = 4). Quantitative data are
represented as the number of positive pixels divided by the total pixels of the section. Statistical analysis
was performed using a mixed effects model of repeated measures analysis of variance (ANOVA) and
Tukey’s post-hoc multiple comparisons test. Statistical differences between the mean ± SEM of EAE
and EAE-ASC are marked with ** p < 0.01; *** p < 0.001; and **** p<0.0001.

3.3. ASC, but Not Rapa-ASC, Treatment Resulted in Elevated T Cell Marker in the CNS of EAE Mice

The ability of ASC and Rapa-ASC therapy to modify both peripheral and CNS-permeated
T cell populations was examined in EAE mice at DPI 30. As demonstrated by flow cytometric
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analysis of splenocytes, EAE-ASC mice exhibited a trend of increased CD4+ Th cells and a decrease in
CD4+/FOXP3+ Treg cells (Figure 3A). Neither ASCs nor Rapa-ASCs significantly altered CD4+/CD8+ T
effector (Teff) populations in the spleen (Figure 3A). Gene expression levels of T cell transcription factors
(TFs) were robustly increased in the spinal cord after ASC, but not Rapa-ASC, treatment (Figure 3B).
T-box expressed in T cells (Tbet) and GATA Binding Protein 3 (GATA3) are essential transcription
factors for the differentiation of the pro-inflammatory Th1 and anti-inflammatory Th2 T helper cells,
respectively [45]. Tbet and GATA3 gene expression were upregulated in spinal cord tissue from
EAE-ASC mice compared to EAE vehicle-treated controls. Forkhead Box P3 (FOXP3) is a key TF that
drives the differentiation of Tregs, which play crucial roles in quieting inflammation and promoting
tissue regeneration [46]. Following ASC treatment, FOXP3 was increased more than 3-fold in the spinal
cord compared to vehicle-treated EAE mice. While Rapa-preconditioned ASCs show trends toward
enhanced Tbet and FOXP3 expression, this fails to reach statistical significance.
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Figure 3. ASCs and Rapa-ASCs differentially regulate immune cell populations in the spleen and spinal
cord 10 days post-treatment. (A) Cells isolated from spleens of vehicle-treated EAE (n = 5), ASC-treated
EAE (n = 5), and Rapa-ASC-treated EAE (n = 6) mice were analyzed for canonical T cell markers with
flow cytometry and represented as percentage of live cells. (B) Gene expression analysis of key T cell
transcription factors in whole EAE spinal cords was performed using RT-qPCR. Data are presented as
the mean± SEM. Data are normalized to the housekeeping gene β-actin and represented as the relative
fold change over vehicle-treated EAE controls. Statistical analysis was performed using a one-way
analysis of variance (ANOVA) and Tukey’s post-hoc multiple comparisons test. Statistical differences
between groups are marked with * p < 0.05; ** p < 0.01. FOXP3, Forkhead Box P3; Tbet, T-box expressed
in T cells; GATA3, GATA Binding Protein 3.
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3.4. IL-10 Gene Expression is Significantly Increased with ASC- and Rapa-ASC-Treated EAE Mice

We next examined gene expression of common T cell-derived cytokines that contribute to the
anti-inflammatory and pro-regenerative activity of both Tregs and Th2 cells (Figure 4). Tregs produce
high levels of transforming growth factor-beta (TGF-β) and interleukin-10 (IL-10), which both suppress
differentiation of Th1 cells from naïve CD4+ T cells and suppress antigen presenting cell function [47].
At the transcriptional level, IL-10 showed a significant increase in EAE-ASC and to a lesser extent
in EAE-Rapa-ASC mice as compared to EAE controls. No change, however, has been detected in
TGF-β or IL-4 gene expression. Activated Th2 cells produce high levels of IL-4, which can polarize
macrophages and microglia towards the anti-inflammatory, M2 phenotype. After the administration
of Rapa-ASCs to established EAE, a trend towards reduced IL-4 gene expression was observed in the
spinal cord when compared with the control ASC treatment. Altogether, these findings indicate that
ASC treatment is more effective than Rapa-ASCs at upregulating immune mediators in EAE.
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Figure 4. Gene expression analysis of T helper cell cytokines in the EAE spinal cord is altered by
ASC treatments. Whole EAE spinal cords were analyzed using RT-qPCR for the T helper cell-derived
cytokines TGF-β (A), IL-10 (B), and IL-4 (C). Data are presented as the mean± SEM. Data are normalized
to the housekeeping gene β-actin and represented as the relative fold change± SEM over vehicle-treated
EAE controls. Statistical analysis was performed using a one-way analysis of variance (ANOVA) and
Tukey’s post-hoc multiple comparisons test. Statistical differences between groups are marked with
* p < 0.05; ** p < 0.01. TGF-β, transforming growth factor-beta; IL-10, interleukin-10; IL-4, interleukin-4.

4. Discussion

Human ASCs have demonstrated robust therapeutic efficacy in preclinical models of
MS [10,15,18–20,43,44], primarily through their immunoregulation of innate and adaptive immune
cells [48,49]. However, clinical success with ASCs faces many challenges, including post-transplant
apoptosis and weakened immunomodulatory potency [50]. Previous work suggests that short-term,
but not long-term, inhibition of the mammalian target of rapamycin (mTOR) activity intensifies
mesenchymal stem cell immunomodulation. In BMSCs, short-term Rapa results in elevated production
of immune-modifying factors increased immunosuppression of PBMC or splenocyte proliferation,
and protection against apoptosis following exposure to ischemia or oxygen-glucose deprivation [28,51].
In the present study, we examined the effect of short-term mTOR inhibition with Rapamycin on the
immunomodulatory capacity of ASCs in the EAE mouse model of MS. Our results demonstrate that
control ASCs exhibited significant therapeutic benefits when administered at DPI 20, as indicated by
improved clinical scores, modestly better rotarod performance, and increased myelin levels in the
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lumbar spinal cord compared to vehicle-treated EAE mice. Surprisingly, EAE-Rapa-ASC mice failed to
show measurable improvements in clinical scores, rotarod ability, or myelin levels, suggesting that
Rapa preconditioning diminished the ASC immunoregulatory ability in vivo.

Prostaglandin E2, a pleiotropic molecule synthesized from arachidonic acid by COX2, has been
implicated in the immunoregulatory actions of mesenchymal stem cell therapies in the EAE mouse.
Anderson and colleagues have shown that mouse ASCs were able to suppress the pathophysiology
and progression of EAE through robust inhibition of dendritic cell maturation and subsequent T cell
proliferation [15]. Inhibition of COX2 abolished this effect on dendritic cells in vitro, indicating that
PGE2 may be primarily responsible for the in vivo results [15]. Another study by Matysiak and
collaborators demonstrated a therapeutic role for PGE2, but not IL-10 or TGF-β, in the EAE model.
They administered a COX2 inhibitor in parallel with BMSC treatment, which resulted in reduced
therapeutic efficacy [34]. While both groups have investigated PGE2 deprivation on stem cell therapies
in the EAE model, none have examined whether elevated PGE2 enhances therapeutic benefits.

In vitro evidence from BMSCs showed short-term Rapa-mediated elevation of PGE2 signaling
resulted in enhanced suppression of PBMC and splenocyte proliferation, suggesting that overexpressed
PGE2 may amplify the benefit seen in EAE mice [30]. Therefore, the present study applied short-term
Rapa preconditioning to ASCs and examined changes to therapeutic efficacy in EAE. The results
indicate that control ASCs robustly reduced symptom severity and modestly improved performance
on a fixed speed rotarod test. However, Rapa-ASCs demonstrated no similar improvements as
compared to vehicle-treated EAE mice, indicating a loss of therapeutic potency. Timing of ASC
administration may explain these findings, as others have shown that PGE2 plays temporally
distinct roles in EAE pathogenesis and progression. A report by Esaki et al. illustrated a critical
window of therapeutic benefit for PGE2 actions which may be mediated by its ability to prevent BBB
permeabilization [37]. Their findings may highlight an unexpected benefit to the current investigation.
Our laboratory previously demonstrated that human ASC therapy is highly effective prophylactically
and therapeutically when administered at peak disease severity, but is less efficacious at suppressing
disease progression if applied at DPI 8, a time point correlative to T cell extravasation into CNS and
emergence of initial motor symptoms [52–55]. Thus, if short-term Rapa elevate ASC-derived PGE2 and
PGE2 prevents BBB breakdown, future investigations may determine whether Rapa-ASC treatment at
this early pathogenic stage may inhibit extravasation of T cells.

Tregs play a crucial role in suppressing demyelination in EAE and are a critical factor of any
therapeutic strategy. Selective depletion of Tregs from the CNS results in rampant T effector proliferation,
pro-inflammatory cytokine production, and increased disease severity. Tregs have also exhibited
robust suppression of antigen presenting cells, limiting their ability to activate T effector cells [56].
These indicate a significant role for Tregs in modulation of T effector functions [57]. Furthermore,
ASC treatment of EAE mice at DPI 15 has demonstrated that enhancement of Treg markers accompanies
improved disease scores and reduced demyelination in the spinal cord [18,44]. The current study
revealed changes to Treg populations both in the periphery and in the spinal cord of EAE mice that
received ASC treatment, but not those that received Rapa-ASC treatment, at DPI 20. As revealed
by flow cytometric analysis of splenocytes, CD4+/FOXP3+ Tregs are considerably reduced after ASC
treatment, but not after Rapa-ASC or vehicle treatment. This correlates with a large transcriptional
upregulation of the essential Treg transcription factor, FOXP3, in the EAE spinal cord suggesting that
peripheral Tregs may be mobilized by ASC but not Rapa-ASC or vehicle treatment. Treg production
of the cytokines TGF-β and IL-10 are essential for their suppression of pathogenic autoreactive T
cells [58]. In the spinal cord, both ASC and Rapa-ASC treatment resulted in elevated gene expression
levels of IL-10, with ASCs resulting in the greatest elevation compared to vehicle-treated controls.
However, neither treatment significantly altered TGF-β transcripts in the spinal cord compared to
vehicle controls. The data indicate that while ASC treatment at DPI 20 may enhance spinal cord
markers of Tregs, Rapa-ASCs exhibit a reduced capacity to promote Treg functions in the CNS which
correlates with a loss of symptomatic and rotarod improvement.



Cells 2020, 9, 2218 12 of 17

Following activation by antigen-presenting cells, CD4+ T cells also differentiate into a variety of T
helper phenotypes depending upon the cytokine milieu [59]. Th1 cells are classically pro-inflammatory
and require the transcription factor Tbet for differentiation. In MS, Th1 cells are highly enriched in
blood and CSF and secrete encephalitogenic cytokines that drive disease progression [60]. Th2 cells are
considered anti-inflammatory and differentiate due to the activity of the transcription factor GATA3.
In EAE, Th2 cells have displayed both pathogenic and immunoregulatory activities. Th2 cytokines
can redirect autoreactive Th17 cell trafficking away from the CNS [61] and indirectly suppress Th1

cell function by regulating antigen-presenting cell activity [62]. However, they can also induce or
exacerbate EAE in adoptive transfer models [63]. In EAE, both early and late therapeutic application
of ASCs demonstrated immunomodulation of T cell cytokines, showing preferential promotion of IL-4
and IL-10 with concomitant suppression of IFN-γ [18]. The current study interrogated Th1 and Th2

cell subsets to determine the immunomodulatory action of ASCs and Rapa-ASCs in the spleen and
spinal cord. Flow cytometric analysis of splenocytes revealed a trend towards increased CD4+ Th
cells in the ASCs, but not the Rapa-ASCs, treated spleen, suggesting that control ASCs have stronger
immunoregulatory potential than Rapa-ASCs. A parallel effect was observed in the spinal cord,
with both Tbet and GATA3 gene expression showing more significant upregulation in EAE-ASC than
EAE-Rapa-ASC mice. However, the levels of IL-4 mRNA, an anti-inflammatory cytokine that both
induces and is produced by Th2 cells, were not significantly different between groups.

Our data show that Rapa-ASCs resulted in significantly lower levels of Th2 cell differentiation
markers, and a trend in lower Th1 and Treg markers compared to control ASCs. Furthermore,
examination of the Treg and Th2 cell-associated cytokines TGF-β1, IL-10, and IL-4 revealed a trend
toward lowered cytokine expression in the spinal cord of EAE-Rapa-ASC mice compared to control
ASCs. Taken together, these findings suggest that the ability of Rapa-ASCs to modulate T cell
differentiation and cytokine production after transplant into the EAE pathological environment is
dampened compared to control ASCs. This may at least partially explain why intact myelin is lower in
this group than both ASC and vehicle-treated controls. The balance of T cells is critically important for
MS and EAE intervention, as was revealed by an investigation of global CD4+ T cell depletion in MS
patients which resulted in no clinical benefit [64]. Based on our transcriptional data, we propose that
control ASCs, but not Rapa-ASCs, may shift the balance in favor of Treg and Th2 cells over Th1 cells and
promote a CNS environment more favorable to oligodendrocyte protection, repair, or regeneration.

Th1-derived cytokines including IL-2, IL-12, and IFNγ promote further proliferation of Th1 cells
and inhibit proliferation of Th2 cells [65,66]. Th2-derived cytokines including IL-4 and IL-10, promote
expansion of Th2 cells and inhibit the proliferation and function of Th1 cells [65,66]. Tregs suppress T
effector and M1 macrophage activity, and their depletion in EAE mice resulted in elevated Teff and
macrophage proliferation and exacerbated disease severity [57].

While the focus of the current work was on T cell populations and associated cytokines, these play a
crucial regulatory role in the activation of antigen-presenting cells such as infiltrating macrophages and
resident microglia. Th1-derived cytokines activate M1-type microglia [67], while Th2-derived cytokines
activate M2-type macrophages and microglia [68,69]. M1 activated macrophages and microglia
have been found in early and active demyelinating lesions, suggesting their direct role in tissue
destruction [70–72]. Furthermore, these cells produce pro-inflammatory cytokines and chemokines
that activate astrocytes, impair the BBB, and recruit further encephalitogenic immune cells from the
periphery [73]. Conversely, M2 macrophages and microglia have been implicated in remyelination in
EAE [74]. Therefore, future investigations into macrophage and microglial phenotypes and associated
neuroinflammatory cytokines may shed light on the worsened myelin loss in the EAE-Rapa-ASC
spinal cord compared to both EAE and EAE-ASC animals.

Short-term Rapa exposure was hypothesized to enhance the therapeutic efficacy of ASCs.
However, results from this study indicate that this preconditioning strategy eliminated their robust
immunomodulatory effect. Rapa-ASCs were unable to preferentially promote Treg and Th cell subsets,
transcription of the anti-inflammatory cytokine IL-10, the increase in myelin levels, and improvement
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of rotarod performance when compared to ASC treatment. These findings emphasize that while novel
preconditioning approaches may show promise in vitro or in direct co-culture studies, it is imperative to
examine them in the context of physiologically relevant disease models. The disease course of MS and
EAE is dynamic, with constantly shifting immune populations. Future studies should be conducted to
determine whether this loss of therapeutic potential in Rapa-ASCs is limited to their application to
advanced-stage disease, or whether there may be a critical window for which elevated PGE2 secretion
is beneficial. The augmentation of ASC immunoregulatory capacity remains a significant obstacle
for translational success. This study reveals that short-term Rapa may not be a viable approach for
established EAE and should be interrogated for earlier disease applications. This work highlights the
importance of investigating novel treatment strategies in animal models of disease, as in vitro work
cannot effectively recapitulate the complexities of the in vivo pathological microenvironment.
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