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The virome of ocular fluids is naive. The results of this study highlight the virome in

the vitreous fluid of the eye of individuals without any ocular infection and compare

it with the virome of the vitreous fluid of individuals with retinitis. A total of 1,016,037

viral reads were generated from 25 vitreous fluid samples comprising control and

post-fever retinitis (PFR) samples. The top 10 viral families in the vitreous fluids comprised

of Myoviridae, Siphoviridae, Phycodnaviridae, Herpesviridae, Poxviridae, Iridoviridae,

Podoviridae, Retroviridae, Baculoviridae, and Flaviviridae. Principal coordinate analysis

and heat map analysis clearly discriminated the virome of the vitreous fluid of the controls

from that of the PFR virome. The abundance of 10 viral genera increased significantly

in the vitreous fluid virome of the post-fever retinitis group compared with the control

group. Genus Lymphocryptovirus, comprising the human pathogen Epstein-Barr virus

(EBV) that is also implicated in ocular infections was significantly abundant in eight out

of the nine vitreous fluid viromes of post-fever retinitis group samples compared with the

control viromes. Human viruses, such as Hepacivirus, Circovirus, and Kobuvirus, were

also significantly increased in abundance in the vitreous fluid viromes of post-fever retinitis

group samples compared with the control viromes. The Kyoto Encyclopedia of Genes

and Genomes (KEGG) functional analysis and the network analysis depicted an increase

in the immune response by the host in the post-fever retinitis group compared with the

control group. All together, the results of the study indicate changes in the virome in the

vitreous fluid of patients with the post-fever retinitis group compared to the control group.

Keywords: metagenomic sequencing, vitreous fluid, post-fever retinitis, changes in virome, ocular pathogen,

human viruses

INTRODUCTION

Genetically diverse groups of viruses having DNA or RNA as their genome can infect
eyes and cause different ocular diseases. Viruses may enter the eye by direct contact
or via haematogenous or neuronal spread (1), leading to viral infections like blepharitis
(2), conjunctivitis (3), keratitis (4), uveitis (5), cataract (6), and retinitis (7). Common
ocular viral pathogens include Herpes viruses, such as herpes simplex virus (HSV), herpes
zoster virus (HZV)/varicella, cytomegalovirus (CMV), Epstein–Barr virus, adenovirus, and
vaccinia, which cause epithelial or stromal keratitis, conjunctivitis, etc. (1). Apart from these
direct viral infections of the eye, studies have also indicated that several systemic viral
infectious agents, such as influenza virus (8), dengue virus (9), chikungunya virus (9), and
Zika virus (9), were also found to disseminate into the retina and cause ocular diseases.
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In contrast to these typical cases of systemic viral infections,
at times, a diagnostic dilemma is presented in atypical
cases of viral manifestation. The atypical viral presentation
may be due to latent virus of a systemic illness that does
not cause any pathology for some time after infection, but
becomes pathogenic under immune-compromised and immune-
suppressed conditions in healthy individuals. Post-fever retinitis
(PFR) is one such condition of the retina in which retinitis was
observed systematically 2–4 weeks post-febrile illness (10–12).
On most occasions, it would be difficult to identify the causative
organisms associated with post-fever retinitis. In our earlier
study, using the next generation sequencing (NGS) approach,
changes in bacterial microbiome and mycobiome associated
with PFR were demonstrated. However, in particular, no ocular
bacterial or fungal pathogen was identified in the PFR group
compared with the control group (13, 14). Viromes have been
previously characterized on the surface of the skin (15), blood
(16, 17), breast milk (18), cerebrospinal fluids (19), oral cavity
(20, 21), lower gastrointestinal tract (22–24), respiratory tract
(25), bladder (26), and vagina (27, 28). This is probably the first
study on the virome of the vitreous fluid of the human eye of
normal healthy individuals and is compared with that on the
virome of the vitreous fluid of patients with PFR and retinitis.
Such studies would highlight the virome associated with the
vitreous fluid of normal healthy eye and further by comparison
with the vitreous fluid of PFR and retinitis group patients, the
data would enhance the understanding of the role of these viruses
in PFR, an ocular disease.

MATERIALS AND METHODS

Study Site
Virome in the vitreous fluid that was collected from
study participants who were scheduled for pars plana
vitrectomy/vitreous biopsy as part of their treatment was
studied. Vitreous biopsy was performed in the operating room
under full aseptic conditions by trained vitreoretinal surgeons.
There was no difference in the preparation for PPV and
vitreous biopsy.

Collection of Vitreous Fluid From Control
Individuals
Collection of vitreous fluid from healthy controls was not
permitted because of ethical reasons. Therefore, in this cohort,
we collected vitreous fluid from individuals who were to undergo
ocular procedures for non-infectious ocular disorders such as a
macular hole and rhegmatogenous detachment. The inclusion
criteria include all individuals aged above 18 years without
any systemic infection 3 months prior to the vitreous biopsy.
The exclusion criteria for this cohort included individuals with
uncontrolled glaucoma, diabetes and hypertension, and fever
due to systemic infection. These controls were not symptomatic
for post-fever retinitis (PFR) and had no other ocular infection.
Vitreous fluid (300 µl) was collected from each individual in the
control group (n = 16) through pars plana vitrectomy/vitreous
biopsy by an ophthalmologist (Supplementary Table 1) and

stored at −80◦C until it was used. The study was designed and
conducted according to the tenets of the Declaration of Helsinki.

Collection of Vitreous Fluid From
Individuals With Post-fever Retinitis or
Other Retinitis
The PFR group included individuals with retinitis that normally
manifests 2–4 weeks post-systemic febrile fever. The cause of the
systemic fever in two individuals was typhoid, while in others
the cause of fever was not identified (Supplementary Table 1).
All individuals with PFR who had a history of inflammatory
disorders of the eye, uncontrolled glaucoma, hypertension, and
diabetes were excluded from the study. Vitreous fluid (300 µl)
was collected from these individuals with PFR and retinitis
(n = 9) by an ophthalmologist using the procedure described
above (Supplementary Table 1) and stored at −80◦C until it
was used. This part of the study was also approved by the
above ethics committee (Ethics reference number LEC 09-17-
079 dated September 1, 2017 to August 31, 2019). The study
was designed and conducted according to the tenets of the
Declaration of Helsinki.

Nucleic Acid Extraction and Metagenome
Sequencing
Deoxyribonucleic acid/RNA was extracted from about 200 µl of
the vitreous sample using a PureLink DNA/RNA extraction kit
(Thermo Fisher Scientific, Mumbai, India) and according to the
protocol of the manufacturer. The extracted DNA was quantified
using a Qubit 3.0 fluorometer (Thermo Fisher Scientific,
Carlsbad, CA, United States) and visualized by gel electrophoresis
on a 1% (w/v) agarose gel. The extracted nucleic acids were
amplified with random hexamers using an amplification kit
(TransPlex, Sigma Aldrich Chemicals Private Limited, St. Louis,
MO, United States). For library preparation and sequencing,
NEBNext Ultra DNA Library Prep Kit for Illumina Nextseq 500
PE sequencing protocol was followed by paired-end sequencing
with 2 bp × 150 bp chemistry on the Illumina Nextseq 500
platform. Care was taken to avoid microbial contamination
from the environment by carrying out all the steps such as
sample preparation, DNA extraction, PCR, and whole genome
amplification procedures in a dedicated laminar flow hood.
Sterile water was used as a negative control instead of template
DNA in PCR, and, consistently, amplification was negative,
implying a lack of contaminating DNA. No virus sequences could
be generated from the negative controls.

Viral Metagenomic Analysis
FASTQ files of the raw reads were generated for all the 25
samples that were sequenced. These raw sequence reads were
analyzed for quality parameters, such as read length, phred
quality score (<25), GC (guanine and cytosine) content,
and presence of ambiguous bases. Sequencing adapters from
the raw sequences were trimmed using trim-galore (version
0.4.0) (29) and Cutadapt version 1.2 (30). Subsequently, all
the reads were subjected to the FastQC (version 0.11.3) tool,
which helped in identifying reads with a quality score >Q25.
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Human genome sequences were removed using decontam
(github.com/benjjneb/decontam) and Bowtie 2 tools using
NCBI-GRCh38 as the reference genome. Contigs were analyzed
for viral annotations using viral reference sequence IDs from
NCBI (ftp://ftp.ncbi.nlm.nih.gov/refseq/release/viral/ - ftp://
ftp.ncbi.nlm.nih.gov/refseq/release/viral/viral.3.protein.faa.gz).
Refseq IDs of NCBI were converted to GI (geninfo) numbers
and used for functional annotation. The resultant files (.aln)
were opened in MEGAN 5. Post-viral annotation, Meta Genome
Analyzer (MEGAN) v 5.11.3 was used for comparative analysis
of the samples and generation of the virome biome file for the 25
samples. The biome data file comprising the abundance of all the
viruses is provided in Supplementary Table 2. The MEGAN tool
was also used for deriving KEGG pathway analysis.

Statistical Analysis
The vegan package in R (http://vegan.r-forge.r-project.org/)
was used to generate rarefaction curves and for quantifying
diversity indices. The batch effect in the viromes was removed
using the ComBat function in the package SVA (31). Alpha
diversity indices viz., Shannon diversity, Simpson index,
and the observed number of viral genera were calculated,
and the degree of variation in the viromes of the groups
was ascertained. An unpaired t-test was conducted using
GraphPad Prism to determine the statistical significance of alpha
diversity indices (https://www.graphpad.com/quickcalcs/ttest2/).
Significant changes between VC and PFR were ascertained by
Kruskal–Wallis andWilcoxon signed rank tests (with P < 0.05 as
significant). Similarly, the Kruskal–Wallis and Wilcoxon signed
rank tests were conducted to determine the significant changes in
the KEGG pathways between VC and PFR. In addition to these,
a linear discriminant effect size (LEfSe) analysis was performed
to identify discriminate viral genera (http://huttenhower.sph.
harvard.edu/galaxy/). To visualize the relative abundances-based
clustering of the genera, a rank-sum normalized heat map was
generated for the viral genera of both cohorts. A principal
coordinate analysis (PCoA) plot was generated for the 25 viromes
using the ade4 package in R (v3.2.5) by employing Jensen–
Shannon divergence distance metric K-means clustering (k= 2).

STRING Network Analysis
Functional predictions for the significantly abundant KEGG
pathways in the PFR group were ascertained by STRING (Search
Tool for the Retrieval of Interacting Genes/Proteins) network
analysis. For this, the KEGG orthology data were subjected to
the KEGG Mapper tool to get the protein/gene IDs. These IDs
were then used to ascertain the protein-protein associations in
the STRING network analysis tool (version-11-0.string-db.org/)
(32). K-means clustering was employed to visualize the cluster
of proteins.

Correlation Network Analysis of Viral
Genera
Correlation Network (33) is a Cytoscape (34) plugin that was
used to detect interactive networks of the discriminative viral
genera in the VC and PFR groups independently. Spearman
correlation coefficient (r) was used to analyze the interactions

TABLE 1 | Reads assigned to viruses in the vitreous fluid of control (VC) and

post-fever retinitis (PFR) groups.

Sample groups Reads in

millions (Q >

25)

Reads

assigned to

viruses

VC Total 48.9 617,874

Average 3.88 38,617

PFR Total 47.4 398,163

Average 5.27 44,240

VC+PFR Total 109.5 1,016,037

Average 4.38 41,428

among the different discriminative viral genera (mutual
exclusions/negative and co-presence/positive interactions).

RESULTS

Metagenomes of the Vitreous Samples and
the Virome
A total of 96.3 million reads were generated for all the 25
vitreous samples of control (VC, n = 16), PFR (n = 6),
and retinitis (RET) (n = 3) groups. In order to understand
the differences and similarities among the VC, PFR, and
RET samples, PCA, a statistical tool, was employed, and this
analysis showed that all the three non-PFR and six PFR
clustered together compared with the control (VC) samples
(Supplementary Figure 1). Furthermore, since both PFR and
RET manifest as retinitis, henceforth all the data of the two
cohorts would be combined and designated as PFR and analyzed.
Reads assigned to viruses comprised a total of 1,016,037 with
617,874 and 398,163 reads assigned to viruses in the control
(VC) and PFR groups, respectively (Table 1). Rarefaction curves
of the viral microbiomes (virome) showed a tendency toward
saturation, indicating that majority of the viral diversity was
identified at the genera level (Supplementary Figure 2). An
alpha diversity analysis showed a significant difference in
Simpson diversity indices between the VC and PFR groups;
a significant difference was not detected in Shannon and the
observed number of genera (Figure 1). Viral groups, such as
double-stranded DNA (dsDNA) viruses, double-stranded RNA
(dsRNA) viruses, retrotranscribing viruses, single-stranded DNA
(ssDNA) viruses, single-stranded RNA (ssRNA) positive-strand
viruses, and ssRNA negative-strand viruses were detected in both
the VC and PFR groups (Figure 2A). ssDNA, dsRNA, and ssRNA
viruses showed significant differences between the control and
PFR groups (P < 0.05; Figure 2B). Except for dsDNA viruses, all
the other viruses were increased in the PFR group compared with
the VC group. dsDNA viruses are predominantly present in both
groups with a mean abundance of 88.1 and 87.1 in the control
and PFR groups, respectively (Supplementary Table 3). Among
the RNA viruses, ssRNA positive-strand viruses are abundant,
having a mean abundance of 6.3 and 7.5 in the control and PFR
groups, respectively.
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FIGURE 1 | Box-plots depicting the Alpha diversity indices of the viromes in the vitreous fluid of controls (VC) and post-fever retinitis (PFR) groups.*Indicates a

significant difference between VC and PFR (p < 0.05).

A total of 68 viral families were identified in both the
control and PFR groups (Supplementary Table 4). Three viral
families, namely, Astroviridae, Birnaviridae, and Polyomaviridae
were significantly different in the PFR group compared with
the control (VC) group. Subsequently, at the genus level,
213 viruses were identified in all the 25 vitreous samples
analyzed (Supplementary Table 2). Out of the 213 viruses, by
non-parametric Kruskal-Wallis analysis, 54 genera, including
nine unclassified or unassigned viruses, were significantly
differentially abundant between the control (VC) and PFR
groups. Out of the 54 discriminative genera, 30 were identified
as eukaryotic viral genera (Table 2A) and 24 as bacteriophages
(Table 2B). The principal coordinate analysis (PCoA)
(Figures 3A–D) and the heat map analysis (Figures 4A,B)
revealed a clear distinctive difference between the viromes of
the control and PFR groups. The PCA was performed for the
significantly differentially abundant eukaryotic viruses and
bacteriophages between the control (VC) and PFR groups
(Figures 3A,B). This analysis showed two distinct clusters for the
VC and PFR groups. Simultaneously, 3 Dimensional Non-metric
Multidimensional Scaling (NMDS) analysis also showed that
the eukaryotic and bacteriophage viromes of the PFR group
formed a distinct cluster from the control group (Figures 3C,D).
Linear discriminant analysis (LDA), combined with effect size
measurements (LEfSe) analysis, indicated a significant increase
or decrease in the abundance of the 29 eukaryotic viral genera
(Figure 5A) and 22 bacteriophages (Figure 5B).

Out of the 29 discriminative eukaryotic viruses, human
viruses that significantly increased in the PFR group included
Hepacivirus, Circovirus, Kobuvirus, Lymphocryptovirus (Epstein-
Barr virus), and Betapapillomavirus (Figure 5A). Among
bacteriophages genera, such as Hpunalikevirus (Haemophilus

phage HP1), Tunalikevirus (Enterobacteria phage T1),
Lambdalikevirus (Escherichia virus Lambda), 77likevirus
(Staphylococcus phage 77), Chlamydiamicrovirus (Chalmydia
phage 1), Inovirus (Escherichia virus M13), and Bcep78likevirus
(Burcholderia phage) increased in the PFR group compared with
the VC group (Figure 5B).

Predominant Viruses in PFR Vitreous
Samples
The relative abundance of the discriminative human viruses
in each of the PFR samples is visualized in the bar graph
(Figure 6). A total of 10 viruses were consistently increased in
the PFR samples compared with the VC samples. Hepacivirus
was predominantly present in all patient samples of the PFR
group except PFR05, and the abundance increase, compared
with the control, ranged from 0 in PFR05 to 40.35% in
PFR06. Furthermore, in all the samples, excluding PFR05, an
ocular pathogenic virus namely Lymphocryptovirus (Epstein-
Barr Virus) was identified.

KEGG Pathway Analysis
In all the 25 samples, pathways belonging to transport and
catabolism, signal transduction, metabolism, immune system,
and other pathways were identified. The Kruskal–Wallis
statistical analysis identified 41 pathways as significantly different
between the VC and PFR groups (Supplementary Table 5;
Figure 7). Out of the three pathways belonging to transport
and catabolism, pathways such as endocytosis and phagosome
increased in the PFR group compared with the VC group.
In addition, several signaling transduction pathways, such as
the ErbB signaling pathway, NF-kappa B signaling pathway,
signaling molecules and interaction, cytokine-cytokine receptor
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FIGURE 2 | (A) Abundance of different virus groups in the vitreous fluid of control (VC) and post-fever retinitis (PFR) groups. (B) Box plots illustrating the abundance of

dsDNA viruses, ssDNA viruses, dsRNA viruses, ssRNA negative-strand viruses, ssRNA positive-strand viruses, and Retro transcribing viruses in the vitreous fluid of

control (VC) and post-fever retinitis (PFR) groups. (C) Abundance of Virus families in the vitreous fluid of control (VC) and post-fever retinitis (PFR) groups. *indicates

significant change (p > 0.05).

interaction, major histocompatibility complex, and class I, were
increased in PFR compared with control. Several metabolic
pathways, such as glycolysis/glucogenesis, tropane, piperidine
and pyridine alkaloid biosynthesis, glycan biosynthesis, pyruvate,

amino acid and nucleotide sugar metabolism; sphingolipid,
glycine, serine, and threonine metabolism; valine, leucine, and
isoleucine biosynthesis, and pyrimidine metabolic pathways
were also significantly increased in the PFR group compared
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TABLE 2A | Discriminative viral genera in the VC and PFR groups (P < 0.05).

Sl No. Viral genera Mean

abundance

VC

Mean

abundance

PFR

P-value (VC

vs. PFR)

1. Lymphocryptovirus 0.488078 0.819065 0.008

2. Chloriridovirus 0.737222 0.559702 0.008

3. Iridovirus 2.013551 1.763227 0.021

4. Ranavirus 2.177961 1.480304 0.004

5. Betapapillomavirus 0.012454 0.187051 0.006

6. Deltapapillomavirus 0.029408 0.017996 0.018

7. Rhopapillomavirus 0.028845 0.018844 0.036

8. Ichnovirus 0.010591 0.375047 0.006

9. Polyomavirus 0.055518 0.03307 0.015

10. Aquabirnavirus 0.040861 0.017954 0.001

11. Coltivirus 0.017641 0.009325 0.032

12. Orthoreovirus 0.048721 0.129131 0.006

13. Oryzavirus 0.00604 0.001589 0.02

14. Circovirus 0.025268 0.382411 0.007

15. Nanovirus 0.013747 0.098435 0.006

16. Copiparvovirus 0.018266 0.010248 0.039

17. Novirhabdovirus 0.019379 0.010984 0.012

18. Nucleorhabdovirus 0.030137 0.019842 0.036

19. Mamastrovirus 0.096279 0.036622 0.001

20. Cilevirus 0.015397 0.007587 0.043

21. Hepacivirus 0.242584 0.981777 0.006

22. Enterovirus 0.07924 0.042516 0.001

23. Kobuvirus 0.089026 0.414933 0.006

24. Comovirus 0.031522 0.064082 0.049

25. Allexivirus 0.027912 0.016201 0.007

26. Potexvirus 0.124534 0.103455 0.035

27. Carlavirus 0.143193 0.096071 0.004

28. Pecluvirus 0.011913 0.192004 0.006

29. Pomovirus 0.031057 0.017243 0.004

30. Unclassified Reoviridae 0.006582 0.002714 0.027

with the control group. All the pathways of the immune system,
such as chemokine signaling pathway, antigen processing
and presentation, complement and coagulase cascades,
hematopoietic cell lineage, and natural killer cell-mediated
cytotoxicity, were significantly increased in PFR compared with
the control group. The STRING network analysis of the KEGG
orthologs depicted pathways belonging to Epstein-Barr virus
infection, influenza A pathway, cytokine-cytokine receptor
interaction, Jak-STAT signaling pathway, and complement and
coagulation cascades (Supplementary Figure 3).

DISCUSSION

Viral tropism toward immune privileged sites within the
body, such as eyes, was demonstrated in animal model studies
(35, 36), but its role in health and disease was not understood.
Viruses such as Herpesvirus and Flaviviruses may establish
latent infection in neuronal cells and epithelial cells, respectively

TABLE 2B | Discriminative bacteriophages in the VC and PFR groups (P < 0.05).

Sl No. Bacteriophage genera Mean

abundance

VC

Mean

abundance

PFR

P-value (VC

vs. PFR)

1. Bcep78likevirus 0.067 0.139 0.008

2. Felixounalikevirus 0.180 0.131 0.018

3. Hpunalikevirus 0.118 0.496 0.001

4. T7likevirus 0.167 0.134 0.015

5. Phi29likevirus 0.042 0.022 0.006

6. 3alikevirus 0.148 0.362 0.006

7. 77likevirus 0.169 0.366 0.006

8. Bignuzlikevirus 0.106 0.074 0.002

9. Che8likevirus 0.696 0.534 0.025

10. Cjwunalikevirus 0.467 0.356 0.02

11. D3112likevirus 0.135 0.083 0.002

12. Lambdalikevirus 0.445 0.715 0.011

13. Tunalikevirus 0.112 0.440 0.006

14. Betalipothrixvirus 0.405 0.341 0.037

15. Inovirus 0.105 0.171 0.011

16. Chlamydiamicrovirus 0.013 0.184 0.006

17. Unassigned Spounavirinae 0.634 0.923 0.016

18. Unclassified Autographivirinae 0.152 0.271 0.042

19. Unclassified Picovirinae 0.096 0.073 0.036

20. Unassigned Podoviridae 0.153 0.107 0.004

21. Unclassified Podoviridae 2.075 1.351 0.005

22. Unclassified Caudovirales 1.452 1.068 0.002

23. Unclassified Inoviridae 0.009 0.004 0.045

24. Unclassified phages 1.832 1.404 0.044

(37, 38). It is also becoming more obvious with reports on the
virome from different body fluids, such as cerebrospinal fluids
(CSF), human milk, and blood that viruses could reach those
parts of the body that were once thought to be sterile (19). In this
study, we reported the virome in the vitreous fluid of healthy
individuals compared with that of individuals with retinitis.
Significant changes in the viral diversity were observed between
the control and patient groups (Figure 1). In the vitreous fluids
of healthy and patient samples, sequences of viruses having both
DNA and RNA as their genetic material were identified. Based
on host specificity viruses like bacteriophages and eukaryotic
viruses comprising human, animal, and plant viruses were
identified (Tables 2A,B; Figures 2A–C). Earlier virome studies
on human body fluids also reported similar results (19). A
comparison of viral families of vitreous fluids with other
studies comprising body fluids, such as cerebrospinal fluid and
plasma, reveal that families such as Myoviridae, Siphoviridae,
Phycodnaviridae, Podoviridae, Herpesviridae, Podoviridae,
Microviridae, Inoviridae, Poxviridae, and Papilliomaviridae were
common (19). The top 10 abundant viral families in the vitreous
fluid of all the 25 samples include Myoviridae, Siphoviridae,
Herpesviridiae, Phycodnaviridae, Poxviridae, Iridoviridae,
Podoviridae, Baculoviridae, Flaviviridae, and Retroviridae
(Figure 2C). Furthermore, viruses Myoviridiae, Siphoviridae,
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FIGURE 3 | Principal coordinate (PCoA) and Non-metric multidimensional scaling (NMDS) analysis in controls (VC) and post-fever retinitis (PFR) groups. PCoA plots

are based on Jacard distances of eukaryotic viral genera (A) and Bacteriophages (B). Three-dimensional NMDS are based on Bray-Curtis distances of Eukaryotic

viruses (C) and Bacteriophages (D).

and Phycodnaviridae were also reported as the largest families in
the CSF and plasma (Supplementary Table 4; Figure 2C) (19).
A recent study on the ocular surface microbiome in children
also revealed the presence of several viruses representing
Eukaryotic viruses and bacteriophages (39). At the genera
level, 30 Eukaryotic viral genera were significantly different
between the control (VC) and post-fever retinitis (PFR) groups
(Tables 2A,B), and a clear distinction between the groups was
visualized by principal coordinate analysis (PCoA) and heat
map analysis (Figures 3A–D, 4A,B). Ten viral genera showed a
significant increase in abundance in the PRF group compared
to the control group (Table 2; Figure 5A). Out of these 10
genera, surprisingly, only 1 viral genus, Lymphocryptovirus, that
comprises the human pathogen Epstein-Barr virus was reported
in ocular infection (40). A number of ocular diseases, such as
oculoglandular syndrome, dry eye syndrome, dacryoadenitis,
conjunctivitis, episcleritis, keratitis, uveitis, choroiditis, retinitis,
retinal vasculitis, and papillitis, are associated with Epstein-
Barr virus (EBV) infection (41). Therefore, the presence of
Lymphocryptovirus in greater abundance in eight of the 9 PFR
samples compared with the control would imply that this genus
of the virus is predominant under pathological conditions
(Figures 5, 6). The other discriminative genera that were
increased in the PFR group include viruses such as Hepacivirus,
Betapappillomavirus, Orthoreovirus, Kobuvirus, and Circovirus
(Figures 5, 6). Several virome studies indicated the presence of
Papillomaviruses in different parts of the body (25, 42, 43). The
association between EBV and Papillomaviruswas reported earlier

with the epidemic of head and neck squamous cell carcinomas
(HNSCC) (44), in co-infection and oral carcinogenesis (44), in
patients with laryngeal, oropharyngeal, and oral cavity cancer
(45), and in patients with type 2 diabetes mellitus (46). At
the same time, the interaction of other viral genera, such as
Hepacivirus, Orthoreovirus, Kobuvirus, and Circovirus, with EBV
is not available in the literature.

Attempts have also been made to predict the coexistence and
interactions among the viruses in healthy controls and patients
with PFR by CoNet network analysis based on the abundance in
the healthy and diseased state. This analysis helped in predicting
the interactions of the ocular virus Lymphocryptovirus with other
human viruses, such as Hepacivirus, Circovirus, and Kobuvirus,
in the VC and PFR groups (Supplementary Figures 4A,B). In
the VC group, Hepacivirus had a positive interaction, while
Circovirus and Kobuvirus had a negative interaction with
genus Lymphocryptovirus. However, in the PFR group both
Hepacivirus and Circovirus had a positive interaction with genus
Lymphocryptovirus and had no interaction with genusKobuvirus.
Whether such variations in interactions influence pathogenesis
is hard to predict. Earlier, viral metagenomic studies have
revealed the presence of single-stranded DNA viruses, such as
Anelloviruses and Circoviruses, in the human body (47). The
association of Anelloviruses with disease conditions was reported
earlier in ocular fluids (48). In this study, although we could find
Anelloviruses in the vitreous fluids of the patient group, their
abundance was not significantly different from the healthy group.
Alternatively, we observed a significant increase in Circoviruses
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FIGURE 4 | Two-dimensional heat map showing rank normalized abundances (scaled between 0 and 1) in the control group (VC) and post-fever retinitis (PFR) group

of eukaryotic viruses (A) and bacteriophages (B).

that are taxonomically closely related to Anelloviruses in the PFR
group (49).

Virus entry into a cell would mediate changes in pathways
such as cellular processes, signaling molecules, transport and
trafficking, and genome uncoating (50). In this study, significant
changes in several pathways related to viral manifestation in
the vitreous fluids were observed between the control and
PFR groups (Figure 7). Increase in the pathways involving
endocytosis and phagosomes in the patient group compared
with the control group indicates active immune surveillance
and the presence of pathogens (50, 51). Both the epidermal
growth factor receptor (ErbB) and nuclear factor kappa B
(NF-kB) signaling pathways were enhanced in the patient

group, while the mitogen-activated protein kinase (MAPK)
signaling pathway was decreased. This is in accordance with
earlier studies that had indicated that ErbB family members
are largely associated with infections because of different
pathogens (52). It is also known that ErbB signaling pathways
in turn would interact with mitogen-activated protein kinase
(MAPK) and nuclear factor kappa B (NF-?B), etc. (52). The
increased levels of cell adhesion molecules and cytokine-
cytokine interaction pathways in the patient samples could
also be due to active infection of EBV as indicated in the
endothelial cells that were infected with EBV (53). Viral
manifestation has been associated with the reprogramming of
several host metabolic processes, which may include an increase
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FIGURE 5 | Linear discriminant analysis (LDA) of the virome of VC and PFR. (A) LDA in Eukaryotic viruses and (B) LDA in Bacteriophages. The bars in the figure

represent the statistically significant genera as determined by the linear discriminant analysis (LDA) combined with effect size measurements (LEfSe). Peach color bars

indicate an increase in the relative abundance of the genera in the PFR group.

FIGURE 6 | Increase in the abundance of discriminative viral genera in PFR samples compared to mean abundance in the control group.
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FIGURE 7 | Differential abundance in the discriminative KEGG pathways in VC compared to PFR groups.

in glycolysis, metabolic activity supporting the generation of
nucleotides, amino acid generation, and lipid synthesis (54)
(Figure 7). As a result of these changes in the host cells, several
immune system-associated pathways were also increased in the
patient group.

The STRING network analysis showed enrichment of KEGG
pathways for the presence of Epstein-Barr infection and pathways
belonging to the immune system (Supplementary Figure 2),
thus suggesting the involvement of EBV in patients suffering
from post-fever retinitis. Epstein-Barr Virus (EBV) occurs
typically as an asymptomatic or paucisymptomatic infection
during childhood and infectsmore than 95% of people worldwide
(55). Thus, EBV may sustain as a latent virus in the host after
primary infection (56). The results of this study do not suggest
whether the EBV infection is primary or latent. Furthermore,
presuming the prevalence of EBV in the majority of the
population, it appears that the switch from latent to lytic could
have had an important play in the individuals with PFR compared
with the control group. On the other hand, several studies
also indicated ophthalmic manifestation due to EBV infection
in oculoglandular syndrome, dry eye syndrome, dacryoadenitis,
conjunctivitis, episcleritis, keratitis, uveitis, choroiditis, retinitis,
retinal vasculitis, and papillitis (57). At this juncture, it is
worthwhile mentioning that the development of retinitis could

have multiple etiological agents (bacteria, fungi, and viruses).
The concomitant abundance of bacteriophages was significantly
altered in the PFR group samples compared with the control
group. Furthermore, we looked in the literature for the likely
association of the EBV and discriminative bacterial genera, i.e.,
Tannerella and Pimelobacter, that was reported in our earlier
publication in the PFR cohort (13). The direct association
between Tannerella and Pimelobacter and EBV was not reported.
However, in a periodontal disease study, significantly higher
detection rates for genus Tannerella and EBV in a periodontitis
group were observed (58). Nevertheless, the co-infection of EBV
and fungi was reported occasionally. Heavy growth of Aspergillus
fumigatuswas found in the sputum along with Epstein-Barr virus
(EBV) IgM in a patient who presented with a glandular fever-
like illness and neutropenia (59). Similarly, a case of acquired
hemophagocytic lymphohistiocytosis caused by dual infections
with Candida albicans and reactivated EBV infections was
reported recently (60). The nine pathogenic fungal genera that
were significantly increased in PFR, Setosphaeria, Arthroderma,
Clavispora, Exserohilum, Paracoccidiodes, Pseudogymnoascus,
Trichoderma, Kluveromyces, andMicrosporum were not reported
to co-occur along with EBV infection (14). Therefore, further
studies may be necessary to understand the likely involvement
of bacterial and fungal genera along with EBV infection in PFR.
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The metagenomic approach has allowed the identification of
viruses in all patient samples that were otherwise not possible by
routine molecular techniques. The major limitation of the study
is that the results are based on a small number of participants
with PFR. The number of participants remained low because
of the rarity of the disease and ethical compliance. However,
the study modestly justifies the findings and shows that there
is an increase in the abundance of ocular pathogenic viruses
in the majority of the patient samples. The results of the
study imply that viral pathogens may co-exist in balance with
the host in immunocompetent individuals and that this virus-
host imbalance could have triggered the immune response in
individuals with PFR.
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Supplementary Figure 3 | STRING network analysis depicting Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways. The colors of the nodes
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Supplementary Table 1 | Demographic file comprising the details of control

samples (VC, n = 16) and post-fever retinitis samples (PFR, n = 9).

Supplementary Table 2 | Virome Biome file of control (VC) and post-fever retinitis

(PFR) samples.

Supplementary Table 3 | Relative abundance of different viral groups in the

vitreous of Control (VC, n = 15) and post-fever retinitis (PFR, n = 9) groups.

Supplementary Table 4 | Relative abundance of Viral families in the vitreous of
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Supplementary Table 5 | KEGG pathways in VC and PFR groups (p < 0.05).
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