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Abstract

Whether species can respond evolutionarily to current climate change is crucial for the persistence of many species.

Yet, very few studies have examined genetic responses to climate change in manipulated experiments carried out in

natural field conditions. We examined the evolutionary response to climate change in a common annelid worm using

a controlled replicated experiment where climatic conditions were manipulated in a natural setting. Analyzing the

transcribed genome of 15 local populations, we found that about 12% of the genetic polymorphisms exhibit differ-

ences in allele frequencies associated to changes in soil temperature and soil moisture. This shows an evolutionary

response to realistic climate change happening over short-time scale, and calls for incorporating evolution into mod-

els predicting future response of species to climate change. It also shows that designed climate change experiments

coupled with genome sequencing offer great potential to test for the occurrence (or lack) of an evolutionary response.
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Introduction

It is well-documented that species have adapted evolu-

tionarily to climatic changes over geological time scales

(Hewitt, 2000; Davis & Shaw, 2001). However, current

climate change occurs at a much faster rate than in the

past as inferred from Quaternary climate records

(IPCC, 2014) and this is likely to impact the future of

numerous species (Walther et al., 2002; Parmesan &

Yohe, 2003; Deutsch et al., 2008). Possible biotic

responses to altered environmental conditions include

migration, phenotypic plasticity, and genetic adapta-

tions in response to the natural selection pressure

exerted by the altering conditions (Schilthuizen &

Kellermann, 2014). Phenotypic responses to climate

change are known from species in both terrestrial and

aquatic systems (Portner & Knust, 2007; Deutsch et al.,

2008), but there are obvious limits to how much a geno-

type can respond plastically (Overgaard et al., 2014).

Genetic adaptations are thus crucial for the long-term

persistence especially for species of low vagility (Franks

& Hoffmann, 2012).

Most of the studies published so far use natural cli-

matic (latitudinal or altitudinal) gradients (Bradshaw &

Holzapfel, 2001; Balany�a et al., 2006), or the evolution

of invasive species within a novel environment (Moran

& Alexander, 2014) as proxy for predicted climate

change rather than controlled replicated experiments

(Meril€a, 2012). However, very few studies have docu-

mented genetic responses to climate change in manipu-

lated experiments in the natural environment of an

organism.

Field-scale climate experiments, in which the abiotic

environment is manipulated to mimic predicted future

climate, are useful tools to study the effects of changes
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in abiotic factors, such as temperature, precipitation,

and CO2 levels (Mikkelsen et al., 2008). However, to

our knowledge, these powerful randomized and repli-

cated designs have rarely been used for studying either

evolutionary potential or actual evolutionary genetic

responses to changes in climatic conditions (Lau et al.,

2014). Here, we show that these designs coupled with

genome surveys at the population level offer a great

potential to test for the occurrence (or lack) of an evolu-

tionary response. We illustrate this by applying this

approach to a non-model soil invertebrate that is

ecologically important for terrestrial ecosystems.

The terrestrial annelid genus, Chamaedrilus [previ-

ously referred to as a single species named Cognettia

sphagnetorum Vedjovsky, 1878 (Clitellata; Enchytraei-

dae) (Martinsson et al., 2015)] is widespread in northern

and western parts of Europe (Briones et al., 2007). Cha-

maedrilus chlorophilus Friend 1913 (Martinsson et al.,

2015) is abundant in dry heathland of Denmark and

other parts of continental Europe (Schmelz & Collado,

2010; Holmstrup et al., 2012). This species reproduces

primarily asexually by fragmentation probably with

2–4 generations per year, depending on the environ-

mental conditions (Augustsson & Rundgren, 1998; Sch-

melz & Collado, 2010). It reaches a size of 10–20 mm

and is confined to the upper soil layers that are rich in

dead organic matter. Chamaedrilus spp. have very lim-

ited dispersal abilities (Sj€ogren et al., 1995) and there-

fore is ideal for studies of genetic changes in open field

experiments. Chamaedrilus spp. forms a substantial frac-

tion of the soil animal biomass in temperate organic

rich soils and plays an important role in the decomposi-

tion process and nutrient mineralization of these soils

by consuming microorganisms and dead organic mat-

ter (Williams & Griffiths, 1989; Maraldo & Holmstrup,

2010; Larsen et al., 2011). Enchytraeids, and in particu-

lar C. chlorophilus, are sensitive to drought (Maraldo

et al., 2009, 2010) and increased soil temperatures are

also expected to influence abundance of enchytraeids

(Briones et al., 1997, 2007). Previous field experiments

have shown that increased intensity of summer

drought causes transient bottlenecks in populations of

C. chlorophilus followed by recovery to normal popula-

tion densities within months (Maraldo & Holmstrup,

2010). Such recurring drought periods could foster

genetic adaptation to occur due to natural selection pro-

cesses. However, no studies have been conducted to

test if observable ecological responses – in population

dynamics or change of species abundance – are also

accompanied by evolutionary changes in these

populations.

Next-generation sequencing technologies (NGS) offer

the opportunity to investigate within-species genetic

variation in absence of prior genomic resources. Here,

we survey genetic variation in the expressed fraction of

the genome of C. chlorophilus using transcriptome

sequencing of samples from an experimental design

where realistic future climate conditions were

enforced and replicated in a natural setting since 2005

(Mikkelsen et al., 2008). We investigate whether the

manipulated environmental changes left a detectable

evolutionary signature in these replicate populations.

We document rapid adaptation to the climatic environ-

ment manipulations. Our findings pave the way for

using molecular tools to detect adaptation in a variety

of non-model organisms and will impact on our under-

standing of the adaptation of organisms to climate

change.

Materials and methods

Experimental design and sampling of individuals

The experimental site is situated at Brandbjerg, Denmark

(55°530N 11°580E) on a nutrient-poor sandy deposit with a

heath/grassland ecosystem dominated by a grass (Deschamp-

sia flexuosa (L.) Trin) and an evergreen dwarf shrub (Calluna

vulgaris (L.) Hull). The mean annual air temperature is 8.0 °C
and the mean annual precipitation is 613 mm. The experiment

was initiated in October 2005 and included single and all pos-

sible combinations of elevated CO2 concentration, increased

temperature (T), drought in late spring/early summer (D),

and untreated controls for reference (A, for ambient).

The drought treatment was applied with waterproof cur-

tains automatically pulled over the vegetation during rain

events to prevent precipitation to reach the ground and

retracted when the rain stopped. Since drought was applied

by reducing precipitation, the resulting soil water content in

drought plots was variable from year to year. The CO2 was

distributed by a Free Air Carbon Enrichment (FACE) system

with a target concentration of 510 ppm. CO2 fumigation

started 30 min after sunrise and ended 30 min before sunset all

year round, except during periods with full snow cover of the

vegetation. The temperature enhancement was achieved by

‘passive night-time warming’, where a light scaffolding (0.5 m

height) carrying a curtain reflects the outgoing infrared radia-

tion. The curtains were automatically pulled over the vegeta-

tion at sunset and retracted at sunrise. In case of rain or heavy

winds (>7 m s�1) during the night the curtains were automati-

cally retreated to avoid hydrological disturbance or damage to

the curtains (for further details, see Mikkelsen et al., 2008).

The eight treatments were placed in pairwise octagons of

6.8 m across receiving ambient and elevated CO2 respectively.

Each octagon was divided into four ‘slices’ (9.1 m2 per plot) to

provide all eight treatment combinations (Fig. 1a). Each com-

bination was replicated six times (total of 48 ‘slices’, hereafter

termed as ‘plots’) with six octagons at ambient CO2 and six

receiving elevated CO2 (Fig. 1b). The distances between the

octagons were at least 17 m, to prevent contamination of

ambient CO2 plots by the adjacent FACE system. Soil tempera-

ture (5 cm depth) and soil moisture (TDR measurements;
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0–20 cm depth) were logged on an hourly basis throughout

the experimental period (Mikkelsen et al., 2008). Based on

these data two covariates were calculated for each plot: the

average temperature at 5 cm depth (Ts5) and the average soil

water content (0–20 cm depth) during the last week of

drought periods when soil moisture was at its lowest

(SWCdrought). The soil temperature covariate was calculated

as the average of hourly measurements of Ts5 over the 7-year

experiment. The soil moisture covariate was calculated as the

average SWCdrought across the 7 years.

The increased temperature treatment resulted in 25–75

additional degree-days annually in the soil (5 cm depth) and

somewhat more in air and on the soil surface. Warmed plots

had the same temperature as ambient plots until the treat-

ments were started in October 2005 (Fig. S1).

During the 7-year field experiment, abundance of

C. chlorophilus was repeatedly reduced in drought treated

plots whereas experimental warming did not have detectable

effect (Maraldo et al., 2008; Andresen et al., 2011; Larsen et al.,

2011; Holmstrup et al., 2015). Thus, low soil water content

reduced the local population density, but populations recov-

ered before the drought manipulation of the following year.

Plots for our study were sampled in November 2012, i.e.

after 7 years of treatments. Among the set of plots available

we sampled 15 plots each representing five independent repli-

cates of three environmental conditions: ambient (no manipu-

lation), drought, or a combination of increased temperature,

drought, and increased CO2. Hereafter, we consistently refer

to these plots as ‘populations’ (Table 1). Within each of these

15 populations, two soil samples were collected. Samples were

collected using a soil corer (inner diameter 5.5 cm, depth

9 cm), divided into three layers of 3 cm each and kept in a

cold room at 5 degrees C for 5 days. Enchytraeids were subse-

quently extracted using Baerman technique (for further

details, see Maraldo et al., 2008). The enchytraeids of these

two samples were pooled and 30 C. chlorophilus individuals

were morphologically identified using a dissecting microscope

(Olympus) at 609 magnification and pooled for RNA extrac-

tion and sequencing. Chamaedrilus chlorophilus was the only

representative of this genus (Holmstrup et al., 2015) and was

therefore easily distinguishable from other species present at

the study site. Thus, it was not necessary to mount specimens

on slides before sampling (species identity and homogeneity

was confirmed a posteriori by barcoding, see below).

RNA extraction, cDNA library construction, and
sequencing

For each sample, RNA was extracted from the pooled 30 indi-

viduals following (Gayral et al., 2011). This was followed by

quantification by the Invitrogen (Carlsbad, CA, USA) Quant-

iTTM RiboGreen� RNA Reagent based on the manufacturer’s

(a)

(b)

Fig. 1 (a) Overview of the experimental manipulation within

one octagon (6.8 m width) comprising four slices (hereafter

plots). Note that half of the octagons where also submitted to an

elevated CO2 treatment (not shown on the figure). A denotes

the ‘Ambient’ (control) condition, while T and D denote, respec-

tively, plots where temperature and drought were manipulated

separately (T, D) or jointly (TD). (b) Overview of the design and

spatial location of samples listed in Table 1. Octagons 2, 4, 5, 8,

10, and 12 received elevated (CO2) and are circled in bold. Solid

lines show the boardwalks and the locations of the two meteoro-

logical stations are marked as M1 and M2. The two rectangles

represent buildings that house computers, control systems and

field laboratories.

Table 1 List of populations, spatial location on the design

and experimental treatment associated with each sampled

population

Population id Octogon Treatment

F1-P1 1 Ambient

F1-P2 1 Drought

F3-P1 3 Drought

F3-P4 3 Ambient

F4-P2 4 TDCO2

F5-P3 5 TDCO2

F6-P2 6 Ambient

F7-P2 7 Drought

F8-P3 8 TDCO2

F9-P1 9 Ambient

F9-P4 9 Drought

F10-P2 10 TDCO2

F11-P1 11 Drought

F11-P4 11 Ambient

F12-P3 12 TDCO2

Octogon number refers to spatial position depicted on Fig. 1.
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protocol and verification of RNA quality by Agilent (Santa

Clara, CA, USA) 2100 Bioanalyzer profile. Synthesis of cDNA

and construction of libraries were done with the Illumina, Inc.

(San Diego, CA, USA) TruSeq RNA Sample Preparation v2

Kit. Fragment size of selected cDNA was between 300 and

600 pb. Libraries were indexed and sequenced using two flow

cells of a Illumina, Inc. HiSeq 2000 sequencer with the 2 9 100

cycles, paired-end, indexed protocol provided by the Montpel-

lier Genomix Platform (http://www.mgx.cnrs.fr).

Bioinformatic pipeline for contig assembly, read mapping,
and polymorphism detection

After filtering for read quality, we used a bioinformatics pipe-

line developed specifically for de novo assembly of transcrip-

tome data from non-model organisms, read mapping and

Single Nucleotide Polymorphism (SNP) detection. Reads were

assembled to contigs using a combination of the programs

Abyss v1.1. (Simpson et al., 2009) and Cap3 (Huang & Madan,

1999), following the protocol described in (Cahais et al., 2012).

Then reads were mapped to contigs using the BWA program

(Li & Durbin, 2009) with default options. A position was

called as polymorphic (SNP) when the frequency of the sec-

ond most frequent base was above 0.05 across all samples.

This threshold implies that each detected variant was carried

by at least ~15 distinct reads, thus conservatively avoiding any

impact of sequencing errors.

Control for contamination of the samples

We first checked that the samples in our transcriptome data

comprised a single species. This is imperative to ensure that

we are tracking genetic changes within species and not merely

changes in abundance of morphologically identical but geneti-

cally distinct entities.

To do so we used highly expressed contigs of our assembly

that are homologs of well-established barcoding/phylogenetic

markers for animals. We used published sequences of Cox-1

and 18S ribosomal genes from various annelids, including

sequences deposited as C. sphagnetorum (and recently re

assigned to Chamaedrilus chlorophilus), as well as unpublished

Cox-1 sequences kindly made available by R€udiger Schmelz

(ECT Oekotoxikologie GmbH, Fl€orsheim am Main, Germany).

We aligned these to all contigs displaying strong homology to

Cox-1 as a check for potential contamination by other Chamae-

drilus species that had been wrongly identified at the pooling

stage.

Accuracy of the pool based estimates of SNP frequency:
simulated pooling from datasets with individual SNP
calling

We validated the SNP calling approach on pooled samples by

testing the approach on independent datasets in which indi-

viduals were separately sequenced and genotyped. The three

datasets examined here (marine tunicate Ciona intestinalis A,

butterfly Melitaea cinxia, and freshwater snail Physa acuta) were

obtained using the same RNA-seq protocols and the same

bioinformatics pipeline for transcriptome assembly and read

mapping as in the current study. Each dataset consisted of 10

individuals.

In each of the three species, we compared the ‘pool’ (indi-

vidual labels ignored) and ‘separate’ (individual label aware)

methods of SNP calling and allele frequency estimation. The

‘pool’ approach was identical to that followed in this study.

The ‘separate’ approach was that introduced by (Gayral et al.,

2011) and applied by (Romiguier et al., 2014). The two

approaches were convergent, with the same two alleles being

called in >99% of cases, and allele frequencies being well-cor-

related (r2>0.6). This was so in spite of a rather imbalanced

contribution of the distinct individuals. For instance, in C. in-

testinalis, in 36% of the SNPs, the among-individuals minimal

number of reads was below one-tenth of the median, and in

16% of the SNPs the maximal number of reads was above 10

times the median. Then we defined two arbitrary groups of

five individuals each and calculated the difference in allele fre-

quency between the two groups, Dall_freq again comparing the

two approaches (Table S1). A high correlation was obtained

between Dall_freq[separate] and Dall_freq[pool] (r
2 ~ 0.8, Fig. S2).

The variance across SNPs of Dall_freq was actually found to be

higher with separate than pooled individuals, suggesting that

the pooled approach is conservative and unlikely to yield an

excess of spurious SNPs. This control demonstrates a good

agreement between the pooling and labeling strategies, and

suggests that pooling is conservative regarding the detection

of allele frequency variation between samples even at rela-

tively low per individual coverage, consistent with the conclu-

sions of Gautier et al. (2013) and Schl€otterer et al. (2014).

Statistical analysis of SNP frequency data

Counts for each allele at each SNP position were modeled

using a logistic regression framework assuming that counts of

reads per alleles are binomially distributed with a mean that

can be a function of a continuous covariate (either the temper-

ature or the soil moisture covariate). This accommodates natu-

rally the unequal coverage per SNP position in each pool.

Likelihood ratio tests comparing models with and without the

continuous covariate provides formal tests for the association

of each SNP with the underlying environmental gradient. We

inspected visually the empirical distribution of P-values. In

particular, we checked visually that the empirical distribution

of P-values in the range (0.5–1) was uniform. This attests that

the test we used is well-behaved (not too conservative or lib-

eral) and we subsequently used the false discovery rate esti-

mator of (Storey & Tibshirani, 2003) to estimate the proportion

of false positives (q-value) given an individual P-value thresh-

old.

We assessed the robustness of the logistic regression frame-

work used to analyze differences in SNPs counts in each sam-

ple. Our framework assumes that counts of reads per allele at

each SNP are binomially distributed. This is only strictly true

if each individual in the pool contributes exactly the same

number of reads obtained through sequencing. Even in the

absence of any allele-specific bias in gene expression, we
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expect the number of reads contributed to a pool by each indi-

vidual to be at best Poisson distributed with identical means.

This will yield estimates of SNP frequency within pools with

inflated variance relative to the nominal variance expected if

counts were strictly binomial.

In order to further check that our likelihood ratio test for

the effect of an environmental covariate is statistically sound,

we used a permutation-based approach to obtain a P-value for

each test. Such permutation-based test also guards against

spurious association merely created by experimental plot clo-

ser to each other having also more similar covariates and more

similar SNPs. As this procedure is computer intensive, we re-

analyzed a random subset of 500 SNPs in our dataset. For each

SNP, the environmental covariate values were permuted

10 000 times and, for each permuted dataset, the logistic

regression was applied and a value for the likelihood ratio test

statistic was obtained. The empirical distribution of the likeli-

hood ratio test statistic obtained by permutation was then

used to obtain a permutation-based P-value for the actual

observed likelihood ratio test statistic on each SNP. The

P-value was calculated as the fraction of permutations that

yielded a likelihood ratio test statistic as high or higher than

the observed likelihood ratio test. We then calculated the cor-

relation between the asymptotic P-value and the permutation-

based P-value. We obtained a strong correlation (r2 = 0.86)

between both types of P-values.

Annotation and ranking of contigs

We used homology searches to annotate contigs containing an

open reading frame (ORF). ORFs were submitted to similarity

search by BLASTP against the NR protein database and GO

functional annotations were obtained using the blast2GO pro-

gram. GO terms were grouped in broader GO categories using

the generic GOSlim vocabulary (v.1.2) available from www.

geneontology.org

We ranked SNP containing contigs for their overall signifi-

cance of association of SNP(s) frequency and either the

drought or the temperature covariate. A score for overall sig-

nificance was computed for each covariate on every contig

containing SNPs as Z = � (log(P1) + . . . + log(Pm))/m; where

P’s are P-value obtained on each of m SNPs using the logistic

regression detailed above.

Results

Data generation and species barcoding

For each of the 15 samples (1 sample = 30 individuals

pooled), 24–68 millions of 100 bp reads per sample

were generated, of which 93.9–96.1% passed quality

control filtering. Reads were assembled into 593 143

contigs, of which 19 122 included a predicted ORF of

length above 200 bp and sequenced at average depth

(coverage) above 209 per pool (Fig. 2a). We use that

stringent cut-off for coverage of contigs in order to have

both the ability to detect SNP and to obtain good esti-

(a)

(b)

Fig. 2 (a) Summary statistics of the transcriptome assembly:

genome-wide distribution of variation in genetic diversity from

contig to contig within each pool. For each pool, genetic diver-

sity is measured, within each contig, as the number of variable

(SNP) position detected per 1000 nucleotides surveyed. Distri-

butions are reported as smoothed histograms (green: pools sam-

pled in ambient plots, orange: drought; red: drought +

temperature + CO2 plots). Inset graph: (smoothed) empirical

distribution of contig length for all contigs (gray), and contigs

containing open reading frames (blue). (b) Effect of experimen-

tal treatments on two covariates measuring the abiotic environ-

ment experienced by the 15 pools used for this study: mean

temperature at 5 cm depth and mean soil water content during

drought period at 0–20 cm of depth. Each plot is represented by

a dot with a color reflecting the type of plot sampled (green:

ambient, orange: drought treatment, red: drought + tempera-

ture + CO2).
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mates of allele frequency at the SNP positions within

each pool.

The taxon Cognettia sphagnetorum has recently been

subdivided into four nominal species and its generic

name changed into Chamaedrilus (Martinsson et al.,

2015). We checked that all individuals in our study

were coming from a single species.

To do so, we used the fraction of our sequencing

(RNA-seq) data that corresponds to mitochondrial gene

Cox-1 used to do barcoding; i.e. operationally define

species. We mapped all reads obtained from RNA-seq

against a series of reference Cox-1 sequences of anne-

lids (published sequences available in July 2013 and a

series of sequences provided by R€udiger Schmelz, per-

sonal communication, see methods). We found that all

reads (across all samples typically 99.9% and always

more than 98%) that had any similarity to Cox-1 are vir-

tually identical at the nucleotide level to a single refer-

ence sequence. Cox-1 is a highly expressed gene

(>10 0009 coverage in all samples analyzed). This gives

us enormous power to detect contamination even by a

single individual from a divergent species. Assuming

conservatively a minimum coverage of 10 000 in any of

our RNA seq samples (1 sample = 30 individuals

pooled), even if only 1 individual of 30 in the sample

originates from a different species, then we expect con-

servatively 300 reads should contain obvious sequences

differences. The probability of missing just by chance

such a divergent sequence is astronomically low

(<e-130). Thus, we have unequivocal evidence that all

individuals in the pools used for our RNA sequencing

belong to the same genetically defined species.

Furthermore, we realigned the Cox-1 reference

sequence we used to barcode our samples – labeled

JN259763 – with a set of Cox-1 sequences published

more recently: http://datadryad.org/resource/doi:

10.5061/dryad.6mh29

Redoing a phylogenetic tree based on this sequence

alignment shows unambiguously that our reference

sequence is placed within the so-called ‘sphagnetorum

clade C’ in Martinsson & Ers�eus (2013, Figure 2) and

renamed Chamaedrilus chlorophilus (Friend 1913) more

recently (Fig. S3). Note that all other clades exhibit at

least 7–10% divergence for that gene.

SNP diversity detected among populations

Reads were mapped to contigs and base counts were

performed to characterize allelic variation across pools

at each position of each contig. A total of 21 781 coding

single-nucleotide polymorphisms (SNPs) were called

within 2629 distinct ORF-containing contigs.

The detected amount of genetic variation, as mea-

sured by the density of SNPs in the contigs, was similar

among the 15 samples irrespective of their environment

of origin (Fig. 2a). Our pool-based sequencing

approach precludes estimating the numbers of distinct

genotypes present in each population and no system-

atic difference in amounts of genetic diversity among

populations from different treatment was found; but

we reveal ample nucleotide variation in expressed

regions of the genome upon which selection can act.

Association between SNPs and environmental variation

To characterize the abiotic environment of each plot

studied, two covariates were calculated based on

hourly soil temperature and moisture data. These

covariates revealed substantial variation in mean tem-

perature and drought level within the soil correspond-

ing to the same climate treatments (Fig. 2b). The

existence of heterogeneity between replicates of the

same treatment motivates the use of these two underly-

ing covariates instead of mere treatments effect in our

SNP analysis model (see methods). So instead of trying

to use treatment as a factor to explain variation in SNPs

among populations, we chose to use directly these two

covariates to characterize the abiotic environment of

each population sampled as they describe the effect of

the experimental manipulation carried out for both

temperature and humidity in the soil. Our main goal

was to test whether the variation in SNPs frequencies

revealed between populations does associate statisti-

cally with these covariates. Here, temperature and soil

moisture are taken as proxies for abiotic environmental

variation that potentially creates spatially varying natu-

ral selection – through differential viability or fecundity

of genotypes – and in turn triggers a detectable evolu-

tionary response. If a covariate measures an environ-

mental variation that does not trigger any evolutionary

response, we expect SNPs frequency to vary randomly

from population to population (through mere genetic

drift) and no statistical effect of that covariate. If, how-

ever, C. chlorophilus populations responded evolution-

arily to an environmental gradient quantified by a

covariate, then a statistical association across samples

between local SNPs frequency and the environmental

covariate should be detected (Fig. 3).

Every SNP detected in coding sequence (CDS), 50UTR

and 30UTR regions of contigs containing an ORF was

analyzed using a logistic regression in which the

response variable (number of reads of a given allele) in

each sample is modeled as a function of an environ-

mental covariate (see methods). A P-value for the test

of environmental association is obtained for each SNP

and a false discovery rate (FDR) analysis was con-

ducted using the empirical distribution of P-values

(Fig. 4) to account for multiple testing (n = 21 781 SNPs
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tested). From that analysis, we estimate that 2700

SNPs from 1192 contigs are significantly affected by soil

temperature, and 1208 SNPs from 664 contigs signifi-

cantly affected by soil moisture at an expected FDR of

1%, thus demonstrating a pervasive effect of the envi-

ronment on variation in allele frequency in this 7-year

long experiment.

Although we could recover homologs from two other

annelid draft genomes (Capitella teleta and Hellobdella

robusta) for ca. 8000 contigs, only 802 contigs were

homolog to functionally annotated sequences yielding

3266 gene ontology (GO) terms (Fig. S4). A list of

contigs that could be annotated by homology and

contain SNPs exhibiting the highest association with

environmental covariates are given Table S2. Unfortu-

nately, the majority of contigs containing the strongest

signal could not be annotated. For instance the first two

contigs that could be annotated and harbor SNPs with

the strongest signal of covariation with the temperature

covariate are only ranked 7 and 31 (Table S2).

We also computed the amplitude of allele frequency,

defined as the difference between maximum and mini-

mum values among the 15 analyze populations, as a

proxy for of the overall amount of evolution across the

experiment. Although we cannot assume that popula-

tions were initially harboring the same allele frequency,

Fig. 3 Testing for micro-evolutionary response to climatic gradients. Two examples of variation in allele frequency at individual SNPs

along an environmental gradient measured through (a) the mean temperature at 5 cm depth or (b) mean soil water content during

drought period (0–20 cm depth). Dots indicate actual observed SNP frequencies in ambient (green), drought (orange), and

drought + CO2 + temperature plots (red) and the predicted frequencies (black) using a logistic regression model including the

covariate.

Fig. 4 Empirical distribution of P-values for the association of SNPs with (a) the temperature (b) the drought covariate (right). Red line

depicts the expected distribution of P-values under the null hypothesis of no effect of the underlying environmental covariate on SNP

frequency. Inset: Venn diagrams describing the amount of overlap between contigs carrying SNPs with significant association in either

the 50UTR, the CDS or the 30UTR region (counts report the number of contigs in each category).
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we take this statistic as our best (albeit indirect) mea-

sure of amount of evolutionary change during the

course of this evolutionary experiment. If the detected

SNPs were associated with environmental covariates

‘just by chance’, we would expect the distribution of

these amplitudes to be the same between environment-

responding and environment-non-responding SNPs.

Here we report a strikingly different picture (Fig. 5):

SNPs whose frequency variation is associated with

specific environmental covariates varied dramatically

in frequency from sample to sample relative to SNPs

for which no association was detected.

Discussion

We found that ~12% of SNPs with differences in allele

frequencies among populations can be associated to mea-

surable changes in the abiotic environment. We docu-

ment clear genetic differences among populations (Figs 3

and 5) subject to mean temperatures increased by only

0.5 °C over the 7-year period in which soil temperature

was manipulated. Importantly, such differences arose in

a randomized and replicated experiment. We emphasize

that the genetic differences we detect cannot not merely

be driven by more intense bottlenecks in some environ-

mental conditions as all pools exhibited extremely similar

patterns of genome-wide genetic diversity (Fig. 2a). Fur-

thermore, although environmental effects can affect gene

expression levels, pools of individuals were kept in the

same lab environment prior to RNA extraction and RNA

seq. This explains probably why we did not detect any

significant effect of individual treatment on total gene

expression level among populations (not shown). Note

also that the statistical model we used – logistic regres-

sion with binomial link for SNP counts – naturally takes

into account differences among population in gene

expression levels (whether these are significantly differ-

ent between treatment or not) and thus does not bias our

statistical test for evolutionary response for a given SNP.

We argue in more detail below why the genetic dif-

ferences we observe represent a genuine evolutionary

change induced by selection and cannot be merely

attributed to confounding of spatial and environmental

proximity. Firstly, our approach is expected to be more

robust than FST-based approaches that focus on SNPs

that are outliers displaying extreme genetic differentia-

tion relative to the rest of the genome as candidate for

local adaptation. Such methods make rather strong

assumptions regarding the (unknown) underlying pop-

ulation structure to model allelic frequencies and are

very prone to yield false positives (Bierne et al., 2013;

Savolainen et al., 2013). In contrast, within our random-

ized experimental design, testing for association

between variation in SNPs frequency and environment

is a lot more straightforward because we are not deal-

ing with a naturally occurring environmental gradient

where typically populations that are geographically

close are more likely to share identical genes (through

isolation by distance) and closer environments (Coop

et al., 2010).

Secondly, in our design, migration may occur

between populations. However, migration events, if

any have occurred, will merely dilute the signal of

covariation between SNP frequency and the environ-

mental covariate. Any findings of association between

SNPs and environment variation cannot be spuriously

generated by uncontrolled migrations between plots

(these are unlikely given the dispersal abilities of our

study organism, but cannot be ruled out).

Lastly, we do not have temporal series in our experi-

ment. One concern might therefore be that the associa-

tion we detect between SNPs and environment

manipulations are merely caused by past population

differentiations predating our climatic manipulation

and not evolutionary changes. However, if this were

the case, we would expect zero correlation between our

likelihood ratio test P-values and those obtained via

permutations of environmental covariate. We observe a

strong correlation (r2 = 0.86) between both types of

P-values. This attests that the associations between

SNPs and environment are robust findings and not arti-

facts of previous population differentiations. Even if

Fig. 5 Distribution of amplitude in the minor allele frequency

at SNPs along a gradient defined through either (a) temperature

or (b) drought. SNPs with a low associated FDR (q < 0.001) and

thus responding to selection are categorized as rejecting the null

(HA, in red) while SNPs displaying no association with the

environmental gradient when tested (P > 0.5) are categorized as

stemming from the null distribution (H0, in gray).
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the absence of a temporal sampling in our study pre-

cludes the direct estimation of the strength of selection

underlying the adaptive changes of SNPs frequencies

(Olson-Manning et al., 2012), the evolutionary response

we detect in our design is genuine.

The two covariates used for soil temperature and

moisture exhibit some level of correlation (Fig. 2b).

This, and the clonal nature of the populations we stud-

ied preclude us from inferring precisely what abiotic

factor(s) and which SNPs are driving the micro-evolu-

tionary changes detected between populations. Simi-

larly, the fact that annelids are understudied in

genomics precludes parsing precisely which biological

functions are associated with the genes exhibiting the

observed evolutionary response. These are inherent

limitations of our study system.

Can species adapt to climatic changes at a rate that

matches the rate of climate change? This pressing question

is pivotal for understanding the response of species to

current climatic changes and future distribution of bio-

diversity. Studies documenting convincingly genetic

change mediated by climate change selection remain

scarce (Meril€a, 2012). A handful of studies have used

an experimental evolution approach to examine evolu-

tionary response in model organisms propagated under

lab conditions by typically altering either CO2 (Collins

& Bell, 2004) or temperature within a realistic range

given current climate change models. To our knowl-

edge, the present study provides the first analysis of

the evolutionary response within populations in a repli-

cated experiment where climate change conditions are

enforced under natural conditions.

Our approach demonstrates that the sequencing of

samples from a replicated manipulated experiment

provides sufficient power to measure the extent to

which populations respond genetically to environmen-

tal perturbations under field conditions. This was

achieved in a species lacking any prior genomic

resources, which indicates that our approach can be

carried out in a wide range of nonmodel organisms

with limited capacity for dispersal – provided that a

sufficient number of generations can be reached.

Incorporating evolutionary response into climate

change modeling is pivotal for correctly predicting the

response and future distribution of plant and animal spe-

cies. Climate change models incorporating evolutionary

responses often yield very different predictions for future

species distributions compared to models that do not

incorporate evolution (Kearney et al., 2009). Two scenar-

ios may be foreseen: either no adaptation occurs and

genetic diversity decreases through repeated bottlenecks

ultimately increasing the risk of extinction in a changing

environment, or, adaptive genetic changes do occur and

may pave the way to evolutionary rescue. We did not

observe any environment specific loss of genetic diversity

in our study species, and the genetic differences we

observe between environments therefore most likely rep-

resent adaptive changes to a future climate. If this is the

case, and if our findings apply to many other species, the

good news might be that models neglecting evolution

when predicting species distributions according to cli-

mate change projections are perhaps too conservative

and overestimating the risk of extinction. As more stud-

ies like this accumulate, comparing their outcomes will

help assessing how pervasive evolutionary response are

to climate change and ultimately reveal which biological

factors limit the potential for evolutionary response and

rescue.
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