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Spread and persistence of antibiotic resistance pose a severe threat to human health,

yet there is still lack of knowledge about reservoirs of antibiotic resistant bacteria

in the environment. We took the opportunity of the Joint Danube Survey 3 (JDS3),

the world’s biggest river research expedition of its kind in 2013, to analyse samples

originating from different sampling points along the whole length of the river. Due to its

high clinical relevance, we concentrated on the characterization of Pseudomonas spp.

and evaluated the resistance profiles of Pseudomonas spp. which were isolated from

eight sampling points. In total, 520 Pseudomonas isolates were found, 344 (66.0%)

isolates were identified as Pseudomonas putida, and 141 (27.1%) as Pseudomonas

fluorescens, all other Pseudomonas species were represented by less than five

isolates, among those two P. aeruginosa isolates. Thirty seven percent (37%) of all

isolated Pseudomonas species showed resistance to at least one out of 10 tested

antibiotics. The most common resistance was against meropenem (30.4%/158 isolates)

piperacillin/tazobactam (10.6%/55 isolates) and ceftazidime (4.2%/22 isolates). 16

isolates (3.1%/16 isolates) were multi-resistant. For each tested antibiotic at least one

resistant isolate could be detected. Sampling points from the upper stretch of the

River Danube showed more resistant isolates than downriver. Our results suggest that

antibiotic resistance can be acquired by and persists even in Pseudomonas species

that are normally not in direct contact with humans. A possible scenario is that these

bacteria provide a reservoir of antibiotic resistance genes that can spread to related

human pathogens by horizontal gene transfer.
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INTRODUCTION

Multiresistant bacteria are present in many surface waters (Girlich et al., 2011; Czekalski et al.,
2012; Tissera and Lee, 2013; Blaak et al., 2015; Maravic et al., 2015). Typically, evidence is
provided through fecal indicators, and mostly relates to short river sections or sampling at
individual points. Thus, investigations of whole water systems are rare, especially if the river
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passes through 10 riparian countries, like the River Danube.
Water samples from the third Joint Danube Survey (JDS3),
the world’s biggest river research expedition of its kind, offered
a chance for evaluating resistance of bacteria over a whole
river system. Based on these samples, a resistance profile of
Pseudomonas spp. over the course of the multinational River
Danube was created in our study.

Pseudomonas species can be naturally found in all surface
waters, lakes and rivers, but they are rarely found in drinking
water. Pseudomonas spp. can survive in both low and high
nutrition environments (Mena and Gerba, 2009) or even in
double distilled water and, in addition, can help Salmonellae
survive in this environment (Warburton et al., 1994). The whole
group of non-fermenting Gram negative bacilli is suspected
of establishing the basis for multiresistance in Gram negative
bacteria, as the members of this group carry multiple intrinsic
resistances and have the ability to acquire and evolve additional
resistances (Farinas andMartinez-Martinez, 2013). Pseudomonas
species are known to harbor multiple intrinsic and acquired
resistance genes, host several mobile genetic elements, and also
exchange them with other families of Gram negative bacilli
like Enterobacteriaceae (Juan Nicolau and Oliver, 2010; Pfeifer
et al., 2010). Hence Pseudomonas are known starting points of
several important carbapenemases families (Pfeifer et al., 2010).
The occurrence and spread of carbapenemases have become a
substantial global health problem, as they inactivate a substantial
antibiotic class.

The most common pathogen in this genus is Pseudomonas
aeruginosa. It causes a variety of different infections, from easy-
to-cure ear infections, serious infections of burn patients, to
severe lung infections which lead tomajor complications in cystic
fibrosis patients (Barbier andWolff, 2010; Azzopardi et al., 2014).
Besides Pseudomonas aeruginosa, other species e.g., Pseudomonas
putida or Pseudomonas fluorescens are also a cause for infections
in clinical settings (Gilarranz et al., 2013; Erol et al., 2014;
Bhattacharya et al., 2015; Mazurier et al., 2015).

The aim of the study was to evaluate the resistance profiles
of Pseudomonas spp. isolated at selected sites along the whole
course of the River Danube. Pseudomonas spp. were chosen for
various reasons: they belong to the native bacterial community in
surface waters, they are clinically relevant, and changes in their
natural resistance profiles indicate anthropogenic influence. This
study, therefore, aims at monitoring the presence of resistances
of Pseudomonas spp. to clinically important antibiotics along the
river course. Doing so, changes in the resistance profiles were to
be detected, if possible.

MATERIALS AND METHODS

Sample Collection
Samples were collected during the JDS 3, which was organized by
the International Commission for the Protection of the Danube
River (ICPDR).The ICPDR is a transnational body, which has
been established to implement the Danube River Protection
Convention. All Danube countries are member states of the
ICPDR on the base of the “Convention on Cooperation for the

Protection and Sustainable use of the Danube River” (Danube
River Protection Convention).

Between Aug. 12 and Sep. 26, 2013, surface water samples for
microbiological investigations were collected from 68 sampling
sites along the river Danube (JDS 3, 2015).

For each sampling site, water samples were taken at
three sampling points, on the left, in the middle and on the
right side of the River Danube. Samples were collected in
sterile 1-L glass flasks, from 30 cm below the river surface
(Figure 1, pink and violet dots, high resolution map is added as
Supplementary Figure S1). Duplicate volumes of the samples
(45ml) were filled into sterile non-toxic 50ml plastic vials
(Techno Plastic Products AG, TPP, Switzerland), containing
5ml glycerol (final conc. 10% v/v). The vials were shaken and
turned around to homogenize glycerol and water and after that
immediately stored at−20◦C on board of the JDS3 research ship.
After transfer to the home laboratory (beginning of October
2013) the samples were stored at −80◦C. Out of the 68 sampling
sites the four sites directly downstream from the cities Vienna,
Budapest, Novi Sad, and Bucharest were chosen for investigation.
In addition four non-city related sampling sites were chosen
(including the delta and near the starting point of the JDS3;
Table 1).

Isolation of Bacteria
The frozen samples were thawed and 15ml (left, middle, right
5ml each) were plated in 0.5ml portions on different selective
agars: Endo Agar, Xylose Lysine Deoxycholat Agar (XLD agar),
and Chromocult Coliform Agar (CCA), (all Merck, Austria).
Growth conditions were 37 ± 1◦C for 18–24 h. Identification
of Pseudomonas by MALDI-TOF-MS (matrix-assisted laser
desorption ionization time-of-flight mass spectrometry) was
per-formed as described previously (Jamal et al., 2014). A
single bacterial colony was deposited on the target slide,
followed by the addition of the matrix (VITEK MS-CHCA)
and air drying. Samples were processed in the MALDI-TOF-
MS spectrometer VITEK R© MS (Biomerieux, Austria). Microbial
identification was achieved by obtaining the spectra using
MALDI-TOF technology and analyzing the spectra with the
VITEK MS database. The peaks from these spectra were
compared with the characteristic pattern for the species, genus
or family of the microorganism, leading to identification of the
organism.

Antibiotic Susceptibility Testing
For all identified Pseudomonas spp., antibiotic susceptibility
testing was performed as recommended by the European
Committee on Antimicrobial Susceptibility Testing
(EUCAST) including recommended controls. Inhibition
zone diameters were interpreted according to EUCAST
guidelines (http://www.eucast.org/clinical_breakpoints/)
(EUCAST, 2013; Matuschek et al., 2014). Classification of
multiresistance of Pseudomonas spp. was evaluated according
to the Robert Koch Institut (RKI, Germany, http://www.rki.
de/EN/Home/homepage_node.html). The suspension for
inoculation was prepared from an over-night pure culture on a
blood agar (non-selective medium). Colonies were picked with
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FIGURE 1 | Overview of the JDS3 sampling points along the river Danube. The map was taken with kind permission of the ICPDR.

(http://www.danubesurvey.org/results).

TABLE 1 | Investigated sampling sites names and numbers according to JDS3, country and detailed location (ds = downstream, us = upstream).

E. coli [MPN/100ml]

Site Name Country Location rkm Left Middle Right

JDS03 Geisling Germany ds Regensburg 2354 1728 1739 1304

JDS10 Wildungsmauer Austria ds Vienna 1895 1044 917 1739

JDS22 DS Budapest Hungary ds Budapest 1632 4320 6792 6310

JDS28 US Drava Croatia/Serbia us tributary Drava 1384 2445 1998 2880

JDS36 DS Tisa, Serbia Serbia ds Novi Sad 1200 11060 9900 4960

JDS59 DS Arges Romania/Bulgary ds tributary Arges* 429 288000 720 1983

JDS63 Siret Romania Galati 154 7565 11851 7120

JDS68 St. Gheorge arm Romania river delta 104 4880 2424 2431

Basic microbiological parameters. MPN, most probable numbers; rkm, river kilometer. E. coli concentrations were determined according to ISO 9308-2 (JDS 3, 2015).

*Arges is the river flowing through Bucharest.

a sterile loop and suspended in sterile saline (0.85% NaCl w/v in
water) to the density of a McFarland 0.5 standard (DensiCheck,
Biomerieux, Austria). The suspension was then plated on
Mueller-Hinton Agar by using an automatic plate rotator (Retro

C80, Biomerieux, Austria). Antibiotic test disks were applied
firmly on the agar surface within 15 min of inoculation of
the plates. Plates were incubated at 36◦C for 16–20 h. After
incubation, inhibition zones were measured.
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TABLE 2 | EUCAST Clinical Breakpoints for Pseudomonas spp.

Antibiotic Antibiotic Susceptibly Resistant

centration on inhibition (including intermediate)

test disk (µg) zone (mm) inhibition zone (mm)

Piperacilin/tazobactam 30/6 ≥18 <18

Ceftazidime 10 ≥16 <16

Cefepime 30 ≥19 <19

Meropenem 10 ≥18 <18

Imipenem 10 ≥20 <20

Amikacin 30 ≥24 <24

Gentamicin 10 ≥15 <15

Tobramycin 10 ≥16 <16

Ciprofloxacin 5 ≥25 <25

Levofloxacin 5 ≥20 <20

The following antibiotics were tested:
Piperacilin/tazobactam (TZP), ceftazidime (CAZ), cefepime

(FEP), meropenem (MEM), imipenem (IPM), amikacin (AN),
gentamicin (GM), tobramycin (NN), ciprofloxacin (CIP),
levofloxacin (LEV), and sulfamethoxazole/trimethoprim (SXT)
(all Becton Dickinson, Schwechat, Austria; Table 2).

SXT was evaluated because sulfamethoxazole was part of
the chemical analysis of the River Danube water. There are
no sulfamethoxazole/trimethoprim breakpoints according to
EUCAST for Pseudomonas spp. To include the sensitivity of
Pseudomonas spp. to sulfamethoxazole/trimethoprim, diameters
of inhibition areas were evaluated and compared (SXT test discs
specification: sulfamethoxazole/trimethoprim: 1.25/23.75 µg).

Modified Hodge Test
To estimate the presence of carbapenemases, a modified Hodge
test was performed with all isolates resistant to at least one
carbapenem. In brief: after plating of a carbapenem sensitive
Klebsiella pneuomoniae (ATCC 700603) a 10 µg imipenem or
meropenem disc was placed in the center, and each test isolate
was streaked from the disk to the edge of the plate. After
incubation (37 ± 1◦C for 18–24 h) the plates were checked
for showing a “cloverleaf shaped” inhibition zone. Isolates
that produced carbapenemases enabled growth of the sensitive
Klebsiella closer to the antibiotic disk (Bennett et al., 2009).

Data Analyses
Statistical analyses were calculated with GraphPadPrism

TM
5.01

for Windows, GraphPad Software, San Diego California USA,
www.graphpad.com.

RESULTS

Species Composition of Isolates
In total, 520 Pseudomonas spp. were isolated, the fewest
isolates were obtained from JDS68 (32 isolates), and the
highest number could be isolated from JDS28 sample with
117 isolates (Table 3). The most abundant Pseudomonas species
were Pseudomonas putida (66.0%/344 isolates) and Pseudomonas

fluorescens (27.1%/141 isolates). Each of the other detected
species represented less than 1% of all isolates (five or fewer
isolates). Only two Pseudomonas aeruginosa were isolated, both
from JDS28.

Antibiotic Resistances
Wild type Pseuodomas species are susceptible to all tested
antibiotics except SXT (EUCAST, 2013). The highest number
of resistances was the one against meropenem with 158
resistant isolates (30.4%), 55 isolates (10.6%) were resistant
to piperacilin/tazobactam and 22 isolates (4.2%) resistant to
ceftazidime, 11 (2.1%) to imipenem and four (0.8%) to cefepime
(Table 3). In the fluoroquinolone group only six (1.2%) of
the isolates showed levofloxacin resistance, whereas 18 (3.4%)
isolates were resistant against ciprofloxacin. Resistance to
ciprofloxacin turned out to be the most frequent resistance of all
tested non beta-lactam antibiotics in this study. One isolate which
was resistant to levofloxacin was still sensitive to ciprofloxacin.
Resistance to aminoglycosides was very rare, two isolates were
resistant to amikacin and gentamicin respectively and only
one isolate showed no susceptibility to tobramycin (Table 3).
The 11 isolates resistant to imipenem were also resistant to
meropenem and were positive in the modified Hodge test,
indicating carbapenemase activity. 327 (62.9%) isolates were
susceptible to all tested antibiotics with EUCAST breakpoints
(clinical resistance wild type), 128 (24.6%) isolates showed
resistance to one, and 49 (9.4%) isolates were resistant to two
tested antibiotics. The most common combination of resistances
was to meropenem and piperacillin/tazobactam. Sixteen isolates
revealed resistance to 3 or more antibiotics, including 12 (2.3%)
isolates with three resistances, three (0.6%) isolates with four
and one (0.2%) with five. Eight of them were classified as multi-
resistant as they were resistant to three or four different antibiotic
classes (Table 4).

The 12 isolates with three antibiotic resistances split in eight
different resistance patterns, the isolates with four resistances all
displayed the same pattern. The two Pseudomonas aeruginosa
were susceptible to all tested antibiotics. Out of all other
isolated species in this study at least one showed the EUCAST
defined antibiotic susceptibility wild type, susceptible to all tested
antibiotics (except SXT; Supplementary Table S1).

Four sampling points had less than 50% isolates with clinical
resistance wild type, JDS03, JDS10, JDS22, and JDS59. Three
sampling points revealed no isolate that was non-susceptible
to three or more tested antibiotics, JDS10, JDS63 and JDS68
(Table 4).

Surprisingly, the upstream sampling points (JDS03, JDS10,
JDS22, and JDS28) revealed higher proportions of resistant
bacteria than the downstream ones (Figure 2). Sampling
point JDS03 revealed the highest proportions of resistance
to ceftazidime (28.6% of JDS03 isolates) and ciprofloxacin
(25.7% of JDS03 isolates). Sampling point JDS22 showed high
rates for piperacillin/tazobactam (32.6% of the JDS22 isolates),
meropenem (69.6% of the JDS22 isolates), and imipenem (13.0%
of the JDS22 isolates).

SXT was chosen for testing as sulfamethoxazole was measured
directly during JDS3. Chemical analysis revealed a sampling
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TABLE 3 | Number of isolated Pseudomonas spp. at the investigated sampling points (SP) and the number of resistant isolates to the testes antibioitic.

SP TZP CAZ FEP MEM IPM AN GM NN CIP LEV No. Isolates

JDS03 3 10 1 15 0 0 1 0 9 1 35

JDS10 2 2 0 16 2 0 0 0 1 0 33

JDS22 15 5 0 32 6 1 0 0 2 0 46

JDS28 19 4 2 35 3 0 0 0 2 3 117

JDS36 6 0 0 10 0 1 1 1 1 1 109

JDS59 6 1 1 21 0 0 0 0 0 0 46

JDS63 3 0 0 21 0 0 0 0 2 1 102

JDS68 1 0 0 8 0 0 0 0 1 0 32

Sum 55 22 4 158 11 2 2 1 18 6 520

Tested antibiotics and their abbreviation: (TZP), piperacilin/tazobactam; (CAZ), ceftazidime; (FEP), cefepime; (MEM), meropenem; (IPM), imipenem; (AN), amikacin; (GM), gentamicin;

(NN), tobramycin; (CIP), ciprofloxacin; (LEV), levofloxacin.

TABLE 4 | Resistance pattern of isolates showing resistances to three or more of the tested antibiotics.

Isolate Species Resistance Pattern Multidrug Resistance (MDR)

JDS03PS007 Pseudomonas fluorescens CAZ, MEM, CIP MDR 3

JDS03PS016 Pseudomonas fluorescens TZP, CAZ, GM, MEM, CIP MDR 4

JDS03PS019 Pseudomonas putida TZP, MEM, CIP MDR 3

JDS03PS020 Pseudomonas fluorescens CAZ, MEM, CIP MDR 3

JDS03PS032 Pseudomonas fluorescens CAZ, CIP, LEV

JDS22PS016 Pseudomonas putida TZP, CAZ, MEM MDR 3

JDS22PS018 Pseudomonas fluorescens CAZ, IMP, MEM

JDS22PS032 Pseudomonas putida TZP, IMP, MEM

JDS22PS035 Pseudomonas putida TZP, IMP, MEM

JDS22PS043 Pseudomonas putida TZP, MEM, CIP MDR 3

JDS28PS083 Pseudomonas fluorescens CAZ, FEP, IMP, MEM

JDS28PS113 Pseudomonas fluorescens CAZ, IMP, MEM

JDS28PS115 Pseudomonas putida TZP, MEM, CIP, LEV MDR 3

JDS28PS117 Pseudomonas putida TZP, MEM, LEV MDR 3

JDS36PS036 Pseudomonas putida TZP, AN, GM, NN

JDS59PS020 Pseudomonas fluorescens TZP, CAZ, FEP

Multidrug resistance was assigned to an isolate if it revealed a resistance to three (MDR 3) or four (MDR 4) antibiotic classes. Antibiotic classes: acylureidopenicillins: (TZP)

piperacilin/tazobactam; cephalosporins: (CAZ) ceftazidime, (FEP) cefepime; carbapenems: (MEM) meropenem, (IPM) imipenem; aminoglycosides: (AN) amikacin, (GM) gentamicin,

(NN) tobramycin; fluoroquinolones: (CIP) ciprofloxacin, (LEV) levofloxacin.

site (JDS58) with elevated levels for sulfamethoxazole (Arges,
tributary) (JDS 3, 2015). The subsequent River Danube sampling
site JDS59 did not show significantly reduced diameters (p =

0.68) (Figure 3). JDS03 and JDS68 showed both elevated
diameters (6.59 mm JDS03, 8.13mm JDS68) but only JDS68
differed significantly from the other sampling points (p < 0.05).

DISCUSSION

The spread of antibiotic resistant bacteria, their distribution,
and their reservoirs in the environment are important issues.
Within the last years many different possible sources have been
intensively investigated to shed light on the spread of antibiotic
resistant bacteria. Farming and the spread of liquid manure are
known to contribute to the spread of multiresistant bacteria
(Sengupta et al., 2011; Friese et al., 2013). Recently, the focus

has been put on waste water, as bacteria of all kind and with
all possible genetic features are mixed up there. And a very
critical feature in waste water is the possibility that bacteria
harboring resistance exchange their resistance determinants with
other bacteria (Korzeniewska andHarnisz, 2013; Reinthaler et al.,
2013; Amador et al., 2015). Microorganisms from these and
other sources can be relatively easily flushed into surface waters
(Czekalski et al., 2012; Zurfluh et al., 2013; Hess and Gallert,
2014), but except for a few studies on relatively small rivers that
deal with this topic, the fate of deposited bacteria is quite unclear.

The distribution of susceptible and resistant Pseudomonas
spp. at the investigated JDS3 sampling points showed site-
specific differences. At the upstream sampling points, there
was a trend to more resistant bacteria (JDS03, JDS10, JDS22,
JDS28), and multiresistant Pseudomonas spp. could only be
detected in this part of the river. One reason for this finding
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FIGURE 2 | Proportion of isolates susceptible to all tested antibiotics (blue bars), resistant to one or two tested antibiotics (red bars) and resistant to

three or more tested antibiotics (green bars), at different sampling points. JDS03, JDS28, JDS63, and JDS68 are non-urban sampling sites, whereas JDS10

is ds Vienna, JDS22 ds Budapest, JDS36 ds Novi Sad and JDS59 is ds Bucharest. Kruskal-Wallis test revealed a non-Gaussian distribution with a p < 0.0001.

FIGURE 3 | Zone of inhibition diameters (mm) for SXT at the

investigated sampling sites. Bars show mean values (values given on top of

the bars, mm) and standard deviation errors bars (SD error bars) for each

sampling site.

could be the lower river water volume in the upstream parts
of the River Danube, which might result in less dilution of
the resistant microorganisms. Downstream from the cities of
Vienna, Budapest, and Bucharest (JDS10, JDS22, and JDS59 via
Argeş; Figure 3), the occurrence of resistant bacterial isolates was
also elevated, with anthropogenic influence very likely being the
reason for that.

Under similar non-selective isolation conditions Suzuki et al.
found no resistance to meropenem, gentamicin, amikacin, or
ciprofloxacin (Suzuki et al., 2013). A presence of only 8 (1.5%)
multiresistant Pseudomonas spp. present in three of the eight
sampling points seems to be a low number. But still, if we
extrapolate the number of 8 multiresistant Pseudomonaceae in a

collected volume of 75ml at the 5 sampling points (5× 15ml) to
1 liter, we might estimate over 100 multiresistant bacteria of the
Pseudomonas group in one liter of Danube water.

The isolates all over the course of the river Danube showed
high resistance rates against meropenem (9.2–69.6%). The
resistance against carbapenems in Pseudomonas spp. is mostly
mediated via efflux pumps (intrinsic resistance), especially in
water environment (Tacao et al., 2015). However, carbapenem
resistance poses a challenge for therapy, regardless of the
underlying mechanism. For example, Pseudomonas putida (66%

of all isolates in this study) is increasingly involved in hospital
infections (Kim et al., 2012; Molina et al., 2014). These infections
come up with severe complications and high mortality rates
(up to 40%). In most of these cases multiresistant Pseudomonas
putida was the reason for the infection or the nosocomial
outbreak (Kim et al., 2012).

This study is the first study investigating bacterial resistance
in a transnational river survey (2500 rkm). Although it was
limited by a small sample volume and a fixed time course, the
results of this study substantiate the occurrence of waterborne
Pseudomonas spp. with non-wild type resistance pattern in
the whole River Danube. Their presence and their distribution
suggest human influence.
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cefepime; (MEM), meropenem; (IPM), imipenem; (AN), amikacin; (GM), gentamicin;

(NN), tobramycin; (CIP), ciprofloxacin; (LEV), levofloxacin; and (SXT),

sulfamethoxazole/trimethoprim.

REFERENCES

Amador, P. P., Fernandes, R. M., Prudencio, M. C., Barreto, M. P., and Duarte,

I. M. (2015). Antibiotic resistance in wastewater: occurrence and fate of

Enterobacteriaceae producers of class A and class C beta-lactamases. J.

Environ. Sci. Health. A. Tox. Hazard. Subst. Environ. Eng. 50, 26–39. doi:

10.1080/10934529.2015.964602

Azzopardi, E. A., Azzopardi, E., Camilleri, L., Villapalos, J., Boyce, D. E.,

Dziewulski, P., et al. (2014). Gram negative wound infection in hospitalised

adult burn patients–systematic review and metanalysis-. PLoS ONE 9:e95042.

doi: 10.1371/journal.pone.0095042

Barbier, F., and Wolff, M. (2010). Multi-drug resistant Pseudomonas aeruginosa:

towards a therapeutic dead end? Med. Sci. (Paris) 26, 960–968. doi:

10.1051/medsci/20102611960

Bennett, J. W., Herrera, M. L., Lewis, J. S. II., Wickes, B. W., and Jorgensen,

J. H. (2009). KPC-2-producing Enterobacter cloacae and pseudomonas putida

coinfection in a liver transplant recipient. Antimicrob. Agents Chemother. 53,

292–294. doi: 10.1128/AAC.00931-08

Bhattacharya, D., Dey, S., Kadam, S., Kalal, S., Jali, S., Koley, H., et al. (2015).

Isolation of NDM-1-producing multidrug-resistant Pseudomonas putida from

a paediatric case of acute gastroenteritis, India.NewMicrobes New Infect. 5, 5–9.

doi: 10.1016/j.nmni.2015.02.002

Blaak, H., Lynch, G., Italiaander, R., Hamidjaja, R. A., Schets, F. M., and de

Roda Husman, A. M. (2015). Multidrug-resistant and extended spectrum beta-

lactamase-producing Escherichia coli in Dutch Surface Water and Wastewater.

PLoS ONE 10:e0127752. doi: 10.1371/journal.pone.0127752

Czekalski, N., Berthold, T., Caucci, S., Egli, A., and Burgmann, H. (2012). Increased

levels of multiresistant bacteria and resistance genes after wastewater treatment

and their dissemination into lake geneva, Switzerland. Front. Microbiol. 3:106.

doi: 10.3389/fmicb.2012.00106

Erol, S., Zenciroglu, A., Dilli, D., Okumus, N., Aydin, M., Gol, N., et al. (2014).

Evaluation of nosocomial blood stream infections caused by Pseudomonas

species in newborns. Clin. Lab. 60, 615–620. doi: 10.7754/Clin.Lab.2013.130325

EUCAST (2013). European Committee on Antimicrobial Susceptibility Testing

(EUCAST). Växjö.

Farinas, M. C., and Martinez-Martinez, L. (2013). Multiresistant Gram-negative

bacterial infections: Enterobacteria, Pseudomonas aeruginosa, Acinetobacter

baumannii and other non-fermenting Gram-negative bacilli. Enferm. Infecc.

Microbiol. Clin. 31, 402–409. doi: 10.1016/j.eimc.2013.03.016

Friese, A., Schulz, J., Laube, H., von Salviati, C., Hartung, J., and Roesler, U.

(2013). Faecal occurrence and emissions of livestock-associated methicillin-

resistant Staphylococcus aureus (laMRSA) and ESbl/AmpC-producing E. coli

from animal farms in Germany. Berl. Munch. Tierarztl. Wochenschr. 126,

175–180. doi: 10.2376/0005-9366-126-175

Gilarranz, R., Juan, C., Castillo-Vera, J., Chamizo, F. J., Artiles, F., Alamo, I.,

et al. (2013). First detection in Europe of the metallo-beta-lactamase IMP-15

in clinical strains of Pseudomonas putida and Pseudomonas aeruginosa. Clin.

Microbiol. Infect. 19, E424–E427. doi: 10.1111/1469-0691.12248

Girlich, D., Poirel, L., and Nordmann, P. (2011). Diversity of clavulanic acid-

inhibited extended-spectrum beta-lactamases in Aeromonas spp. from the

Seine River, Paris, France. Antimicrob. Agents Chemother. 55, 1256–1261. doi:

10.1128/AAC.00921-10

Hess, S., and Gallert, C. (2014). Demonstration of staphylococci with inducible

macrolide-lincosamide-streptogramin B (MLSB) resistance in sewage and river

water and of the capacity of anhydroerythromycin to induce MLSB. FEMS

Microbiol. Ecol. 88, 48–59. doi: 10.1111/1574-6941.12268

Jamal, W., Albert, M. J., and Rotimi, V. O. (2014). Real-time comparative

evaluation of bioMerieux VITEKMS versus Bruker Microflex MS, two matrix-

assisted laser desorption-ionization time-of-flight mass spectrometry systems,

for identification of clinically significant bacteria. BMC Microbiol. 14:289-014-

0289-0. doi: 10.1186/s12866-014-0289-0

JDS 3, I. (2015). Joint Danube Survey 3. A Comprehensive Analysis of DanubeWater

Quality. Vienna: ICPDR – International Commission for the Protection of the

Danube River.

Juan Nicolau, C., and Oliver, A. (2010). Carbapenemases in Pseudomonas spp.

Enferm. Infecc. Microbiol. Clin. 28 (Suppl. 1), 19–28. doi: 10.1016/S0213-

005X(10)70004-5

Kim, S. E., Park, S. H., Park, H. B., Park, K. H., Kim, S. H., Jung, S. I.,

et al. (2012). Nosocomial Pseudomonas putida Bacteremia: high rates of

carbapenem resistance and mortality. Chonnam Med. J. 48, 91–95. doi:

10.4068/cmj.2012.48.2.91

Korzeniewska, E., and Harnisz, M. (2013). Extended-spectrum beta-lactamase

(ESBL)-positive Enterobacteriaceae in municipal sewage and their

emission to the environment. J. Environ. Manage. 128, 904–911. doi:

10.1016/j.jenvman.2013.06.051

Maravic, A., Skocibusic, M., Cvjetan, S., Samanic, I., Fredotovic, Z., and Puizina,

J. (2015). Prevalence and diversity of extended-spectrum-beta-lactamase-

producing Enterobacteriaceae from marine beach waters. Mar. Pollut. Bull. 90,

60–67. doi: 10.1016/j.marpolbul.2014.11.021

Matuschek, E., Brown, D. F., and Kahlmeter, G. (2014). Development of the

EUCAST disk diffusion antimicrobial susceptibility testing method and its

implementation in routine microbiology laboratories. Clin. Microbiol. Infect.

20, O255–O266. doi: 10.1111/1469-0691.12373

Mazurier, S., Merieau, A., Bergeau, D., Decoin, V., Sperandio, D., Crepin, A.,

Barbey, C., et al. (2015). Type III secretion system and virulence markers

highlight similarities and differences between human- and plant-associated

pseudomonads related to Pseudomonas fluorescens and P. putida. Appl.

Environ. Microbiol. 81, 2579–2590. doi: 10.1128/aem.04160-14

Mena, K. D., and Gerba, C. P. (2009). Risk assessment of Pseudomonas aeruginosa

in water. Rev. Environ. Contam. Toxicol. 201, 71–115. doi: 10.1007/978-1-4419-

0032-6_3

Molina, L., Udaondo, Z., Duque, E., Fernàndez, M., Molina-Santiago, C.,

Roca, A., Porcel, M., et al. (2014). Antibiotic resistance determinants in a

Pseudomonas putida strain isolated from a hospital. PLoS ONE 9:e81604. doi:

10.1371/journal.pone.0081604

Pfeifer, Y., Cullik, A., and Witte, W. (2010). Resistance to cephalosporins and

carbapenems in Gram-negative bacterial pathogens. Int. J. Med. Microbiol. 300,

371–379. doi: 10.1016/j.ijmm.2010.04.005

Reinthaler, F. F., Galler, H., Feierl, G., Haas, D., Leitner, E., Mascher, F., et al.

(2013). Resistance patterns of Escherichia coli isolated from sewage sludge in

comparison with those isolated from human patients in 2000 and 2009. J.

Water. Health. 11, 13–20. doi: 10.2166/wh.2012.207

Sengupta, N., Alam, S. I., Kumar, R. B., and Singh, L. (2011). Diversity

and antibiotic susceptibility pattern of cultivable anaerobic bacteria from

Frontiers in Microbiology | www.frontiersin.org 7 May 2016 | Volume 7 | Article 586

http://journal.frontiersin.org/article/10.3389/fmicb.2016.00586
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Kittinger et al. Pseudomonas Resistance Pattern from JDS3

soil and sewage samples of India. Infect. Genet. Evol. 11, 64–77. doi:

10.1016/j.meegid.2010.10.009

Suzuki, Y., Kajii, S., Nishiyama, M., and Iguchi, A. (2013). Susceptibility

of Pseudomonas aeruginosa isolates collected from river water in Japan

to antipseudomonal agents. Sci. Total Environ. 450-451, 148–154. doi:

10.1016/j.scitotenv.2013.02.011

Tacao, M., Correia, A., and Henriques, I. S. (2015). Low prevalence of carbapenem-

resistant Bacteria in River Water: resistance is mostly related to intrinsic

mechanisms. Microb. Drug Resist. 21, 497–506. doi: 10.1089/mdr.2015.0072

Tissera, S., and Lee, S. M. (2013). Isolation of Extended Spectrum beta-lactamase

(ESBL) Producing Bacteria from Urban Surface Waters in Malaysia. Malays. J.

Med. Sci. 20, 14–22.

Warburton, D. W., Bowen, B., and Konkle, A. (1994). The survival and

recovery of Pseudomonas aeruginosa and its effect upon salmonellae in water:

methodology to test bottled water in Canada. Can. J. Microbiol. 40, 987–992.

doi: 10.1139/m94-158

Zurfluh, K., Hachler, H., Nuesch-Inderbinen, M., and Stephan, R. (2013).

Characteristics of extended-spectrum beta-lactamase- and carbapenemase-

producing Enterobacteriaceae Isolates from rivers and lakes in Switzerland.

Appl. Environ. Microbiol. 79, 3021–3026. doi: 10.1128/AEM.00054-13

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Kittinger, Lipp, Baumert, Folli, Koraimann, Toplitsch, Liebmann,

Grisold, Farnleitner, Kirschner and Zarfel. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 8 May 2016 | Volume 7 | Article 586

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive

	Antibiotic Resistance Patterns of Pseudomonas spp. Isolated from the River Danube
	Introduction
	Materials and Methods
	Sample Collection
	Isolation of Bacteria
	Antibiotic Susceptibility Testing
	Modified Hodge Test
	Data Analyses

	Results
	Species Composition of Isolates
	Antibiotic Resistances

	Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


