
Cai et al. Journal of Ovarian Research  (2015) 8:50 
DOI 10.1186/s13048-015-0176-9
RESEARCH Open Access
Gene expression profiling of ovarian
carcinomas and prognostic analysis of outcome
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Abstract

Background: Ovarian cancer (OCA), the fifth leading deaths cancer to women, is famous for its low survival rate in
epithelial ovarian cancer cases, which is very complicated and hard to be diagnosed from asymptomatic nature in
the early stage. Thus, it is urgent to develop an effective genetic prognostic strategy.

Methods: Current study using the Database for Annotation, Visualization and Integrated Discovery tool for the
generation and analysis of quantitative gene expression profiles; all the annotated gene and biochemical pathway
membership realized according to shared categorical data from Pathway and Kyoto Encyclopedia of Genes and
Genomes; correlation networks based on current gene screening actualize by Weighted correlation network analysis
to identify therapeutic targets gene and candidate bio-markers.

Results: 3095 differentially expressed genes were collected from genome expression profiles of OCA patients (n = 53, 35
advanced, 8 early and 10 normal). By pathway enrichment, most genes showed contribution to cell cycle and
chromosome maintenance.1073 differentially expression genes involved in the 4 dominant network modules are further
generated for prognostic pattern establish, we divided a dataset with random OCA cases (n = 80) into 3 groups efficiently
(p = 0.0323, 95 % CIs in Kaplan-Meier). Finally, 6 prognosis related genes were selected out by COX regression analysis,
TFCP2L1 related to cancer-stem cell, probably contributes to chemotherapy efficiency.

Conclusions: Our study presents an integrated original model of the differentially expression genes related to ovarian
cancer progressing, providing the identification of genes relevant for its pathological physiology which can potentially be
new clinical markers.
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Background
As the fifth leading cause of cancer related to deaths,
ovarian cancer just have only 30–40 % with a five year
survival rate in women [1]. In American, there were
219,800 new cases and around 142,700 women succumb
to this fatal disease in 2014 [2], and the lifetime risk
of epithelial ovarian cancer is one of 72 women [3], what
is much more worse in developing countries [4, 5].
Ovarian tumors can be classified into epithelial (60 %),
germ cell (30 %) and sex-cord stromal tumors (8 %) [6],
among which the vast majority of malignant ovarian
cancers (80 %-85 %) [7] began in the ovarian epithelium.
Unfortunately, ovarian cancer is highly asymptomatic at
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early stages, the epithelial ovarian cancer (EOC) is hard
to be diagnosed due to the multitude of clinical and
histopathological aspects [8], lack of precursor lesions
[9] and their evolution [10], thus most patients with
EOC are diagnosed at advanced stage and have a poor
prognosis. It is reported that only 30 % in stage I or II
could be cured by surgery with five-year survival rate of
90 %, in contrast, EOC in stages III or IV could spread
throughout widely with 5-year survival of less than 30 %
[11, 12]. Besides, malignant ovarian germ cell tumor is
hard to be distinguished by medical image and always
happen to young women below the age of 20.
Recently, more and more reports declared that

ovarian cancer has home history, about 10 % of
EOC cases are related to inherited genes like
BCRA1and BCRA2 [13, 14], and ovarian germ cell
tumors can be cancerous or non-cancerous tumors
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depend on genome difference [15–17]. Actually, can-
cer is a disease single of genomes or networks of
molecular interaction and control, advanced ovarian
cancer with a high relapse rate related to the ac-
quirement of chemo resistance, due to it’s ability to
converting the tumor cells back into a stem cell-like
state. Luckily, several existing drugs [18, 19, 14] can at-
tack the pathway and reverse the cellular transformation,
thus ‘re-sensitizing’ the tumor to treatment. For these
reasons, it is urgently to develop effective strategies to
stratify early and advance stage patients.
Correlation networks are increasingly being used in

bioinformatics applications like generating modules
(clusters) of highly correlated genes, summarizing
such modules using an intra-modular hub gene or the
eigengene, and analysis of modules’ networks or cal-
culating module membership measures, which can be
used to identify candidate biomarkers or therapeutic
targets. Currently, we use weighted correlation net-
work analysis (WGCNA) to correlate networks facili-
tate network based standardized and screened gene,
aim at establish an a feasible genetic method to prog-
nostic of outcome of individual’s ovarian carcinoma,
especially the bottleneck problem of epithelial ovarian
cancer and malignant ovarian germ cell cancer, there-
fore, making an advantage to choose the most suit-
able chemotherapy for a certain patient.

Materials
As the paper did not involve any human or animal study,
there was no need for any ethical approval.

Literature selecting and building
For analysis of differential genome-wide expression be-
tween patients in different cancer stages, we selected
GSE12470 dataset [20], including gene array data from
35 advanced ovarian cancer patients, 8 early ovarian
cancer patients and 10 non-cancer persons.
For prognostic analysis on different types of ovarian

cancer, GSE14764 data set [21] was selected, which in-
cludes genome-wide expression data from 80 ovarian
cancer patients. In addition, GSE63885 dataset [22] and
GSE49997 dataset [23] were tested to verify the estab-
lished prognostic analysis model, these two data sets are
consisted of genome-wide expression data from 101 can-
didates with differential ovarian cancer and mRNA ex-
pression data from 204 candidates suffered from ovarian
cancer respectively.

Database search
Gene Expression Omnibus [24] functional genomics re-
pository was searched for the relationships between the
probe in the platforms used in the selected datasets and
corresponding genes. One probe set (contain several
probes, N ≥1) matching one target gene, therefore aver-
age value [25] of different corresponding probe IDs is
represent one gene expression level. Skew distribution of
gene expression was transformed to skew normal distri-
bution by log2 transformed and final probe set level data
was generated through Robust Multichip Analysis [26]
(a model-based algorithms) with default parameters [27].

Screening of differentially expressed genes
After expression data for post-processing of standardization,
we directly employed a more mature significance analysis of
microarrays (SAM) algorithm [28]. Differentially expressed
genes were screened by using t-test and analysis of variance,
if N is large number of our genes, it will generate a lot of
false positives, then use controlling the FDR (false discovery
rate) values corrected for multiple testing in the false-
positive rate. Calculate the relative difference statistic d:

d ¼ X′
1−X

′
2

s−s0

d, statistic measures the relative differences in gene ex-
pression are corrected d statistics. X1 ‘represents the
average expression level of a state under genes, X2’ rep-
resents the average expression levels of gene, s repre-
sents the variance of the gene.

Construction of co-expression network and module-
mining
Construction of co-expression network mining based on
the differentially expression value, weighted correlation
network analysis (WGCNA) [29] was used for finding
modules of correlated differential genes, summarizing
such modules, relating modules to one another, and
weighting module’s membership and contributed genes.
All the genes used in WGCNA methods had been
screened as previously described.

Screening of differentially expressed module
Specific gene regulatory network module were screened
in two conditions, and then determine the gene for each
module in the two states within the overall expression
differences, using a global analysis of variance method
[30], Global-Ancova method based on correlation ana-
lysis of variance test set and a set of functional gene
phenotype, P value tested with less than 0.05 network
modules selected as differentially expressed module. The
method may be R language Global-Ancova package
implementation.

Enrichment analysis of gene function
For a group identified gene sets, we used DAVID [31]
tool - a software is based on the hyper geometric en-
richment test methods of distribution test, to achieve
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function and the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG, http://www.genome.jp/kegg/) [32] path-
way enrichment analysis.
Survival analysis
By statistical analysis, we able to achieve some network
modules consisted of differential selected genes with
some chemotherapy related regulation factors. In view of
these differential genes, we classified dataset GSE14764,
GSE63885 and GSE49997 into subgroups, all the candi-
dates are treated by chemotherapy. Prognosis analyses
were conducted by SURVICAL package in R environ-
ment, and Kaplan-Meier estimates of overall survival
(OS) respective 95 % confidence intervals (CIs) were
provided for each cluster. In addition, for each dataset,
Cox regression modeling [33] was used to control and
assess for statistically significant prognostic factors, in-
cluded adjustments for age, histology, and stage. Then
the Pairwise comparisons between clusters were carried
out in Cox model, based on calculated p-values, genes
Fig. 1 Box-plots of the distribution of gene expression values for analysis o
FC of 2.0). The abscissa represents each candidate IDs, while the vertical ax
datein genome expression profiling are the mean value of many experiment
35 advanced, 8 early), (b) GSE14764dataset, 80 samples in different types of ov
various epithelial ovarian cancer and 16150 genes, D) GSE63885 datase
genes. a, b, c are consisted of gene-expression data, while (d) reveals mRNA exp
in each sample
with p < 0.05 are considered to be relevant to the clinical
characteristics and prognosis of ovarian cancer.

Results
Overall gene-expression profiling standardization
As previously described, we generated original genome
expression profiling and mRNA expression data got
from each data set (GSE12470, GSE14764, GSE49997 and
GSE63885), after using GEO database matching the probe
ID in the platform to Gene Symbols, corresponding genes
and gene’s IDs were collected from these data sets respect-
ively. A quantitative genome expression distributions map
are showed in type of box-plots (see Fig. 1), values from
each dataset were linearized when provided as logarithms,
raw files were converted into pre-processed data by RMA
with default parameters [27].

Ovarian cancer’s genetic screening and pathways analysis
According to the procedure adopted by Dai et al. [26],
pre-processed data of 53 samples (Fig. 1a) were analyzed
by SAM in R environment, samples including data from
f ovarian cancer gene expression profiling (with a p-value of 0.05 and
is marks the data of genome expression of related patients, all the
locations. a GSE12470 dataset, 13356 genes in 53 samples (10 normal,
arian cancer and 13046 genes, C) GSE49997 dataset, 204 samples in
t, 101 samples in different ovarian cancer and mRNA and 20693
ression levels. Apparently, most genes’ expression values are approximately

http://www.genome.jp/kegg/


Table 2 Top 10 in weighted gene co-expression network
analysis

Genes Degree

RACGAP1 105.7018

UMPS 100.2887

NUSAP1 93.13226

RAD51AP1 92.99357

RAE1 92.71948

CBX3 90.26029

CENPL 89.92775

IARS 89.0546

MRPL3 89.03123

NEK2 87.25454
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patients in various stage and non-cancer individuals.
Lists of 3095 differentially expressed genes are collected
(Accompanying Table 1), showing (i.e., fold change (FC)
equals 2.0) were generated at SAM p-value thresholds of
5 %.
To identify the biological processes associated with

these 3095 differential expressed genes, we explore the
DAVID; http://david.abcc.ncifcrf.gov/). Compared with
online human genome database, the top 10 enriched
clusters with the 511 genes mainly distributed at cell
cycle including mitosis, deposition of nucleosomes at the
centromere, Chromosome Maintenance including
Chromosome, telomere maintenance and nucleosome
assembly, Regulation of RNA transcription level includ-
ing RNA polymerase I (Table 1, Accompanying Table 2).
Based on these 511 genes related to top 10 pathways,

overall 80 candidates were completely clustered by prin-
cipal component analysis (PCA), which indicates a high-
performance of differences genetic screening (Fig. 2).

Differences genetic screening and pathways analysis on
ovarian cancer in different stages
By using WGCNA software in R language, gene co-
expression networks (Accompanying Table 3) are
established from 3095 differential expression genes
(Accompanying Table 1). Each gene was weighted and
ranked by calculating the network edges, top 10 are
showed in Table 2, Gene RACGAP1 [34], RAD51AP1
[35], RAE1 [36], NEK2 [37] had been reported as ovar-
ian cancer related genes, while the others are newly
defined related gene. In addition, these 3095 genes
were divided into 17 modules (Table 3) by the block-
wise, Modules function of WGCNA package. After
further screening on Global-Ancova package using R
language and comparing original gene-expression data
set GSE12470, 4 network modules of differentially
expressed cancer genes were identified (Table 4, de-
tails showed in Accompanying Table 4) as the repre-
sentative module to apply function analyses because
Table 1 Pathway analyses between normal person and patients in d

Source Name

REACTOME Cell Cycle

REACTOME Cell Cycle, Mitotic

REACTOME Chromosome Maintenance

REACTOME Telomere Maintenance

REACTOME Deposition of New CENPA-containingNucleosomes

REACTOME Nucleosome assembly

REACTOME Meiotic Recombination

REACTOME RNA Polymerase I Promoter Opening

REACTOME RNA Polymerase I Transcription

REACTOME RNA Polymerase I Chain Elongation
most of genes in the network are expressed in the can-
didate who suffered from cancer.
GO and KEGG analysis on these 4 modules (Table 4)

shows blue modules is mainly take part in female metab-
olism regulation and controlling: Androgen and estrogen
metabolism and Steroid hormone biosynthesis which
straightly related to ovarian functions, Aminoacyl-tRNA
biosynthesis which play a key role in protein synthesis
[38] and has been suggested to be associated with the
progression of various ovarian cancers [39, 40], most in-
terested is porphyrin and chlorophyll metabolism path-
ways also be involved into ovarian cancer progression,
porphyrin was reported as treatment elements for ovar-
ian cancer [41], while chlorophyll as important grapevine
iron nutrition for blood [42, 43] which most females are
short for it [44], besides, some reporter illustrated cancer
resistance protein can against the porphyrin and chloro-
phyll metabolism [45], thus, blue module may potentially
denotes the progress of ovarian cancer and support to
our subsequence prognosis analysis. Besides, gene UMPS
ranked second was involved in pathway of aminoacyl-
tRNA biosynthesis, further suggests that UMPS could be
related to a certain ovarian cancer. And gene IARS
ifferent stages (top 10)

p-value q-value Bonferroni

3.03E-28 8.61E-25

7.62E-20 2.17E-16

1.02E-19 2.91E-16

1.09E-19 3.11E-16

at the Centromere 6.22E-17 1.77E-13

6.22E-17 1.77E-13

2.78E-16 7.90E-13

3.36E-14 9.56E-11

8.11E-14 2.31E-10

9.50E-14 2.70E-10

http://david.abcc.ncifcrf.gov/


Fig. 2 Clustering map base on 511 screened differential genes. Red spot indicate healthy individual, spot in blue indicate patient suffering from
ovarian cancer, spots in different colors are effectively separated from each other

Table 3 Differential expressed gene divided into 17
networkmodules

Module_name F.value Gene_num p.approx

Black 0.775321 120 0.32445

Blue 1.993077 546 0.047693

Brown 0.822257 294 0.487956

Cyan 1.898666 24 0.104177

Green 1.501158 200 0.122757

Greenyellow 3.187852 32 0.01002

Grey 1.6997 464 8.81E-06

Lightcyan 2.393375 22 0.066907

Magenta 1.248493 60 0.215386

Midnightblue 0.453455 23 0.710623

Pink 1.184971 75 0.217628

Purple 1.265749 55 0.215887

Red 1.639867 161 0.051571

Salmon 1.295175 31 0.201977

Tan 2.495361 31 0.0358

Turquoise 1.755095 717 0.073338

Yellow 1.025866 240 0.30132
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belongs to drug metabolism pathway in blue module
ranked eighth in Table 2, suggesting that this gene
maybe important for applicability of drug treatment in
specific case.
Greenyellow module is mainly related to PPAR sig-

naling pathway, which is involved in ovarian follicle de-
velopment [46] and ovarian cancers progress [47]. Grey
module is mainly devoted to melanogenesis. Presently,
no representation shows melanogenesis is related to
cancer progression, but melanogenesis is regarded as a
potential instruction for understanding of complex dis-
eases [48]. In currently study, we select the modules to
evaluate ovarian cancer in different stages and various
types, thus, this module probably take an important
part in subsequence prognosis analysis for patients in
various conditions, beside, the other functions of this
modules also help to analysis cancer proceeding like
amino acids metabolism and energy homeostasis. Tan
module is mainly devoted to carbohydrates and sucrose
metabolism, and this is a risk factor for many cancer [49]
and female ovarian health [50], also very important to diag-
nosis of advanced ovarian cancer patients [51, 52].
All these supported researches and relevance data il-

lustrated that we had generated network modules from
differential expression genes of various ovarian cancers
successfully, and these networks are competent for



Table 4 Pathway analyses in dominantnetwork modules composed by differential expression ovarian cancer genes

Module Category Term P-value

Blue KEGG_PATHWAY hsa00150:Androgen and estrogen metabolism 7.72E-07

Blue KEGG_PATHWAY hsa00970:Aminoacyl-tRNA biosynthesis 0.001102

Blue KEGG_PATHWAY hsa00140:Steroid hormone biosynthesis 0.002036

Blue KEGG_PATHWAY hsa00860:Porphyrin and chlorophyll metabolism 0.00247

Blue REACTOME_PATHWAY REACT_1698:Metablism of nucleotides 0.009412

Blue KEGG_PATHWAY hsa00983:Drug metabolism 0.036080937

Greenyellow KEGG_PATHWAY hsa03320:PPAR signaling pathway 0.053198

Greenyellow REACTOME_PATHWAY REACT_602:Metabolism of lipids and lipoproteins 0.086351

Grey KEGG_PATHWAY hsa04916:Melanogenesis 0.006757

Grey REACTOME_PATHWAY REACT_17044:Muscle contraction 0.015831

Grey REACTOME_PATHWAY REACT_13:Metabolism of amino acids 0.021384

Grey BIOCARTA h_ghrelinPathway:Ghrelin: Regulation of Food Intake and Energy Homeostasis 0.028498

Grey KEGG_PATHWAY hsa00512:O-Glycan biosynthesis 0.029358

Tan KEGG_PATHWAY hsa00500:Starch and sucrose metabolism 0.001807

Tan REACTOME_PATHWAY REACT_474:Metabolism of carbohydrates 0.002231
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predict ovarian cancer’ subgroups, also potentially indi-
cate the proceeding of ovarian cancer in different
patients.

Prognostic analysis of subgroups of ovarian cancers
1073 differential expression genes involved in the 4 dom-
inant network modules were generated from GSE12470
expression dataset as previous described. By using
SUVIVLE package in R basing on these differential genes,
GSE14764 dataset composed by various ovarian cancer
patients’ gene expression profiles (n = 80) were classified
into 3 subgroups (Fig. 3a). Pair wise comparisons between
clusters based on p-values were carried out by Kaplan-
Meier estimates of OS respective 95 % confidence inter-
vals (CIs). Kaplan-Meier estimates of Fig. 3a has been
showed in Fig. 3b with P = 0.0323.
In order to verify the availability of the prognostic

functions of these 4 modules, we useGSE49997 and
GSE63885 datasets to repeat the same experiment.
GSE49997 [23] is composed by mRNA expression data
from epithelial ovarian cancer patients (n = 204) while
GSE63885 datasets are consisted by genome expression
data from various ovarian cancers. According to the ori-
ginal articles, candidates in GSE49997 [23] dataset are
classified into the clinic-pathologic parameters of the
histological serous and non-serous tumor subtypes, each
subtypes can be divided into 2 subclasses derived from
International Federation of Gynecology and Obstetrics
stage-directed supervised classification approach (IFGO).
One group’s (subclass2) conditions deteriorated extremely
from a certain time point and appear much lower livability
in both serous and non-serous histological subtypes than
another (subclass1)’s, as revealed by univariate analysis
(hazard ratios [HR] of 3.17 and 17.11, respectively; P 0.001)
and in models corrected for relevant clinic pathologic pa-
rameters (HR 2.87 and 12.42, respectively; P 0.023). Simi-
larly, candidates in GSE63885 [22] datasets adapt the same
classification approach(IFGO), and they discovered that
histological type could be a confusing factor and gene ex-
pression exploration of ovarian carcinomas should be per-
formed on histologically homogeneous groups to direct the
prognostic analysis on chemotherapy. In their experiment,
clinical endpoints like overall survival, disease-free survival,
tumor response to chemotherapy are not confirmed by val-
idation either on the same group or on the independent
group of patients, just CLASP1 gene with BRCA1 mutation
status related to one ovarian cancer subclass which tend to
deteriorate easily.
Comparatively, heat map profiles in current researches

(Fig. 3c and Fig. 3e showed) showed the samples from
GSE49997 and GSE63885 dataset had been efficiently di-
vided into 2 groups base on the same differential expressed
genes and 4 network modules used in Fig. 3a, which are
identical with the original dataset information. In Kaplan-
Meier estimates of OS respective 95 % confidence intervals
(CIs) were provided for these two heat maps with p equals
to 1.02e-05 and p equals to 0.0781 respectively. According
to these two verification models and similarities in classifi-
cation to original data sources we described above, the se-
lected 1073 different genes in 4 majority network modules
is competent to classify ovarian cancer into subtypes that
are prognostic of different chemotherapy outcome, espe-
cially for epithelial ovarian cancer and ovarian germ cell
cancer (especially for stage 4 and stage 5), which are notori-
ous for diagnosis and distinction at the early stage with
analogous morphological characteristics. In addition, the



Fig. 3 (See legend on next page.)
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Fig. 3 Cluster analysis: Heat map profiles of ovarian cancer patients with 1073 extracted differential genes from GSE12470 data set (n = 53). a
Heat map profiles of extracted differentiated genes and various ovarian cancer patients from GSE14764 dataset (genome expression, n = 80), the
Kaplan-Meier curves are with respect to (b) overall survival (OS) rite at non-significant P = 0.0323, (c) Heat map profiles of extracted differentiated
genes and various ovarian cancer patients from GSE49997 dataset (mRNA expression, n = 204), corresponding Kaplan-Meier curves (d) with a
non-significant P = 1.02e - 05, (e) Heat map profiles of extracted differentiated genes and various subtypes of epithelial ovarian cancer patients
from GSE63885 dataset (genome expression, n = 101), the Kaplan-Meier curves are with respect to (f) overall survival (OS) rite at non-significant P
=0.0781,A) is for prognosis trials, (c, e) are used to verify the availability of selected modules and extracted differential expression genes. All
estimates of OS respective 95 % confidence intervals (Cis)
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modules we established may prefer much more accuracy
and practicability, as GSE63885 [22] datasets with less strin-
gent criteria for gene selection (FDR <10%and uncorrected
p-value <0.001).
For further extraction and prognosis of genes directly

related to ovarian cancer survival, we used univariate
COX regression method to calculate the correlation be-
tween genes and survival prognosis within the module,
GSB14764 dataset genes associated with prognosis in a
total of 35 genes; GSE49997 dataset and prognosis re-
lated genes, a total of 47 genes (Additional file 1: Table
S5); GSE63885 dataset and prognosis with a total area of
Venn diagram with 57 genes (Additional file 1: Table
S6). View these three ovarian cancer prognostic gene
intersection situations, find the intersection between any
two relatively small (Fig. 4), the intersection of the six
genes LRRC8D, TTC304, TFCP2L1, LIBRINEPOR,
PAR52. Outstandingly, dysregulation of this EPOR may
affect the growth of certain tumors [53, 54].
Fig. 4 Three data sets COX univariate regression analysis were
screened for ovarian cancer prognostic gene Venn diagram
Discussion
As previously described, ovarian cancer like epithelial
ovarian cancer and ovarian germ cell cancer has differ-
ence subclasses, but it is hard to distinguish the malig-
nant from carcinoid tumors due to the multitude of
clinical and history pathological aspects [8], lack of pre-
cursor lesions [9] and their evolution [10], which cause
the bad one with a low survival rate and complicated
due to frequent development of resistance to standard
therapies and asymptomatic nature of the early stage.
Thus, recently, more and more researches are focus on
genome level analysis aim at recognize collaborative
gene and relatively network modules, which will bring
out some newly efficiently diagnoses, and help to the
cancer prevent and treatment to individuals base on tar-
geted chemotherapy.
Current established genetic ovarian carcinomas prog-

nostic pattern contains 1073 difference expression
genes involved in the 4 dominant network modules
successfully divided a dataset with random OCA cases
(n = 80) into 3 groups (p = 0.0323, 95 % CIs in Kaplan-
Meier). Two other previously reported datasets verified
this classification is available and can be used in both
genome (n = 204, p =1.02e-05, 95 % CIs in Kaplan-
Meier) and mRNA (n = 101, p =0.0781, 95 % CIs in
Kaplan-Meier) profiles, also demonstrated that this pat-
tern can be used to distinguish epithelial ovarian cancer
and ovarian germ cell cancer subclasses that trend
todevelopmalignantly.6 prognosis related genes were
selected by COX regression analysis (LRRC8D,
TTC30A, TFCP2L1, LMBR1, EPOR and PARS2), these
difference genes regulate modules through the whole
work, rather than a few genes play a prognostic classifi-
cation, which can make the outcome much more con-
vincing. Beyond them, EPOR is famous for its affection
to tumor growth [53, 54], support the function to div-
ide the malignant epithelial ovarian cancer or ovarian
germ cell cancer from carcinoid tumors;TTC30A and
LRRC8D are rarely reported before, but recent statistics
shows that these two gene related to immune system,
and may have regulation ability to host protein [55–57],
these can be considered in chemotherapy methods
choosing. In addition, corresponding to earlier pathway
analysis (Aminoacyl-tRNA biosynthesis in blue module,
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Table 4), PARS2 encodes a putative member of the
class II family of aminoacyl-tRNA synthetases, further
suggested a highly correlated gene networks in cur-
rently generated modules. What is importantly is that
TFCP2L1 probably contribute to the differentiation of
cancer stem cells, as embryonic stem cell self renewal
pathways converge on the transcription factor Tfcp2l1
[58], and this never been reported before.
The present study describes a validation analysis of a

previously defined gene signature to establish its rele-
vance as a clinically useful prognostic factor. While the
accuracy of prognostic outcome restricted by two ele-
ments, the routine use of recently published new prog-
nostic factors in clinical practice has had limited success,
and the updated gene databases.

Additional file

Additional file 1: Tables S5 and S6.
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