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Simple Summary: Cutaneous Melanoma (CM), arising from pigment-producing melanocytes in the
skin, is an aggressive cancer with high metastatic potential. While cutaneous melanoma represents
only a fraction of all skin cancers (<5%), it accounts for most skin-cancer-related deaths worldwide.
Immune checkpoint inhibition has been the first therapeutic approach to significantly benefit patient
survival after treatment. Nevertheless, the immunosuppressive tumor microenvironment and the
intrinsic and acquired treatment resistance of melanoma remain crucial challenges. Combining local
and systemic treatment offers the potential to augment therapeutic response and overcome resistance,
although, complex drug combinations can harbor an increased risk of immune-related adverse events.
The aim of this review is to give current insight into studies combining systemic and local therapeutic
approaches to overcome drug resistance, prime melanoma cells for therapy, and improve overall
treatment response in CM patients.

Abstract: To date, the skin remains the most common cancer site among Caucasians in the west-
ern world. The complex, layered structure of human skin harbors a heterogenous population of
specialized cells. Each cell type residing in the skin potentially gives rise to a variety of cancers,
including non-melanoma skin cancer, sarcoma, and cutaneous melanoma. Cutaneous melanoma
is known to exacerbate and metastasize if not detected at an early stage, with mutant melanomas
tending to acquire treatment resistance over time. The intricacy of melanoma thus necessitates
diverse and patient-centered targeted treatment options. In addition to classical treatment through
surgical intervention and radio- or chemotherapy, several systemic and intratumoral immunomodu-
lators, pharmacological agents (e.g., targeted therapies), and oncolytic viruses are trialed or have
been recently approved. Moreover, utilizing combinations of immune checkpoint blockade with
targeted, oncolytic, or anti-angiogenic approaches for patients with advanced disease progression
are promising approaches currently under pre-clinical and clinical investigation. In this review,
we summarize the current ‘state-of-the-art’ as well as discuss emerging agents and regimens in
cutaneous melanoma treatment.

Keywords: skin cancer; melanoma; cancer therapy; immunotherapy; targeted therapy; intratumoral
therapy; combination therapy

1. Background

Cancer of the skin is considered a growing epidemic among Caucasians in the western
world, with an alarming increase of non-melanoma skin cancer and cutaneous melanoma
(CM) incidence rates of up to 44% over the last decade [1–3]. Moreover, increased accu-
mulated exposure to ultraviolet (UV) radiation of the sun over lifespan due to growing
life expectancy and the global climate crisis are considered major catalysts of increased
incidence and mortality of skin cancer. Whilst CM is still most common in the male pop-
ulation aged 50–70 years, rates of CM in young adults, specifically in young women, are
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constantly increasing over the last years. Although recently approved novel targeted and
immunotherapeutic approaches for CM treatment have been able to contain mortality rates
of melanoma patients, it is predicted that nearly half a million people will be diagnosed
with CM by 2040 with an increase in incidence of 62% and an increase of mortality of
up to 74% [4–6]. In contrast to non-melanoma skin cancer (0.69) the age-standardized
annual mortality rate for CM is about 1.5 (per 100,000 population) in the United States.
These alarming numbers make the development of novel targeted therapeutic options and
constant adjustments of the current state-of-the-art regimens essential in successful CM
treatment. Several combinations involving immune checkpoint inhibition (ICI), targeted
therapy through mutant-BRAF inhibition, intratumoral application of immunomodulators,
oncolytic viruses, and anti-angiogenic approaches are being trialed to prime the anti-tumor
response, enhance the sensitivity of CM cells to therapeutic interventions, and overcome
therapy resistance of mutant cancer cells.

Here, we describe current intervention strategies in CM and give pre-clinical insight
into research avenues of future combination therapies in CM (Figure 1a–e).
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Figure 1. Synergistic effects of combined systemic and intratumoral therapy in skin cancer treatment exemplified by CM.
Systemic immune checkpoint inhibition (a–e): Blocking of immune checkpoints on cytotoxic T Lymphocytes (CTL) and
CM cells disrupting tumor immune evasion (a). Systemic BRAFi/MEKi: Blocking overactivation of RAS-RAF signaling
pathway in BRAF-mutated melanoma by BRAF and MEK inhibitors (b). Intratumoral application of genetically engineered
oncolytic viral particles to express checkpoint inhibitors on CM cells, force production and release of tumor antigens and
GM-CSF to prime T cell immune response and induce tumor cell lysis (c). Intratumoral pharmacological application of IL-2,
IL12, GM-CSF, TLR-9 and STING agonists: Priming locally advanced CM to become immunogenic (d).
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2. Immune Checkpoint Inhibition

Understanding the process of immune-surveillance, or more specifically the capability
of the immune system to identify and target neoplastic cells for destruction, revolutionized
the treatment of a range of solid tumors [7,8]. Tumor cells are capable of hijacking the
patients’ T cell immune checkpoints, such as cytotoxic T-lymphocyte associated protein 4
(CTLA-4) and programmed cell death protein 1 (PD-1), which act as negative regulators of
immune response by surface expression of members of the B7 family of immune-regulatory
ligands and B7 homologs such as programmed cell death ligand 1 (PD-L1) and programmed
cell death ligand 1 (PD-L2) [9–11] (Figure 1a). Tumor cells thus use a mechanism, which
inherently is meant to protect the immune system from aberrant auto-immune responses.
T cell receptor (TCR)-dependent T cell activation is mediated by several co-stimulatory
signals, most notably the CD28 surface receptor, which is highly expressed at basal levels.
By contrast, CTLA-4 is only induced following antigen presentation and directly opposes
CD28 stimulation [12–14]. Similarly, PD1 is only induced after TCR stimulation, and whilst
CTLA-4 mostly acts within lymphoid organs, PD1 functions predominantly within periph-
eral tissues [12,15]. Other immune checkpoints include T cell immunoglobulin mucin-3
(TIM-3), which regulates T cell tolerance by inhibiting expansion and promoting apoptosis
of Th1 and Th17 cells, thus leading to CD8+ T cell depletion. Furthermore, lymphocyte
activated gene-3 (LAG-3), T cell immunoglobulin, and immunoreceptor tyrosine-based
inhibitory motif (TIGIT), Glucocorticoid-induced TNFR family-related gene (GITR) and
V-domain Ig suppressor of T cell activation (VISTA) contribute to activation and inhibitory
function of regulatory T cells [16–18]. Whilst targeted therapy is generally associated with
high but short-term treatment response rates in skin cancer patients, immune checkpoint
blockade has mostly shown lower but more durable responses [19–21].

Remarkably, recent treatment of skin cancer with immune checkpoint inhibitors (ICI)
was particularly successful with high and long-term overall response rates (ORR) (40–60%).
Approved and currently in-use ICI for skin cancer treatment include cytokines that target
the IL-2 and IFNAR1/2 pathways such as aldesleukin and interferon/peginterferon alfa-
2b, PD-1 inhibitors such as pembrolizumab and nivolumab, PD-L1 inhibitors such as
atezolizumab, and the first clinically approved monoclonal antibody for CM, ipilimumab,
that targets CTLA-4 [22]. Ipilumab, although having a relatively low ORR of <20%, was
the first therapeutic option to improve overall survival in metastatic melanoma patients
significantly and is thus predominantly used in melanoma treatment [23,24]. Treatment
of melanoma was the first to gravely benefit from the approval of immune checkpoint
blockade, with ICI being the first therapy to significantly improve overall survival (OS) in
patients with advanced disease states. The early success of ipilimumab in 2011 propelled
ICI into clinical use and shifted the standard-of-care of advanced melanoma management.
The anti-CTLA-4 monoclonal antibody directed against the inhibitory receptor exempts
the inhibitory effect of CTLA-4 activation, resulting in activation of T lymphocytes and
thus the destruction of tumor cells. Even though ORRs achieved with ipilimumab are
below 20%, some patients experience long-term survival using this anti-CTLA-4 regimen.
In pretreated CM patients with advanced disease, for example, ipilimumab significantly
increased median OS when compared to the peptide vaccine gp100 (10.6 versus 6.4 months).
After three years, the OS rate was about 20% followed by a plateau of the survival curve
for up to 10 years. Recently, a randomized placebo-controlled study in stage III patients
with CM demonstrated that adjuvant ipilimumab increases relapse-free survival (RFS) and
OS. Nevertheless, more than half of patients developed severe side effects (grade 3 or 4)
with ipilimumab, and five patients (1.1%) even had a grade 5 outcome [23–27]. As a result
of ipilimumab-induced T cell activation, a variety of immune-mediated adverse effects
(irAEs) have been observed, particularly including colitis, skin rashes, hepatitis, and less
frequently hypophysitis.

After the anti-CTLA-4 proof of concept showing that checkpoint blockade is in fact
a beneficial approach to combat CM, pembrolizumab, and nivolumab were studied in
this condition. These two monoclonal antibodies against PD-1 were approved by the
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FDA in 2014, becoming the first-line treatment option in metastatic melanoma. Large,
randomized investigations have demonstrated that mono-nivolumab or -pembrolizumab
were superior to mono-ipilimumab. Mono-pembrolizumab in the management of naïve as
well as pretreated patients resulted in sustained ORR of 30 to 40% [27–29]. In previously
untreated CM patients, pembrolizumab revealed OS rates of 51% and 41% after three and
five years, respectively. Studies of mono-nivolumab demonstrated ORR of 32% in treatment
naïve patients and 40% in pretreated CM. The three-year OS rate for mono-nivolumab in
therapy-naive patients was 42%, while the five-year OS in pretreated CM patients with this
monotherapy was 35%. Cross-trial comparisons of homogeneous groups of CM patients
with mono-pembrolizumab or -nivolumab treatment revealed similar results with respect
to the clinical endpoints and side effects [27–30]. Furthermore, adjuvant monotherapy
using nivolumab or pembrolizumab is now the preferred treatment option in patients
with resected stage III disease, in particular, stage IIIB to IIID. Compared to ipilimumab,
nivolumab has improved RFS with lower rates of adverse events. In this clinical setting,
pembrolizumab therapy revealed significantly longer RFS than placebo [31]. Moreover,
neoadjuvant melanoma trials, also including immunotherapies, currently investigate agents
with promising clinical and biomarker results [32]. As previously mentioned, however,
ICI can produce a wide range of irAEs affecting a multitude of organs such as skin,
gastrointestinal tract, endocrine system, heart, lung, kidneys, and the nervous system.
The most frequent irAEs induced by anti-PD-1 agents are hypo- or hyperthyroidism,
pneumonitis, cutaneous reactions (Figure 2), including severe conditions (Stevens-Johnson
syndrome, etc.), and hepatitis. irAEs may develop at any time as indicated by a wide
range of first occurrence for different organs (e.g., from few days after initiation up to
15 months for skin or up to 12 months for the gastrointestinal tract) [33,34]. In general, oral
and intravenous corticosteroids are the mainstay of irAEs management. Depending on the
irAEs, their severity and non-responsiveness to corticosteroids, other immunomodulatory,
and immunosuppressive drugs may be indicated.

With the attempt to further increase the number of patients who benefit from im-
munotherapy, combination therapies using anti-CTLA-4 and anti-PD-1 antibodies have
been studied in large trials. Two studies demonstrated that the combination of nivolumab
plus ipilimumab (ORR: 56.7%) resulted in higher clinical benefit when compared to -
nivolumab (ORR: 43.7%) or mono-ipilimumab (ORR: 19%). Five-year OS rates were 52%
in the combined treatment arm, 44% in the mono-nivolumab arm, and 26% in the mono-
ipilimumab arm [26–29]. In 2015, the combination of nivolumab plus ipilimumab was
approved based on positive ORR and PFS data. In case of primary or secondary resistance
to anti-PD-1, monotherapy combination or mono-ipilimumab is a potential therapeutic
approach. Today, the respective benefits of combination ICI versus sequential ICI are still
unclear. Combination therapies are associated with much higher rates of irAEs, which are
justified by long-term disease response. However, the subgroup of patients who might
benefit from the combination is not known prior to therapy, potentially exposing patients
to unnecessary toxicity [25–31]. Brain metastases are a common cause of disabling neuro-
logic complications and poor prognosis in CM patients. In a phase 2 trial, patients with
small, untreated, and asymptomatic brain metastasis were enrolled—it was demonstrated
that ipilimumab plus nivolumab have clinically meaningful intracranial efficacy (56% of
intracranial response). The safety profile was similar to those reported for the combination
in patients without brain metastasis [35]. Another phase 2 clinical trial compared the
combination of nivolumab plus ipilimumab versus nivolumab alone. Despite the small
sample size, ICIs combination was superior to nivolumab monotherapy, with a higher pro-
portion of patients achieving intracranial response [35]. An exemplary case shows almost
complete remission after ICI combination treatment is depicted in Figure 3. However, the
combination of anti-PD-1 and anti-CTLA-4 agents is associated with even higher irAEs
and drop-out rates when compared to monotherapy regimens. Hence, ICI can exhibit a
variety of irAEs, which range in severity but can have detrimental effects on a patient’s
quality of life and well-being, limiting subsequent treatment options [36]. Combinations of
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two or more therapies (e.g., BRAF/MEKi, T-VEC, or anti-angiogenic modulators) with ICI,
although potentially leading to improved efficacy, can increase the incidence and severity
of irAEs. Overcoming irAEs thus presents a major challenge in immunotherapeutic and
combination approaches to target CM.
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Despite recent advances in ICI therapy in CM, a subgroup of patients does not re-
spond to ICI treatment, with a significant portion of patients relapsing within 2 years.
ICI resistance can be caused by a variety of factors, including an immunosuppressive
tumor microenvironment, levels of tissue-specific neoantigens, altered tumor-infiltrating
lymphocyte function, and specific oncogenic alterations in the heterogenous tumor enti-
ties [37–39]. Therefore, regimens are being studied, including new immunomodulators and
combination treatments using ICI with targeted therapy, such atezolizumab, vemurafenib,
and cobimetinib. Currently, in-use ICIs and BRAF/MEK inhibitors are summarized in
Table 1. Furthermore, evidence is accumulating on the use of new immunomodulatory
treatments, for example, addressing LAG3, TIM3, and GITR [16,40].

Table 1. Currently in-use ICIs and BRAF/MEK inhibitors for CM.

Biological Classification Drug Name Mechanism Main Target Study

Immune Checkpoint Inhibition (ICI)

Monoclonal Antibody

Ipilimumab

priming of anti-tumor
immune response by
checkpoint receptor

inhibiton on immune and
melanoma cells

CTLA4 NCT00094653

Pembrolizumab PD1
KEYNOTE-001
KEYNOTE-002
KEYNOTE-006

Nivolumab PD1 NCT01844505

Atezolizumab PDL1 IMspire150
NCT02908672
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Table 1. Cont.

Biological
Classification Drug Name Mechanism Main Target Study

Targeted Therapy

Kinase Inhibitor

Dabrafenib

inhibition of
MAPK/ERK

overactivation in
BRAF-mutant

melanoma

BRAF mutant

BREAK-2
BREAK-3

Vermurafenib NCT01689519

Encorafenib NCT01909453

Trametinib

MEK

METRIC
MEK113583

Cobimetinib NCT01689519

Binimetinib NCT01909453

3. Targeted Therapy

Pharmacological approaches to target skin cancer have been widely studied in the last
two decades. Targeting cancer by focusing on cancer type-specific genetic alterations and
the most consequential signaling cascade abnormalities in tumor initiation and progression
are direct and profound applications to rehabilitate cellular homeostasis. In NMSC, several
critical pharmacological modulators are known to exhibit favorable effects. Targets of
systemic therapies include COX2, Toll-like-receptors (TLR), growth factor receptors such
as EGFR and the sonic hedgehog, and m-TOR signaling pathways [41–46].

In advanced melanoma, the most common druggable mutations are found in the
MAPK/ERK pathway [47,48] (Figure 1b). Up to half of the patients diagnosed with CM
carry activating mutations in the serine-threonine kinase of the BRAF gene (BRAF-V600),
with almost a quarter of patients (15–25%) carrying mutations in the RAS gene (Q61R,
Q61K), which downstream activate RAF, MEK, and ERK. [49–51]. Other mutations asso-
ciated with poor outcomes include CDKN2A and TP53 in ~13% and ~15% of melanoma
patients, respectively [52]. MAPK/ERK pathway mutations enhance proliferation, survival,
and spread of melanoma cells, and thus, patients carrying the mutation are eligible for
treatment with BRAF and MEK inhibitors. In BRAF-mutant metastatic melanoma, BRAF
and MEK inhibitors have proven to improve survival, although half of the patients develop
resistance within a year [53,54]. Moreover, treatment with BRAF and MEK inhibitors is
associated with toxicity, as shown in a case of widespread acneiform rash developing
2 months after the initiation of anti-BRAF plus anti-MEK combination therapy (Figure 4).
Several adverse events (AE), including hyperkeratosis, rash, alopecia, skin papilloma,
palmar-plantar hyperkeratosis, and arthralgia, as well as rare adverse events such as cu-
taneous SCC and pyrexia were observed. Most used BRAF/MEK inhibitor combinations
include Dabrafenib/Trametinib, Vermurafenib/Cobimetinib, and Encorafenib/Binimetinib.
In addition, BRAFi was associated with increased antigen expression, lymphocyte homing,
and a decrease in immunosuppressive cytokine release in melanoma cell lines and patients’
biopsies, providing a rationale for ICI-BRAF/MEKi combinations [55–58]. This was further
explored in a first-in-human clinical trial of dabrafenib, trametinib, and pembrolizumab
in which 11/15 patients (73%) showed an objective response and 6/15 continued with a
response at a median follow-up of 27 months. Triple therapy had higher PFS (16 months)
compared to dabrafenib and trametinib double therapy (10.3 months) with a median
duration of 18.7 months. [58,59]. Recently, a randomized, double-blind phase 3 trial on
514 patients suffering from stage III-IV BRAFV600-positive melanoma evaluated the use of
atezolizumab in combination with vermurafenib and cobimetinib. Progression-free sur-
vival was significantly prolonged from 10.6 months in the control group to 15.1 months in
the atezolizumab group with similar ORR (65% vs. 66%) [60]. While triple therapy combi-
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nations were prone to a higher incidence of AEs, these studies were the first to indicate that
BRAFi/MEKi/anti-PD1/PDL1 combinations have the potential to increase the frequency
of long-lasting antitumor responses in BRAF v600-mutant melanoma patients [58,60].
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therapy in a 33-year-old male with metastatic melanoma.

As with ICI, targeted therapies are also associated with AEs occurring of any grade
in almost all patients treated with the combination therapy. In patients treated with
BRAFi/MEKi, grade 3 to 4 AEs have been observed in about 50%. The discontinuation rate
due to AEs of BRAFi/MEKi is about 15% and thus much lower as compared to combina-
tions of anti-PD-1 and anti-CTLA-4. The most frequently reported AEs of BRAFi/MEKi
include cutaneous toxicities (Figure 4; e.g., acneiform rashes, photosensitivity, palmoplan-
tar hyperkeratosis), diarrhea, pyrexia, hepatic toxicities, arthralgia, cardiovascular toxicities
(e.g., hypertension, QT-prolongation), ocular AEs (Figure 5; retinal detachment, uveitis),
and rarely pneumonitis.
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4. Intratumoral Tumor Therapy and Combinations

Oncolytic Viral Therapy (OVT) utilizes replication-competent native or genetically
engineered herpes and adenoviruses to selectively target, infect, and lyse tumor cells.
Moreover, oncolytic viruses have the potential to be used as vehicles for transduction of
immunomodulatory transgenes in a tumor-promoter-driven system to enhance anti-tumor
immunity and assist in immune checkpoint blockade (Figure 1c). The first oncolytic virus
approved in 2015 for melanoma treatment was the engineered herpes-simplex virus 1 (HSV-
1) Talimogene laherparepvec (T-VEC). Deletion of RL1 and US12, encoding for ICP34.5
and ICP47 in T-VEC blocks the ability of the virus to hijack the replication machinery of
normal cells by making it susceptible to the anti-viral cell response through protein kinase
R (PKR) activation. Tumor cells, due to a disrupted PKR and IFN pathway, thus become
main targets for infection and lysis by T-VEC. Moreover, it was found that insertion of
US11 and GM-CSF improved oncolytic effect and augmented immune response leading
to systemic activation of CD8+ TIL [61–65]. Several reports have shown intratumoral
injection of T-VEC to be effective in the treatment of recurrent and locally advanced Merkel
cell carcinoma (MCC) [66,67]. A recent report of T-VEC and concurrent pembrolizumab
treatment led to a complete response in 51-year old patients with refractory MCC [68].
Two cases showed a complete and partial response in two 69-year old and 76-year-old
Caucasian males with pre-treated anti-PD-1 refractory MCC after concurrent PD1/PDL1
inhibition and T-VEC treatment [69]. Nevertheless, T-VEC/ICI combinations in MCC
treatment remain largely under-studied. In CM, several clinical studies were published
showing good efficacy and tolerability, with few reported severe AEs of T-VEC treatment
in patients with stage III-IV melanoma [70–74]. Recently, final analysis of the OPTiM phase
III trials comparing T-VEC versus GM-CSF treatment in 436 patients with unresectable
stage III-IV melanoma, T-VEC was shown to improve long-term efficacy and was well
tolerated with median OS for T-VEC treatment of 23.3 months and ORR of 31.5% [72].



Cancers 2021, 13, 2090 10 of 19

Combining T-VEC and ICI or BRAF/MEK inhibition in CM treatment are being widely
studied [61,63]. T-VEC can prime the anti-tumor response and turn immunologically ‘cold
tumors’ to become ‘hot’ by induction of IFN signaling overcoming immunosuppression
of the TME. Moreover, T-VEC can induce PD-1 expression in tumor cells, making them
susceptible for ICI and viral GM-CSF, and chemokine release can lead to attraction and
maturation of APCs that can cross prime CD8+ TIL in anti-tumor response. First, phase
I/II studies on T-VEC/ipilimumab or pembrolizumab combinations show higher effec-
tiveness of T-VEC/ICI combinational therapy versus T-VEC monotherapy in stage I/II
melanoma [74]. Patients receiving ipilimumab/T-VEC combinations experienced a higher
incidence of pseudo-progression, and combinational therapy was associated with higher
ORR (39%) [75]. Similarly, pembrolizumab/T-VEC combinations were well tolerated with
an ORR of 62% [61]. Another oncolytic adenovirus, ONCOS-102, that was engineered
to express GM-CSF, in combination with pembrolizumab, showed promising results in
melanoma mouse models and is currently undergoing a pilot study in advanced melanoma
patients after anti-PD1 treatment [76] (NCT03003676).

In a pre-clinical study, MAPK inhibition was shown to enhance T-VEC replication
in murine and human melanoma cell lines. BRAFi leads to enhanced T-VEC oncolysis in
BRAF-mutated melanoma lines, while MEKi increased T-VEC effectiveness in both BRAF-
mutated and BRAF-wildtype cell lines [63]. Thus, combining T-VEC and BRAF/MEK
inhibition might represent a potentially promising avenue to enhance T-VEC efficacy
in BRAF-mutated and BRAF-wildtype melanoma and requires further pre-clinical and
clinical validation.

Cytokines such as interleukin 2 (IL-2) and granulocyte-macrophage colony-stimulating
factor (GM-CSF) were among the first intratumoral regimens assessed in melanoma [77,78]
(Figure 1d). In the USA, systemically administered IL-2 is approved for the treatment of
metastatic CM. Even though the anti-tumor efficacy of intratumoral IL-2 appears to be
durable, it is limited to the injected lesions suggesting that intratumoral IL-2 does not
have strong systemic effects. Unlike systemic IL-2, however, intratumoral IL-2 is generally
well tolerated [79,80]. In a phase 2 study, tavokinogene telseplasmid—a synthetic plasmid
encoding the cytokine IL-12—demonstrated the induction of an anti-tumor immune re-
sponse and a high control rate in patients with CM. In 2017, this drug was given an orphan
drug status in the USA for the management of unresectable metastatic melanoma [81].
Another type of intratumoral approach in development comprises the pattern recognition
receptor (PRR) agonists, including Toll-like receptor (TLR) agonists and stimulator of
interferon genes (STING) agonists. Three TLR-9 agonists, such as SD-101, IMO-2125, and
CMP-001, are under investigation in combination treatments [82]. Moreover, it has been
detected that cyclic dinucleotides may represent immune adjuvants by activating STING,
in turn stimulating a pro-inflammatory immune response. Hence, phase 1 studies on 2
intratumoral STING agonists have been initiated [79,83]. A synergy between intratumoral
agents and ICI may be expected. In fact, treatment regimens combining therapies that
have different modes of action without enhancing toxicity are probable to feature in future
investigations [79]. There is increasing data indicating that the combination of intratumoral
agents and systemic regimens can even achieve responses in anti-PD1-refractory cancers,
thereby overcoming resistance. Importantly, intratumoral strategies may be considered for
use in any cancer that is injectable [79].

5. Potential of Anti-Angiogenic Immunotherapy in CM Treatment

The role of tumor angiogenesis in cancer has been known for nearly 50 years [84,85].
Under homeostatic conditions, blood vessels are considered highly organized, specialized
systems with organ-specific functions [86]. Disruption of pro- and anti-angiogenic balance
in tumor angiogenesis can lead to unorganized and permeable vessels lacking proper
barrier function. This, in turn, can increase the spread and risk of metastasis formation,
which has detrimental effects on patient survival outcomes. Abnormal angiogenesis is at the
core of melanoma growth and metastasis formation, with melanoma carcinogenesis being
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highly dependent on the recruitment of blood vessels from the periphery by promoting
angiogenesis through the release of vascular endothelial growth factor (VEGF) [87,88].

In an advanced setting, melanoma cells are capable of hijacking angiogenic pro-
grams, which can promote metastatic dissemination through lymphatic and hematogenous
routes [89–91]. Still, anti-angiogenic monotherapy, although improving disease-free inter-
val (DFI), did not prove to have durable and substantial anti-tumor activity in CM [92].
Additionally, VEGF decreases during aging leading to a poorer response in older compared
to young patients treated with anti-VEGF inhibitors such as bevacizumab [93]. VEGF is
reported to contribute to ICI resistance in mice by reducing CTL trafficking into the TME
whilst favoring Treg infiltration through the permeable endothelium [94]. Furthermore,
VEGF levels are found to be higher in ICI non-responders than responders indicating an
immuno-suppressive function. Moreover, it is reported that high VEGF concentrations
induce inhibitory receptor expression forcing CTL exhaustion, decreasing ICI effective-
ness [95,96]. Although the immunomodulatory effect of angiogenic molecules such as
VEGF and angiopoietins, which can control immune trafficking through regulation of
adhesion molecules, was known for the last decade, the emergence of ICI and the chal-
lenge of therapeutic resistance in a subset of patients made angiogenic inhibitors potential
targets of interest to support ICI and overcome treatment resistance [97–99]. Moreover,
the dysfunctional tumor vasculature can play a crucial role in immune evasion by cancer
cells using an angiogenesis-induced endothelial immune cell barrier hampering antitu-
mor immunity. It was thus suggested that exposure to pro-angiogenic factors leads to
endothelial cell anergy, reduced upregulation of endothelial adhesion molecules, and thus
decreased leukocyte adhesion, extravasation, and immune infiltration [100–102]. Hence,
vessel normalization and immune modulation by angiogenic inhibitors exhibit synergistic
effects that can potentiate cancer immunity and the anti-tumor response of ICI [103–105].

In recent years, the use of ICI in combination with anti-angiogenic modulators such as
bevacizumab was widely studied in several solid tumors, including non-small-cell lung
cancer [106], renal carcinoma [107,108], hepatocellular carcinoma [109,110], and endome-
trial cancer [33]. Moreover, recently a landmark phase III randomized clinical study in
which patients with unresectable hepatocellular carcinoma were treated with a PD-L1
inhibitor (atezolizumab) and a VEGF inhibitor (bevacizumab) combination found a signifi-
cantly improved overall and progression-free survival when compared to a group treated
with the standard of care protein kinase inhibitor, sorafenib [34]. Combinations of ICI with
systemic and local treatments for HCC are already under evaluation in large-scale clinical
trials, and atezolizumab/bevacizumab combinations are predicted to soon become the
standard of care as first-line therapy in HCC [111].

In CM, pre-clinical studies have previously suggested that angiopoietin-2 and VEGFA
inhibition by a bispecific antibody can elicit antitumor immunity and enhance PD-1 block-
ade in a tumor transplant mouse model of melanoma [112]. Remarkably, in BRAF-mutated
melanoma, VEGF blockade was even suggested to benefit long-lasting tumor responses, de-
lay onset of BRAFi resistance, and induce macrophage infiltration [113]. Although adjuvant
bevacizumab treatment was demonstrated to not significantly affect 5-year disease-free
survival in resected melanoma with a high-risk of recurrence, several studies are cur-
rently evaluating the safety and efficacy of ICI/bevacizumab combinations [92]. A phase
I trial in advanced melanoma patients has shown VEGF-A blockade with ipilimumab
administration to be safe with increased CD8 T cell and macrophage infiltration in tu-
mor biopsies as well as improved survival with a median of 25.1 months [113,114]. Two
phase II studies evaluating ipilimumab monotherapy vs. ipilimumab/bevacizumab in
unresectable stage III/IV melanoma and atezolizumab/bevacizumab in patients with lo-
cally advanced and metastatic cutaneous and mucosal melanoma are currently ongoing
and recruiting (NCT01950390/NCT04091217). In addition, two phase I trials evaluat-
ing pembrolizumab plus angiopoietin-1/-2-neutralizing peptibody, AMG386, as well as
tremelimumab plus anti-angiopoietin-2 antibody, MEDI3617, are recruiting and ongoing
(NCT03239145/NCT02141542). Overall anti-angiogenic inhibitors have the potential to
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support ICI immunotherapy and help in overcoming treatment resistance in advanced
melanoma patients. A summary of currently studied therapeutic combinations for ad-
vanced melanoma treatment is depicted in Table 2.

Table 2. Combinational treatment strategies for CM.

Biological
Classification Drug Name Mechanism Main Target Study

Combined Targeted Therapy

Kinase Inhibitor

Dabrafenib +
Trametinib inhibition of

BRAF-MEK pathway
reactivation, decreased
tumor cell survival in

BRAF-mutants

BRAF mutant, MEK

NCT01584648
NCT0159790

Vermurafenib +
Cobimetinib NCT01689519

Encorafenib +
Binimetinib COMBO450

ICI + Combined Targeted Therapy

Monoclonal Antibody +
Kinase Inhibitor

Pembrolizumab +
Dabrafenib +
Trametinib

PD1 checkpoint
blockade, decreased

tumor cell survival in
BRAF-mutants

PD1, RAF, MEK NCT02130466

Atezolizumab +
Vermurafenib +

Cobimetinib

PDL1 checkpoint
blockade, decreased

tumor cell survival in
BRAF-mutants

PDL1, RAF, MEK NCT02908672
IMspire150

Intratumoral Stimulation

Cytokine

GM-CSF
stimulation of tumor
immune response by

GM-CSF
APCs, TILs E4697

IL-2
stimulation of tumor
immune response by

IL2
TILs, NK cells NCT01672450

NCT00204581

Oncolytic Virus

Talimogene
laherparepvec (T-VEC)

oncolysis, activation of
anti-tumor immune

response through IFN
signalling

tumor cells, innate and
adaptive Immunity NCT00769704

ONCOS-102 oncolysis, immune
activation by GM-CSF

tumor cells, innate and
adaptive Immunity NCT03003676

Plasmid Tavokinogene
telseplasmid

stimulating
diffentiation, activation

of the adaptive
immune system

APCs, TILs NCT01502293

TLR9 agonists SD-101; IMO-2125;
CMP-001; CPG 7909

induction of CD8 T cell
response enhancing

uptake, destruction of
cancer cells

TLR9 in APCs, TILs
NCT02521870
NCT02644967
NCT02680184

STING agonists ADU-S100, MK-1454
anti-tumor response
through type I IFN

signalling activation

STING in tumor cells, TIL,
APCs

NCT02675439
NCT03172936
NCT03010176
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Table 2. Cont.

Biological
Classification Drug Name Mechanism Main Target Study

Combined Targeted Therapy

Immune Checkpoint Inhibition + Intratumoral Stimulation

Oncolytic Virus +
Monoclonal Antibody

T-VEC + Ipilimumab

immunological priming
of TME to enhance

PD-1 blockade efficacy
tumor cells, TILs, APCs

NCT01740297

T-VEC +
Pembrolizumab

MASTERKEY265
KEYNOTE034

ONCOS-102 +
Pembrolizumab NCT03003676

Intratumoral Stimulation + Targeted Therapy

Oncolytic Virus +
Kinase Inhibitor T-VEC + Trametinib

oncolysis, adaptive
immune activation,
MEK inhibition to
reduce tumor cell

survival

tumor cells, MEK, TILs and
APCs NCT03088176

ICI + Anti-Angiogenesis

Monoclonal Antibody

Bevacizumab

vessel normalization,
immunomodulation,
checkpoint inhibition

VEGF AVAST-M

Ipilimumab +
Bevacizumab CTLA4, VEGF NCT01950390

Atezolizumab +
Bevacizumab PDL1, VEGF NCT04091217

Monoclonal Antibody +
Neutralizing Peptibody

Pembrolizumab +
AMG386

vessel normalization,
immunomodulation,
checkpoint inhibition

PD1, Angpt1/2 NCT03239145

Tremelimumab +
MEDI3617 CTLA4, Angpt2 NCT02141542

6. Conclusions and Future Perspective

The development of patient-centered approaches for targeted treatment will be one
of the main challenges in CM care in the next decade. Combining therapeutic options
offers the unique opportunity to tailor treatment to patient- and cancer-specific conditions
utilizing the synergistic effects of existing therapeutic approaches (Figure 1e). Combina-
tions of several systemic treatment options such as ICI, BRAFi/MEKi, and angiogenic
inhibitors for metastatic melanoma, as well as intratumoral and systemic immunother-
apeutic applications to prime and induce immuno-sensitivity of locally advanced CM
show promising results and potential to overcome acquired and endogenous treatment
resistance. Nevertheless, limitations for increasingly complex treatment combinations
remain. Patients treated with ICI can exhibit a range of non-cutaneous and cutaneous
irAEs, which range in severity and can have detrimental effects on a patient’s quality of
life and well-being, limiting subsequent treatment options [36]. Combining two or more
therapeutic approaches, although potentially leading to improved efficacy, can increase
the incidence and severity of irAEs. As discussed in previous sections, there is a range
of potentially life-threatening irAEs affecting a multitude of organs, but there are also
less severe cutaneous irAEs substantially impacting patient’s quality of life. Cutaneous
irAEs are the most common adverse events occurring in up to 50% of patients undergoing
ICI resemble autoimmune disorders mostly presenting as primary dermatoses [115–117].
Future investigations will have to address emerging non-cutaneous and cutaneous AEs as
well as potential augmentation of treatment interventions combining different modes of
action whilst minimizing toxicity. In addition, we would like to emphasize that the survival
of patients with CM is significantly improved when the tumor is detected at a very early
stage—a time when simple surgery is fully sufficient to cure the patient’s CM. Hence, we
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also want to refer to emerging novel techniques under current investigation, which might
significantly improve the accuracy of early CM diagnosis. A variety of innovative optical
and acoustic technology-based techniques, such as confocal laser-scanning microscopy, op-
tical coherence tomography (OCT), photoacoustic/ultrasound/OCT, multiphoton excited
fluorescence imaging, and stepwise two-photon excited fluorescence, have been developed
to increase the diagnostic accuracy for the non-invasive melanoma diagnosis [118–124].
Advancing diagnostic tools and biomarkers to identify subgroup beneficiaries of specific
treatment combinations prior to therapy can thus become the next step in patient-centered
personalized CM treatment.
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