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Simple Summary: Soft tissue sarcomas are relatively rare malignant diseases. Part of the diagnosis
and follow-up includes medical imaging of the thorax for detection of lung metastases. A Python
script was created and trained using a set of lung X-rays and concordant CT scans from a high-volume
German-speaking sarcoma center. It is capable of detecting malignant metastasis in the lung with a
precision of 71.2%, specificity of 90.5%, sensitivity of 94% and accuracy of 91.2%. Furthermore, the
program was able to detect even small nodules with a size <1 cm in conventional X-rays of the thorax.
This algorithm was implemented into our daily clinical practice alongside with the radiologists’
findings. With this tool we aim to improve the quality of our service and reduce the expenditure
of time.

Abstract: Introduction: soft tissue sarcomas are a subset of malignant tumors that are relatively rare
and make up 1% of all malignant tumors in adulthood. Due to the rarity of these tumors, there are
significant differences in quality in the diagnosis and treatment of these tumors. One paramount
aspect is the diagnosis of hematogenous metastases in the lungs. Guidelines recommend routine
lung imaging by means of X-rays. With the ever advancing AI-based diagnostic support, there
has so far been no implementation for sarcomas. The aim of the study was to utilize AI to obtain
analyzes regarding metastasis on lung X-rays in the most possible sensitive and specific manner
in sarcoma patients. Methods: a Python script was created and trained using a set of lung X-rays
with sarcoma metastases from a high-volume German-speaking sarcoma center. 26 patients with
lung metastasis were included. For all patients chest X-ray with corresponding lung CT scans, and
histological biopsies were available. The number of trainable images were expanded to 600. In order
to evaluate the biological sensitivity and specificity, the script was tested on lung X-rays with a lung
CT as control. Results: in this study we present a new type of convolutional neural network-based
system with a precision of 71.2%, specificity of 90.5%, sensitivity of 94%, recall of 94% and accuracy
of 91.2%. A good detection of even small findings was determined. Discussion: the created script
establishes the option to check lung X-rays for metastases at a safe level, especially given this rare
tumor entity.
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1. Introduction

The term soft tissue sarcoma (STS) comprises a heterogenous group of malignant
tumors deriving from a mesenchymal origin. They represent 1% of all malignant tumors
in adults [1,2]. The incidence ranges between 1.8 and 5 per 100,000 people. Regional
differences in incidence rates are based, among other things, on differences in the ethnic
composition of the population. Rhabdomyosarcomas and synovial sarcomas account for
around 30% of the soft tissue sarcoma in young adults [3]. The most common diagnoses in
older patients are undifferentiated sarcomas, leiomyosarcomas, liposarcomas, fibrosarco-
mas and pleomorphic sarcomas [4]. Based on the histological subtype, the risk of metastasis
and the routes it takes are also determined [5].

Surgical excision is one of the main pillars of therapy for these tumors [6,7]. Nonethe-
less, a multimodal transdisciplinary approach is important in the treatment of this rare
but aggressive form of tumor. Radiation therapists, oncologists, oncopsychologists and
radiologists play an important role in the treatment of sarcomas.

The prognosis of a sarcoma depends not only on the entity but also on the extent of
the disease. While the 5-year survival probability for a locally limited sarcoma is 81%, it
dramatically decreases to 15% for metastatic disease [8,9]. This significant deterioration
might also be caused by late detection of filiae. Most commonly sarcomas metastasize to the
lungs by means of hematogenous spreading [10]. Routinely, follow-up visits with contrast-
enhanced MRI of the local region of interest and posterior-anterior X-ray of the chest is
carried out [11]. A CT-scan of the chest is only performed in case of X-ray abnormalities at
our institution as recommended by current guidelines [12].

Follow-up care and evaluation of the imaging findings is still performed by doctors
with varying levels of training and experience in diagnosing this rare tumor. In most
clinical settings, the radiologist evaluates the screening X-ray in different cancer entities.
However the sensitivity and specificity of radiologists highly varies in chest X-ray. It is
important to point out the radiologic difficulties of detection and interpretation of X-ray
findings which can actually harm patients [13]. Experienced radiologists might miss up to
10% to 20% of small nodules [14]. Even in CT scans sensitivity and specificity of radiologists
do not reach 90% for detecting lung nodules [15].

In recent years, radiological diagnostics have been expanded and quality assured in
numerous tumor entities utilizing AI, machine learning and deep learning. These appli-
cations display better detection rates than a radiological-medical assessment alone [16].
Modern deep learning frameworks are capable to reach 90% to 95% sensitivity and speci-
ficity for nodule detection in CT scans of the lung and around 85% to 90% in chest X-ray [17].
So far there has been no comparable program for the detection of sarcoma metastases in the
lungs as most algorithm are focused on lung cancer. Our aim was to establish an algorithm
to reliably detect suspicious lung nodules in sarcoma patients based on posterior-anterior
chest X-rays and implementing an AI-supported follow-up process.

2. Methods
2.1. Acquisition of Patient X-ray

Sarcoma patient chest X-ray images were collected retrospectively in accordance
with the ethical committee of the Ruhr University Bochum between January 2012 and
December 2020. In this period 1129 sarcoma patients were included in our follow up
program. Of 110 patients with a regional or distant metastasis of a soft tissue sarcoma,
56 had histologically verified metastasis in the lung, 26 of them had consistent CT-scans
where an X-ray was also available. Among these 26 patients, 43 corresponding CT-scans
and 43 chest X-rays with sarcoma metastasis nodules were available. The data and patient
inclusion as well as the training algorithm is depicted in Figure 1.
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tients had pulmonal metastasis, while only 26 patients had consistent and temporally corresponding 
CT scans and X-rays. 30 patients of the 56 patients with pulmonal metastasis had either no CT scan 
or an x-ray or weren’t temporally corresponding. Of the 26 patients with histologically verified pul-
monal metastasis 43 pairs of corresponding CT scans and x-ray (multiplication up to 600 through 
transformation) showing a sarcoma metastasis were included into the learning process of the AI 
framework together with the weighted Kaggle “ChestX-ray nodule detection”-dataset. 

Figure 1. Patient and Data Inclusion. In total 1129 patients underwent follow-up in our clinics. 1019
were detected without any metastasis over the period 2012–2020. 110 patients had radiological signs
for a sarcoma metastasis. 54 patients of them without pulmonal metastasis were excluded. 56 patients
had pulmonal metastasis, while only 26 patients had consistent and temporally corresponding CT
scans and X-rays. 30 patients of the 56 patients with pulmonal metastasis had either no CT scan
or an x-ray or weren’t temporally corresponding. Of the 26 patients with histologically verified
pulmonal metastasis 43 pairs of corresponding CT scans and x-ray (multiplication up to 600 through
transformation) showing a sarcoma metastasis were included into the learning process of the AI
framework together with the weighted Kaggle “ChestX-ray nodule detection”-dataset.
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2.2. Implementation in Python

For this project the “ChestX-ray nodule detection”-dataset was provided from Kaggle
(Google LLC., San Francisco, CA, USA) under the CC0 1.0 Universal (CC0 1.0) Public
Domain Dedication in order to detect lung nodules in X-rays. Total images of X-rays
were 1500 which we then split for training and evaluation. 1400 X-rays with additional 43
sarcoma nodule positive images from our clinic were used for training and 100 images of
X-rays were used for evaluation. The number of in-house training images was artificially
increased from 43 to 600 by randomized partial morphing. This method to generate
synthesized data was described before [18]. The algorithm used for detection is YOLOv5s,
which is a compound-scaled object detection model trained on COCO datasets and includes
model assembling and hyperparameter evolution [19,20]. It comprises the following three
main parts: Module BackBone is used to extract features from the images that are input.
The module Neck is used for making pyramid features which is used for generalization,
while the Head is used for the detection process (see Figure 2).
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Figure 2. Scheme of the YOLOv5 Architecture as Convolutional Neural Network (CNN). Main parts include the BackBone,
Neck and Head. In the BackBone, CSPNet is used in order to extract features from the images which are used as input
images. The Neck is used for the creation of pyramid feature. It helps the module on scaling factor of detected objects which
are of the same nature but different scales. The technique which is used for creation of pyramid features is PANet. The main
function of the head module is to apply anchor of different sizes on those features which are generated in the previous
layers with value of probability as well as bounding box with score. SPP stands for Spatial Pyramid Pooling, Concat stands
for concatenation.

During the training of YOLOv5s for nodule detection, total numbers of epochs were
100 and batch sizes were 2. For all programming tasks, Python 3.8 with pytorch library was
used.

2.3. Validation of the Model

In order to validate our model, 50 lung X-rays with underlying CT images were used
as gold standard with high-grade suspicious foci which were subsequently verified by
histological diagnosis, including 15 images with sarcoma metastases in the lung verified
by both a CT scan (Somaton Defintion Edge, Siemens Healthineers, Erlangen, Germany)
and concordant chest X-ray. These images were not included into our training model
and served as external control. Specificity, precision and recall were further evaluated by
analysis of 200 lung X-rays with underlying CT images without radiological evidence of
metastasis as the gold standard. The indication for the CT scans was made in the course of
other diseases such as lung cancer, accidents or during an intensive care stay without the
radiological validation of a suspicious mass. The CT-scans were performed with patient in
supine position and inspirational hold (slice thickness = 1 mm, tube voltage = 100 kVp).
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2.4. Data Managment

Data management was performed using GraphPad PRISM (version: 8.3.0; Graphpad
Software, Inc., La Jolla, CA, USA).

3. Results
3.1. Patient Data

To test the trained algorithm, 26 patients with lung metastasis of sarcoma and accord-
ing CT scans and chest X-rays obtained in a close time interval (<2 weeks) were included.
Those 26 patients had 43 CT scans and 43 corresponding chest X-rays. Patient character-
istics are presented in Table 1. The median age was 62.8 years, while 58% of the patients
were male. Half of all tumor entities were undifferentiated pleomorphic sarcoma. 74% of
all tumors in the collective were G3.

Table 1. Study population of patients with lung metastasis of a soft tissue sarcoma with concordant
CT-scan and Chest X-ray (n = 26).

Value

Age at X-ray (years) 62.8 ± 12.2
Sex

Male 15 (58%)
Female 11 (42%)

Sarcoma Entity
Undiff. Pleomorph. Sarcoma 13 (50%)

Liposarcoma 2 (8%)
Myoxid Sarcoma 3 (12%)
Leiomyosarcoma 3 (12%)

Malignant fibrous histiocytoma 4 (15%)
Other Sarcoma Entitiy 1 (3%)

Tumor Grade
G1 2 (8%)
G2 5 (18%)
G3 19 (74%)

3.2. Evaluation of Sensitivy, Specificity, Precision and Accuracy

Biological sensitivity and specificity were determined by utilizing CT images which
were obtained as part of the follow-up care for chest X-rays suspicious for distant metastasis.
Negative controls were obtained from non-tumor-associated CT images related to trauma
or non-malignant lung disease as given in on daily base at an emergency hospital. These
images were not included into our training model and serving as external validation. All
nodules detected by the application with a test batch prediction over 0.5 were included.
Results of the sensitivity and specificity tests are presented in Figure 3. F1 score ROC
(Receiver Operating Characteristic) and accuracy were utilized as evaluation metrics. This
is shown in Figure 4. Sensitivity was shown with 94%, specificity with 90.5%, precision
with 71%, recall with 94% and accuracy with 91%.
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ROC-Curve shows and area und the curve (AUC) of 0.8761, the Precision-Recall Curve shows an AUC of 0.7852, while the
threshold of 0.5 shows a F1-score of 0.7321.

3.3. Smallest Reliably Detectable Size

In order to check the validity of the algorithm, X-rays of the lungs in the course of
the follow-up care were compared with the CT examinations which were performed in
the event of suspicious nodules. For this purpose, findings were assigned to the size
and location in the CT. Smaller findings, which the radiologist did not explicitly describe
in the X-ray but were described in the CT, served as a size reference for the sensitivity
measurement. All findings detected by the algorithm in X-rays were compared with those
found in CTs but previously overlooked in the X-ray. In this way, a sensitivity for the
various findings sizes was established (see Figure 5).
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Figure 5. Smallest Reliably Detectable Size. (A) Findings in the CT were assigned to different groups
according to size. Based on the X-ray, the algorithm was intended detect all findings. The sensitivity
was divided into the groups according to the findings found and overlooked. While the program
reliably detected nodules between 1 and 5 cm in over 93.3% and 85.7%, respectively, nodules larger
than 5 cm and especially smaller than 1 cm were more challenging for the algorithm. (B) Lung X-ray
of a finding over 5 cm. (C) Lung X-ray of a finding between 2–5 cm. (D) Lung X-ray of a finding
between 1–2 cm. (E) Lung X-ray of a finding under 1 cm. Yellow arrows mark the findings.

3.4. Implementation of a Hybrid Follow-Up Algorithm

The follow-up of our soft tissue sarcoma patients is based on the UK and ESMO-
guidelines [21]: After initial treatment patients receive a follow up with a contrast-enhanced
MRI of the local region and a lung X-ray every 3 months in the first 2 years, then twice a
year up to the fifth year, and once a year thereafter when necessary [22]. This is also stated
in the ESMO (European Society for Medical Oncology) and German guidelines for the
treatment of soft tissue sarcoma [22,23].

We identified the evaluation of chest X-ray by a plastic surgeon and a radiologist in
the daily routine as a potential vulnerability in the quality of our follow-up. Therefore, we
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implemented a new hybrid process to strengthen the quality of our follow-ups. Figure 6
shows the implementation of the AI-framework into our routine follow-up of sarcoma
patients. In this setting the patient’s chest X-ray is evaluated by a radiologist and simulta-
neously by the AI-framework. The results of both processes are validated and interpretated
by the plastic surgeon who does the consultation of the patients follow-up.
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of the X-ray is placed parallel to the radiological assessment to avoid any bias. The information from
both interpretations are validated by an independent second medical doctor.

4. Discussion

As one of the high-volume sarcoma centers in German-speaking countries, it was
possible to train and verify a new algorithm for sarcoma lung metastasis detection with
a corresponding number of recordings. The reliability in the detection of smaller tumors
proved particularly good. However, there was a difficulty in detecting exceptionally
large nodules and masses. These could be confused with mediastinal structures. We
acknowledge the poorer sensitivity in large masses using the training model, which was
designed for metastases. This is the reason why tumors larger than 5 cm had a worse
detection rate than tumors between 1 and 5 cm in this study. Large masses can also be
misinterpreted as, for example, atelectasis [6]. Nevertheless, there is no fundamental
approach-based problem here, as a sensitivity of 83% in the large tumor masses can also be
explained by the small number of cases of these large tumor foci (n = 16) in the study.

On the other hand ROC-curve, as well Precision-Recall curve of the model showed
a weakness due to the imbalance of a positive and negative samples in the training. This
can be further improved by including more positive samples with cooperation of more
centers including more positive cases. Another possibility to reduce the imbalance would
be random undersampling of the nodule free images. We aimed to avoid this due to the
chance that potential useful information will be deleted.

One major limitation of this study is the small number of sarcoma metastasis positive
CT-scans verified by histology. Even though being one of the largest sarcoma centers in
Germany, a cooperation with other specialized clinics may improve the algorithm and
therefore sensitivity and specificity. With large databases such as Kaggle, the international
community can profoundly benefit in terms of a good exchange of datasets. AI in particular
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needs as much training data as possible in order to deliver valid results. With increasing
amounts of data, but also with the ever ameliorated AI, hardware is being used to its
capacity. More complex algorithms require powerful graphics processing unit (GPU). The
advantage of this algorithm described is the resource-saving application with a computing
time of less than 1 s with nevertheless reliable results.

The method of convolutional neural networks (CNN) developed a few years ago has
revolutionized AI and particularly image recognition and significantly improves medical
applications. CNNs are inspired by biological processes (i.e., interactive activity of neurons
in an animal brain). In brief, they consist of an input layer, in-between hidden layers and
an output layer. The convolution (process of computing in CNNs) takes place in the hidden
layers [24]. Especially in the context of the COVID-19 pandemic, these supervised machine
learning applications have been significantly expanded and advanced [25]. On the one
hand, CNN leads to a significantly faster computing time, but also to a higher sensitivity
and specificity. In the recent literature microscopic brain tumor detection was achieved
with a 3d CNN and feature selection architecture [26].

With the sensitivity of 94% and a specificity of 90.5% on posterior-anterior chest X-rays
presented in our project, values comparable to CT-scans can be achieved [27]. In addition,
through the training of the sarcoma-based X-rays we provided, the technical sensitivity and
specificity in the training images was increased by 19.5% compared to test runs without the
600 images implemented. This would not have been so sensitive and specific without the
additional 600 images added to the online data-set of 1400 images. If nodules with a test
batch prediction of less than 0.5 had been included, the sensitivity would have increased at
the expense of the specificity.

Large sarcoma centers typically have experienced radiologists who can also detect
small findings on chest X-rays. A study by Gamboa et al. demonstrated no improvement
in the survival outcome from a CT scan instead of an X-ray in the follow-up [28]. This
underlines the importance of X-rays in the context of diagnostics—with the requirement of
an experienced radiologist. However, the software developed enables the comprehensive
detection of metastases in the X-ray without this experience. The rate of overlooked findings
is also reduced using AI to detect cancer metastatis [29]. For resident radiologists, in
particular those with little experience, an expansion of diagnostics using AI could generate
reliability and security. Despite sophistication of modern machine learning applications in
medicine, especially medical imaging, the contextual and responsive competence of the
radiologist is still indispensable.

Another important aspect of sarcoma therapy and follow-ups is properly assessing the
metastatic potential of various entities and de-differentiation. For the risk of a distant metas-
tasis tumor size, high histologic grade, deep location, recurrent disease at presentation,
the subtype of leiomyosarcoma and non-liposarcoma histology were independent adverse
prognostic factors [30]. While other entities such as dermatofibrosarcoma protuberans
rarely metastasize [31]. Based on our data half of all patients with pulmonal metastasis
had the diagnosis of a pleomorphic sarcoma, an advanced age and higher grading. The
AI-framework in this project was only trained based on the radiological material given.
The efficiency of the AI can be further improved by including prognostic factors. At this
point, a link between artificial intelligence and big data can be established. Big data was
for example used in the planning of cancer immunotherapy [32]. Distillation of data given
in the sarcoma registers can improve AI based cancer therapy. In this context, networking
of the sarcoma centers for this rare disease in order to generate big data resources should
be promoted.

With integration of the hybrid follow-up process into the clinical routine the follow-up
procedure was theoretically improved. In the literature the improvement in diagnostics
through AI in lung cancer could be shown [33,34]. Based on the numbers in the literature,
an improvement in sensitivity and specificity of around 5% can be assumed. In our scenario
with around 800 sarcoma follow ups per year an improvement of 5% bears a game-changing
effect [14,34]. A subsequent study is needed to evaluate the eventual effect of this hybrid
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follow-up process. At this point, it is possible to guarantee at least a more structured
sequence in everyday clinical practice for up to 10 sarcoma patient follow ups per day.

Further applications of the CNN can be considered in terms of classification and
segmentation of sarcoma including multiple layers of information [35,36]. We aim to
improve our follow-up consultations by evaluating the MRI of the local region with an
AI-framework as established with other tumor entities [37,38]. Zhang recently developed
a CNN based program for sarcoma grading and metastasis detection in the lungs [39].
Several steps of sarcoma diagnosis and follow-ups can be guided by AI. Embracing the
whole diagnosis and therapy pathway, AI can be implemented into literature or guide-
line implementation, analysis of the histology, setting up the therapy plan, radiological
evaluation and AI-supported patient education. There is a cornucopia of innumerable
possibilities to support the cancer therapy through integration of AI.

With regards to the literature including our presented results we do not see any
advantage of the CT over the conventional chest X-ray within the regular follow-ups.
Sensitivity and Specificity of the X-ray reach levels of the CT scan with considerable less
exposure to radiation and significant resource savings [28].

5. Conclusions

In the recent years the research on artificial intelligence driven diagnostic and prog-
nostic tools has exponentially grown. To date there are no established applications for
sarcoma follow-ups known. With inclusion of the CNN assisted evaluation of chest X-ray
the follow-ups can be improved. Further research is required to show systemic benefits of
this hybrid follow-up.
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