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While ion channels and transporters involved in excitation-contraction coupling

have been linked and constructed as comprehensive computational models,

validation of whether each individual component of a model can be reused has

not been previously attempted. Here we address this issue while using a novel

modular modeling approach to investigate the underlying mechanism for the

differences between left ventricle (LV) and right ventricle (RV). Our model was

developed from modules constructed using the module assembly principles of

the CellMLmodelmarkup language. The components of three existing separate

models of cardiac function were disassembled as to create smaller modules,

validated individually, and then the component parts were combined into a new

integrative model of a rat ventricular myocyte. The model was implemented in

OpenCOR using the CellML standard in order to ensure reproducibility.

Simulated action potential (AP), Ca2+ transient, and tension were in close

agreement with our experimental measurements: LV AP showed a

prolonged duration and a more prominent plateau compared with RV AP;

Ca2+ transient showed prolonged duration and slow decay in LV compared to

RV; the peak value and relaxation of tension were larger and slower,

respectively, in LV compared to RV. Our novel approach of module-based

mathematical modeling has established that the ionic mechanisms underlying

the APs and Ca2+ handling play a role in the variation in force production

between ventricles. This simulation process also provides a useful way to reuse

and elaborate upon existing models in order to develop a new model.
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Introduction

Mathematical modeling is a powerful technique that can

improve one’s understanding of normal and pathophysiology by

incorporating a wealth of biological data that many researchers

have accumulated. Using this comprehensive set of experimental

data, many biophysical cell models have been developed to

investigate the effect of subcellular changes on overall organ

function, and many frameworks for simulation have been

proposed. Most researchers want to share existing models and

extend them into large-scale models that address the complexity

at the whole cell level. As complex models need to be developed

efficiently, many kinds of simulation tools have been developed.

Among them, CellML, a model encoding format, has a couple of

strengths. 1) It uses MathML to represent the mathematics of the

model in a way that both humans and computers can read

(Terkildsen et al., 2008). 2) The component instance and

encapsulation layers (Cooling et al., 2016) allow modular

configuration of the model to provide model scalability and

model reuse.

The treatment of cardiovascular disease is shifting the

paradigm from correcting a patient’s deranged hemodynamic

factors to blocking the most potent active signaling pathways in

the disease. Accordingly, the strategy of cardiovascular disease

research has turned to exploring ways to improve outcomes by

modulating active signaling pathways through identification of

relevant biochemical mechanisms, and most drug targets are

membrane-bound proteins for cell signaling. Cellular signaling,

on the other hand, integrates the behavior of many biological

components, so it is not possible to gain mechanistic insights

solely from knowledge of individual system components.

Validated computational models can be dissected in time,

physical space or parametric space, allowing the cellular and

subcellular processes underlying normal or abnormal tissue and

organ function to be validated at levels that cannot be achieved

experimentally (Clayton, 2001). Therefore, there is a need for a

computer model to investigate the physiological and

pathophysiological mechanisms of normal and abnormal

cardiovascular function in parallel with experimental studies.

The differences in the contractile performance between the

left ventricle (LV) and the right ventricle (RV) based on their

geometries have been examined in normal heart as well as

diseased heart. In addition, distinct differences in the adaptive

response of each ventricular cell have been observed in

pathological conditions. However, clinical approaches to

improving cardiac performance can be equally applicable to

the LV and the RV in various forms of heart disease and are

based on a general understanding of the laws that define cardiac

mechanics. In practice, appropriate therapies for LV dysfunction

have been shown to be not necessarily ideal for RV dysfunction

(Walker and Buttrick, 2009). Therefore, a comprehensive

understanding of the differences in the contractile

performance between the LV and the RV myocytes in the

normal heart as well as the diseased heart is important for

improvement of existing therapeutics for various

cardiovascular diseases.

Myocardial wall stress is the integration of the tension of

individual myocardial fibers and is determined by the left

ventricular cavity and wall dimensions (Laplace law) as well

as ventricular pressure (Chowienczyk and Shah, 2012). These

ventricular pressures and volumes show the length dependence

of the contractile force (Frank-Starling effect) and are

interdependent as a result of the inverse relationship between

force generation and shortening velocity in the muscle. Thus,

different myocardial wall stresses (or wall tensions) may result in

different contractile properties in the LV and RV of a normal

heart. During cardiac contraction, the wall stress increases as the

myofilaments undergo cross-bridge cycling. The sequence of this

excitatory-contraction coupling is similar between LV and RV,

but the relative contributions of ion channels vary, affecting their

action potential and ultimately their contractile behavior (Kim

et al., 2010). In addition, ventricular wall stress determines

oxygen consumption, cardiac hypertrophy response, and

hepatic fibrosis. Quantification of ventricular wall stress is

necessary to understand normal and pathological ventricular

mechanics (Yin, 1981). Clinically, normalization of wall stress in

volume/pressure-loaded heart disease has been considered a

feedback mechanism that governs the rate and extent of

development of ventricular hypertrophy (Hood et al., 1968;

Grossman et al., 1975; Alter et al., 2012). Therefore,

understanding the ventricular wall stress can provide

important insights into the underlying ventricular mechanics

and energetics in compromised hearts.

In this study, we performed quasi-isometric contraction

experiments to compare different stresses in LV and RV

muscles and Ca2+ imaging experiments for comparing

different Ca2+ modulation between LV and RV myocytes.

Then we implemented a mathematical model, first building a

component model of individual transmembrane currents

involved in the excitation-contraction (EC) coupling process,

testing whether they function as an independent working model,

and then combining them into a new integrative model of rat

ventricular myocytes. The integrative model as well as modular

model constituents were validated based on the experimental

data and aided in drawing conclusions.

Materials and methods

Animal and ethics statement

Male Wistar rats (280–380 g) were used in this study. All

experimental procedures were performed according to the

requirements of the Animal Ethics Committee of the

University of Auckland (Approval R595 and R787) and the

National Animal Ethics Advisory Committee (The Animal
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Welfare Act 1999; Schedules 1 to 7) as well as the protocol

approved by the Institutional Review Board of Animals of Inje

University College of Medicine.

Experimental procedures

Each experimental procedure was carried out with the same

ways of previous studies. Briefly, the rats were anesthetized with

isoflurane mixed in 100% O2. The heart was quickly excised after

cervical dislocation, placed in cold saline solution, and then

perfused with an oxygenated solution of either low-calcium

Tyrode’s solution containing 2,3-butanedione monoxime

(BDM) or normal Tyrode’s solution, for trabecular muscles

preparation or single cardiomyocytes preparation, respectively.

In mechanical experiments, we measured active stress

production of trabecular muscles from the LV and RV free

wall using our mechanical testing device (Han et al., 2009). In

Ca2+ transient experiments, we measured Ca2+ ion flux of single

cardiomyocytes from the left and right midventricular wall using

the ion-specific probe Fluo-4 AM (Invitrogen, Eugene, OR,

United States) (Kim et al., 2012). In electrophysiological

experiments, we measured action potentials of single

cardiomyocytes from the left and right midventricular wall

using the patch-clamping technique (Kim et al., 2010).

Model development

EC coupling is the process that links an action potential (electric

excitation of cell membrane) to contraction (shortening and force

development) of the heart. Action potential (AP) is caused by

different ions crossing the plasma membrane through various ion

channels and transporters. This electric excitation of the sarcolemma/

T-tubule induce Ca2+ release from sarcoplasmic reticulum (SR) via

Ca2+-induced Ca2+ release (CICR). Then free Ca2+ binds to the

troponin complex, which facilitates the interaction of actin and

myosin and contraction takes place. A schematic diagram of

major ion currents and Ca2+ handling proteins, myofibrillar

proteins are shown in Supplementary Figure S1. All the ionic

processes and compartments in the whole cell model were used

as modules and addressed briefly as described below. Our model

retains the fundamental features of cardiomyocyte electrophysiology

originally described by Pandit et al. (Pandit et al., 2001), detailed Ca2+

dynamics originally described byHinch et al. (Hinch et al., 2004), and

active contraction originally described by Niederer et al. (Niederer

et al., 2006) in the rat heart: 1) the model formulations of the Na+

channel, the Ca2+-independent K+ channel, the steady-state K+

channel, the inward rectifier K+ channel, the hyperpolarizing-

activated channel, the background K+ channel, the background

Na+ channel, the Na+-K+ pump, and the calmodulin were

extracted from the Pandit et al. model; 2) the model

formulations of the Ca2+ release unit, the Ca2+ pump, the Na+-

Ca2+ exchanger, and the background Ca2+ channel were extracted

from the Hinch et al. model; 3) the model formulation of the

troponin, the tropomyosin, and the cross-bridge kinetics were

extracted from the Niederer et al.model; 4) the model parameters

and variables were adjusted to match the experimental

observations, as described in the section below. The model also

accounts for dynamic changes in ionic concentrations and fluxes

during the action potential.

Based on our design principles for modularity in CellML

(Cooling et al., 2016), we disassembled the components of the

three separate models listed above and to produce individual

working and testable modules. These modules which encompass

variables and mathematics were implemented as CellML

components and were independently tested and validated.

Individual components are available online (https://models.

physiomeproject.org/workspace/25c): INa_Pandit, Ito_Pandit,

Iss_Pandit, IK1_Pandit, If_Pandit, IBNa_Pandit, IBK_Pandit,

INaK_Pandit, CaRU_Hinch, ICaPump_Hinch, INCX_Hinch,

IBCa_Hinch, ISRCaLeak_Hinch, ISERCA_Hinch,

Icalmodulin_New, Itroponin_NSH, Itropomyosin _NSH,

CrossBridge_NSH. In turn we combined the validated

modules into a new integrative model of a rat ventricular

myocyte using standard unit and universal constant modules.

This model was validated against the experimental data. CellML

text code for units are illustrated in Supplement 1. All model

equations and parameter values are provided in Supplement 2.

All simulations were performed using the OpenCOR desktop

application version 0.3 (Garny and Hunter, 2015).

Formulation and validation of the
individual model modules

The electrophysiological behavior can be described by the

ordinary differential equation:

dV

dt
� −Iion + Istim

Cm

where V is voltage, t is time, Iion is the sum of all transmembrane

ionic currents, Istim is the externally applied stimulus current,

and Cm is cell capacitance per unit surface area.

Na+ current (INa) module
INa is responsible for upstroke of the AP. The formulation of

INa model is from Pandit et al. (2001) and the CellML text code

for INa model is as shown in Supplement 1. INa kinetics were

reported to be similar across different species, giving us a

rationale to use these variables: the steady-state activation and

inactivation curves, the normalized peak current-voltage (I-V)

relationship, and the maximum Na+ conductance (gNa) are based

and adjusted from the rat study (Lee et al., 1999); the time

constants for activation (τm) and inactivation (τh, τj) used as

model parameters were adapted from the guinea pig study (Luo
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and Rudy, 1994) and scaled. The m-gate, h-gate, and j-gate of

three gates for INa were encapsulated and embedded inside the

sodium channel. We used OpenCOR, with end point 40 ms and

Point interval 0.1 ms, to solve the equations for INa under several

voltage steps in one fixed condition with [Na+]o = 145 mM and

[Na+]i = 11.28 mM. We obtained numerical values for all

variables and saved them as comma-separated values (CSV)

files and then plotted whole-cell current traces, the I-V

relationship and time constants, which corresponded well with

published results (Figure 1).

Each module was modeled in the same way and the values

were compared with the experimental data or the results of the

other studies.

Ca2+-independent transient outward K+ current
(Ito) module

Ito contributes to the notch configuration of the AP. The

formulation of the Ito model is from Pandit et al. (2001) and is as

shown in Supplement 2. All values of the Ito model are based on

individual experimental data from the rat heart: the steady-state

activation and inactivation values are from Stengl et al. (Stengl

et al., 1998); the time constant for activation from Angus et al.

(Agus et al., 1991); the inactivation time constants from Wettwer

et al. (Wettwer et al., 1993); and the recovery time constants from

Volk et al. (Volk et al., 1999). In one fixed condition with [K+]o =

5.4 mM and [K+]i = 138.72 mM, the current traces and parameters

of Ito corresponded well to published results (Figure 2).

Steady-state outward K+ current (Iss) module
Iss contributes to the repolarization of the AP. The

formulation of the Iss model is from Pandit et al. (2001) and

is as shown in Supplement 2. All values of the Iss model are based

on individual experimental data in the rat heart: the steady-state

activation and inactivation values from Weis et al. (Weis et al.,

1993); the time constant for activation, which is 10 times slower

than that of Ito, from Apkon and Nerbonne (Apkon and

Nerbonne, 1991); the time constant for inactivation from

Berger et al. (Berger et al., 1998). In one fixed condition with

[K+]o = 5 mM and [K+]i = 140.45 mM, the current traces and

parameters of Iss corresponded well with published results

(Figure 3). Values for Iss were obtained at the end of a long

(300 ms) depolarized voltage clamp pulse.

Inward rectifier K+ current (IK1) module
IK1 stabilizes the resting membrane potential. The

formulation of IK1 model is from Pandit et al. (2001) and is

as shown in Supplement 2. To characterize IK1 depending on

[K+]o, current traces and I-V relationship of IK1 were verified in

condition with [K+]o = 5.4 mM or 10 mM, which corresponded

well with published results (Figures 4A,B).

Hyperpolarization-activated current (If) module
If is activated when the membrane is hyperpolarized from the

resting potential and modulates the AP. The formulation of If
model is from Demir et al. (Demir et al., 1994) and the values are

FIGURE 1
Verification of INa implementation (Kim, 2018). (A) Simulated current traces of the Na+ channel. (B) Normalized simulated I-V relationship of INa
(o represents experimental data from Lee et al., 1999). (C) Simulated activation time constant (τm). (D) Simulated inactivation time constants (τh, τj).

Frontiers in Physiology frontiersin.org04

Kim et al. 10.3389/fphys.2022.965054

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.965054


based on experimental data from previous studies (Demir et al.,

1994; Cerbai et al., 1996; Fares et al., 1998) and is as shown in

Supplement 2. To verify the If model, the extracellular condition

is to set [K+]o and [Na+]o at 25 and 30 mM, respectively, and the

intracellular condition sets [K+]i and [Na+]i at 130 and 2 mM,

respectively. Current traces and I-V relationship of If were

corresponded closely with published results (Figures 4C,D).

Background Na+ current (IBNa) module
The formulation of IBNa model is from the Pandit et al. (2001)

model and is as shown in Supplement 2. The magnitude is

adjusted based on experimental data from Demir et al. (1994).

Background K+ current (IBK) module
The formulation of IBK model is from the Pandit et al. (2001)

model and is as shown in Supplement 2. The magnitude is

adjusted based on experimental data from Demir et al. (1994).

Na+/K+ pump current (INaK) module
INaK directly produces a small potential difference, which

causes the membrane potential to be negative. The formulation

of INaK model is that of the Pandit et al. (2001) model adapted

from earlier work by Luo and Rudy (1994) and is as shown in

Supplement 2. When normalized to 100 pF, the INaK model was

0.195 A·F−1 at 0 mV, which is close to the value of 0.2 A·F−1 at

0 mV in the experimental data of Stimers and Dobretsov (Stimers

and Dobretsov, 1998) (Figure 5).

Ca2+ release unit (CaRU) module
The CaRU consists of one L-type Ca2+ channel (LCC) and

ryanodine receptors (RYRs) and transports Ca2+ ions in the

dyadic subspace between the T-tubules and the sarcoplasmic

reticulum (SR). LCCs are located in sarcolemmal membrane and

T-tubules and carries Ca2+ ions in the inward direction when the

membrane is depolarized. RYRs are located in SR and release

Ca2+ from SR via physical coupling to LCCs. These two channels

induce to increase the cytosol Ca2+. The formulation of the LCC

and RYRs models are from the Hinch et al. (2004) model, which

is simplified by six coupled ordinary differential equations for

Ca2+-induced Ca2+ release: 1) the 3-state model of the LCC is

based on Jafri et al. (Jafri et al., 1998) study and the 3-state model

for RYR is based on Stengl et al. (1998) study; 2) the 3-state LCC

and the 3-state RYR models were combined to form a 9-state

model, which was simplified further to produce a 4-state model

of the CaRU. All parameters and functions of the CaRU model

are shown in Supplement 2. To verify the CaRU model, the

current traces and peak I-V relationship of the Ca2+ channel were

obtained by various voltage steps from a holding potential

of −50 mV in one fixed condition with [Ca2+]o = 1.2 mM,

which was compared with that measured experimentally.

FIGURE 2
Verification of Ito implementation (Kim, 2018). (A) Simulated current traces of Ca2+-independent transient outward K+ channel. (B) Simulated I-V
relationship for Ito (pink line). This simulated result is in close agreement with representative experimental result (o, Clark et al., 1995). (C) Simulated
activation time constant (τr, purple line). This simulated result is in close agreement with the representative experimental result (o, Agus et al., 1991).
(D) Simulated inactivation time constants (τS, τSslow, blue lines). This simulated result is in close agreement with the representative experimental
result (o, Wettwer et al., 1993).
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Simulated and measured currents were normalized to make the

peak value of both equal to 1 at 0 mV, and both I-V curves are in

close agreement. One feature of Ca2+ release is that the peak of

IRYR is shifted by ~10 mV in the hyperpolarizing direction

relative to that of ILCC, which is well simulated. Furthermore,

EC coupling gain decreases as membrane voltage increases. This

feature of simulated result corresponded well to published results

(Figure 6).

Ca2+ pump current module
Sarcolemmal Ca2+ pump actively transports Ca2+ outward

and SR Ca2+ pump actively transports Ca2+ from the cytosol into

the SR lumen. These two pumps induce to decrease the cytosol

Ca2+. The formulations of the SR Ca2+ pump, SERCA current

(ISERCA) model and the sarcolemmal Ca2+ pump current (IpCa)

model are from the Hinch et al. (2004) model and is as shown in

Supplement 2. To verify the ISERCA model, the Ca2+ dependence

of SERCA activity was generated and compared with

experimental data (Figure 7A)

Na+-Ca2+ exchanger current (INCX) module
Na+-Ca2+ exchanger (NCX) exchanges 1 internal Ca2+ ion for

three external Na+ ions via a membrane carrier. The formulation

of the INCX model is from the Hinch et al. (2004) model and is as

shown in Supplement 2. To verify INCX, the extracellular

condition set [Ca2+]o and [Na+]o at 1 and 140 mM,

respectively, and the intracellular condition set [Na+]i and free

[Ca2+]i at 20 and 1.2 mM, respectively, based on experimental

conditions by Li et al. (Li et al., 2013). The simulated INCX model

was generated, and the model output (Figure 7B) shows close

agreement with the experimental results of Li et al. (2013).

Background Ca2+ current (IBCa) module
The formulations of the background Ca2+ current (IBCa)

model is from the Hinch et al. (2004) model and is as shown

in Supplement 2.

Calmodulin and troponin module
Ca2+ is buffered by calmodulin and troponin in the cytosol.

The calculation of buffering by calmodulin is from the Pandit

et al. (2001) model and by troponin current (ITRPN) model from

the Niederer et al. (2006) model and is as shown in Supplement 2.

Tropomyosin module
Tropomyosin is situated in the actin groove and when it is

shifted out of the actin groove, actin binds to myosin. The

tropomyosin was characterized by the fraction of actin sites

available for cross-bridge binding (z) and the formulation of z

is from the Niederer et al. (2006) model and is as shown in

Supplement 2.

FIGURE 3
Verification of Iss implementation (Kim, 2018). (A) Simulated current traces of the steady-state outward K+ channel. (B) Simulated I-V relationship
of Iss (pink line). This simulated result is in close agreement with the representative experimental result (o, Clark et al. (1995)). (C) Simulated activation
time constant (τrss, purple line). This simulated result is in close agreement with the representative experimental result (red line, Apkon and Nerbonne
(1991)), which is 10 times slower than the corresponding one for Ito (Figure 3C).
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Cross-bridge module
As myosin head attaches and detaches from myosin-

binding site on the actin, it makes the actin filaments closer

together, thus shortening the length of the sarcomere. These

length changes of the myofibrils produce tension (cardiac

contraction). The formulations of the isometric tension (T)

is from the Niederer et al., 2006 model assuming a “fading

memory,” and is as shown in Supplement 2. The fading memory

model assumes that the current tension is influenced more by

recent length changes than earlier length changes (Hunter et al.,

1998) and phenomenologically explains the relationship

between tension and cross-bridge kinetics. Here tension

development can be separated into nonlinear static and

linear time-dependent components and tension development

associated with cross-bridge kinetics is proportional to z. The

ratio of the isometric tension to the maximum tension at full

activation for the same sarcomere length is equal to the ratio of

z to the fraction of actin sites available at full activation for a

given sarcomere length.

FIGURE 4
Verification of IK1 and If implementation (Kim, 2018). (A) Simulated current traces of the hyperpolarization-activated channel at extracellular K+

ion concentrations of 5.4 mM (5.4 Ko) and 10 mM (10 Ko). (B)Normalized simulated I-V relationship for IK1 (olive and dark yellow lines). This simulated
result is in close agreement with the representative experimental results (experiment_5.4 Ko, experiment_10 Ko) which were digitized from Pandit
et al. (2001)). (C) Simulated current traces of the hyperpolarization-activated channel. (D)Normalized simulated I-V relationship for If (pink line).
This simulated result is in close agreement with the representative experimental result (o, Fares et al. (Fares et al., 1998)).

FIGURE 5
Verification of INaK implementation (Kim, 2018). Simulated I-V
relationship for the sodium-potassium pump. o represents
experimental data from Stimers and Dobretsov, 1998.
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Incorporating all components to the
biophysical whole cell model

We implemented all individual modules as CellML

components and then, using the CellML model import facility

in OpenCOR (http://www.opencor.ws/), we were able to

compose the whole cell model, encompassing module

variables and mathematics. Using the CellML model import

facility allows to distribute these components among multiple

files and to make in-memory copies of components from other

files (Miller et al., 2010). The structure of the model, including

separate files for units and component sets is shown in Figure 8.

FIGURE 6
Verification of ILCC and IRYR implementation (Kim, 2018). (A) Simulated current traces for the LCC by a voltage step from −40 to 40 mV from a
holding potential of −50 mV. (B) Normalized simulated I-V relationship for ILCC (pink line). This simulated result is in close agreement with
representative experimental result (o, Zahradnikova et al. (Zahradnikova et al., 2004)). (C) Simulated peak fluxes of LCC (pink line) and RYR (yellow
line) as a function of membrane voltage. (D) Simulated EC coupling gain (blue line, maximum of RYR flux/maximum LCC flux) is in close
agreement with representative experimental result (o, Wier at al. (Wier et al., 1994)).

FIGURE 7
Verification of ISERCA and INCX implementation (Kim, 2018). (A) The Ca2+ dependence of the relative rate of simulated SERCA activity is well
plotted (blue line). This result is close agreement with representative experimental values (o, Lytton et al. (Lytton et al., 1992)). (B) Simulated I-V
relationship for the NCX (pink line). This result is close agreement with representative experimental values (o, Li et al., 2013).
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When incorporating all components, we adjusted the ILCC
parameters based on previous results (Kim et al., 2010). The

voltage at half-maximal activation was applied −15 mV

and −10 mV for the LV and RV models, respectively. The

formulation of ISERCA obtained from the Hinch et al. (2004)

model was adapted from earlier work by Jafri et al. (1998), so

the maximum pump rate in their work is somewhat different

from that in the rat. It is well known that the activity of SERCA

is higher in the rat ventricle than in rabbit, ferret, dog, cat,

guinea-pig and human ventricles (Bers, 2000). Therefore,

gSERCA was increased by 20% to achieve similar activity for

rat SERCA. The parameters of the troponin and the

tropomyosin modules were adjusted to values appropriate

for 37°C: temperature has some effect on the affinity of Ca2+

for TnC (McCubbin et al., 1980) and the affinity of Ca2+ for

TnC was increased by 0.13 when temperature was increased

from 21 to 37°C (Gillis et al., 2000); the wide range of Q10

values have been reported in order to reveal temperature

dependence of force development in various muscles (Peiper

et al., 1975; Stein et al., 1982; Janssen et al., 2002), we used three

of Q10 value to parameterization of relaxation rates of

tropomyosin.

Results

Verification of biophysical whole cell
simulation: Action potential and Ca2+

dynamics

The whole cell model which was implemented via the steps

described above shows the phenotype of typical AP waveforms,

ILCC, and calcium transients in LV and RV myocytes

(Supplementary Figure S2). Simulated AP waveforms are

close agreement with our experimental recordings (Figure 9):

the peak overshoot and duration of the simulated AP is very

similar to the experimental recordings; the duration of

simulated LV AP prolongs and the plateau phase of it is

more prominent compared to the simulated RV AP. This

result is in consistent with previous experimental results

(Figure 9 and see Kaprielian et al., 2002; Kim et al., 2010;

Stankovicova et al., 2000).

During the implementation of the cell model, one of the

tuning parameters was the voltage at half-maximal activation of

LCC, so it was necessary to compare the LCC characteristics

between the LV and RV cells. The model-generated current-

FIGURE 8
Overall structure of biophysical whole cell model (AP_CICR_Force_model) showing the encapsulation hierarchy (purple), the CellML model
imports (blue) and the other key parts (units, components and mappings) of the top level CellML model (Kim, 2018).

Frontiers in Physiology frontiersin.org09

Kim et al. 10.3389/fphys.2022.965054

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.965054


voltage (I-V) curves of LCC in LV and RV myocytes conformed

well to previous experimental observation (Figures 10A,B). Peak

current in LV myocytes was slightly larger than that in RV

myocytes and peak ILCC occurred at ~0 mV in both LV and RV

myocytes. However, as shown in Figure 10C, the protein

expression of LCC is not different between the ventricles (n =

4; p > 0.05).

The simulated Ca2+ transients during the AP (Figure 11)

conforms to the experimental observation that the Ca2+ decay is

slower in LV than in RVmyocytes (Figure 12), which could cause

FIGURE 9
Model-generated LV (A) and RV (B) APs at 1 Hz and 22°C (Kim, 2018). Each simulated APs was validated with experimentally recorded LV (A) and
RV (B) APs, respectively.

FIGURE 10
Comparison of I-V relationship of LCC in model (A) and experimental recordings (B) for LV and RV myocytes at 22°C (Kim, 2018). In panel (B),
inserts are representative ILCC traces from LV and RV myocytes and summary current-voltage relationships in LV (n = 5, red circles) and RV (n = 4,
blue circles) myocytes, which from our previous study (Kim, Cannell et al., 2010). (C) Verification of protein expression of LCC proteins between LV
and RV by immunoblotting. Representative blots and densitometric analysis of Cav1.2 (250 kDa, n = 4) with β-actin (42 kDa) as housekeeping
protein.
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a large Ca2+ flux in the LV myocyte. Moreover, we assumed that

the activity of SERCA in RV myocytes is higher than in LV

myocytes since time to 50% decay from peak (T50) against [Ca
2+]i

was significantly different between LV and RV myocytes (≈30%)

(Figure 12B insert and see Taylor et al., 2004). Furthermore, as

shown in Figure 12C, we revealed that SERCA2a expression of

the RV is higher than that of the LV (n = 3; p < 0.001). These

results can explain the underlying mechanism of the different

Ca2+ kinetics between the LV and RVwell and provide a rationale

for “fine tuning” the model parameters of SERCA activity

obtained from the study of Hinch et al. (2004) to reproduce a

biophysical whole cell model.

FIGURE 11
Simulated Ca2+ transient trace shows the underlying changes in [Ca2+]i during corresponding AP duration for LV (A) and RV (B)myocytes at 1 Hz
and 22°C (Kim, 2018).

FIGURE 12
Comparison of normalized Ca2+ transients in model (A) and experimental recordings (B) for LV and RV myocytes at 1 Hz and 22°C (Kim, 2018).
The peak ratio of the Ca2+ transients in the LV and RV myocytes was not different; however, the decay of the Ca2+ transients was much slower in LV
than in RVmyocyte: insert shows that T50 of LV cells (190.1 ms ± 24.8 ms, n = 6) is significantly different from that of RV cells (132.8 ms ± 15.2 ms, n =
6). (C) Verification of protein expression of SERCA2a proteins between LV and RV by immunoblotting. Representative blots and densitometric
analysis of SERCA2a (100 kDa, n = 2) with KDEL (78 kDa) as SR marker and housekeeping protein. The bar graphs indicate mean ± SEM. *p < 0.05,
**p < 0.001.
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Verification of biophysical whole cell
simulation: Tension production

Figure 13 shows the simulation results for tension production

over 5 s. The simulated tensions for LV and RV are in close

agreement with the experimentally recorded results (Figure 13C):

the peak and duration of the simulated tension are larger and

longer, respectively, in the LV than in the RV myocytes.

However, there is a somewhat different magnitude of

generated tension between simulated and experimental results.

Totestthefunctionalityofthemodel,themodelwaspacedat3and

5 Hz. The results of simulated tensions showed the expected positive

stress-frequency relationship (SFR) and their kinetics are close

agreementwiththeexperimentallyrecordedtensions(Figures14,15).

FIGURE 13
Model-generated tension production at 1 Hz and 37°C (Kim, 2018). (A) The tension traces for the LV model. (B) The tension traces for the RV
model. (C) Comparison of simulated tension between LV and RV and validation of simulated tensions with experimentally recorded LV and RV
tensions.

FIGURE 14
Comparison of SFR of simulated tension production between LV (A) and RV (B) myocytes at 1 Hz, 3 Hz, and 5 Hz and 37°C (Kim, 2018). Both
active and passive tensions increase depending on stimulation frequency from 1 to 5 Hz.
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Discussion

This modeling approach serves as a good example of

constructing complex models using the Physiome standard

model protocol CellML in an efficient way to reuse

constituents of existing computational models as modules. We

assembled these reusable modules via component instances and

encapsulation hierarchies to implement a comprehensive

electromechanical model. Importantly, all modular models in

this study could be subsumed into other models without

modification, as each module component was constructed

separately from the existing model and validated based on the

results of previous related papers.

The present study is the first attempt to quantify and

integrate a rat electromechanical model based on contractile

proteins, as well as biophysical, experimentally derived

components of ionic currents, transporters and Ca2+

modulators, to explain the underlying mechanisms for

different stresses between LV and RV myocytes. Different AP

waveforms produce different Ca2+ fluxes, which could be due to

different SR Ca2+ loading and sequestration during AP. These

simulation results explain why the LV exhibits greater stress

compared to the RV, for which the prolonged AP duration and

increased Ca2+ transients in the LV provide a plausible

mechanism.

In this study, all simulated results of AP, LCC, Ca2+ transient,

and tension were in close agreement with our those

experimentally recorded. There is a somewhat different

morphology of the APs between simulation and experiment.

AP duration and shape vary from cell to cell, and may be because

experimental and simulated conditions do not exactly match, or

because rat AP configurations show a variation in duration and

shape due to transmural heterogeneity of APs in most

experiments (Stankovicova et al., 2000; Kim et al., 2010).

However, it is shown that the shape of the simulated AP is

very similar to experimentally recorded AP.

In adult rat ventricular myocytes, ~ 90% of the source of the

Ca2+ transient is Ca2+ released from the SR (Bers, 2002), and

subsequent Ca2+ sequestration by SERCA matches SR release.

This gives us a rationale for using SERCA as themain contributor

to explain the kinetics of Ca2+ transients. As shown in simulations

describing the changes in [Ca2+]i (see also Figures 11, 12), the

kinetics of Ca2+ transient decay in the LV myocyte are much

slower than those for the RV myocyte, whereas the peak ratio of

the Ca2+ transient is not significantly different between ventricles.

This result was very well reproduced by “fine tuning” the model

parameters of SERCA activity obtained from the study of Hinch

et al. (2004). In fact, the decline of the Ca2+ transient is regulated

by SERCA as well as NCX. The parameterization of NCX activity

may be considered, whereas >95% of this decline is due to

FIGURE 15
Comparison of traces for normalized tension between LV and RV myocytes at stimulations rates of 3 and 5 Hz (Kim, 2018). Black lines:
experimental data. Colored lines: simulated results.
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SERCA in rat myocytes (Milani-Nejad and Janssen, 2014).

Therefore, the parameterization of SERCA activity is enough

to prove the underlying mechanism for different Ca2+ transients

between LV and RV myocytes. In addition, the underlying

mechanism may be due in part to the fact that SERCA

protein expression in the RV is higher than LV (Figure 12C).

In the study of the force-frequency behavior of human

myocardium, the protein level/activity of SERCA determines

the systolic contractile reserves with respect to frequency

potentiation of contractile force by playing a role in

maintaining the SR load and regulating the cytosolic [Ca2+]

during both systole and diastole (Hasenfuss et al., 1994).

Another specific aim for this simulation was to establish that

the ionic mechanisms underlying the APs play a role in difference

in force production between ventricles. The simulation results

thus provide a good electromechanical link between the

differences in Ca2+ handling and the corresponding tension

changes. Under physiological conditions (37°C), force of

contraction and speed of relaxation are complex. Thus using

most variables based mainly on experimental data obtained at

room temperature in the present model may limit its fidelity at

37°C, as temperature would significantly affect myofilament

properties as well as Ca2+ handling (Janssen et al., 2002).

However, even if the properties of troponin and tropomyosin

and the activity of Ca2+ channel are adjusted, the model result is

good enough to match the experimental results in this study

(Figures 13–15). To verify distinct properties of contraction in

the LV and RV, one of the possible ionic mechanisms, here VL of

ILCC, underlying the LV and RV APs was modified, providing a

good electromechanical linkage between the differences in Ca2+

handling and the corresponding changes in peak tension and

duration of contraction.

Furthermore, Ca2+ transporters involved in relaxation under

physiological conditions (37°C) has been reported to be

accelerated compared to that at room temperature due to

differences in the temperature sensitivity of the involved

systems (Puglisi et al., 1996; Mackiewicz and Lewartowski,

2006). Thus, the maximum pump rate of SERCA needs to be

adjusted to 37°C using the Q10 adjustment factor (1.415) to

generate tension production as well as SFR. Among Ca2+

transport systems, the modification of Ca2+ channels and

SERCA is good enough to produce different contractility

between the LV and RV, which could confirm their important

contributors to contractility.

Limitations of the study and future work

In the present study, we suggested varying activity of SERCA

as one of the underlying mechanisms that could contribute to the

production of different stresses in the LV and RV. The activity of

RYR should also be evaluated experimentally for a more

comprehensive understanding of Ca2+ dynamics in the LV

and RV. In the same context, this model is somewhat limited

to Ca2+-dependent regulatory proteins such as CaMKII,

calcineurin (CaN), phospholamban, and cAMP. These

proteins alter the functions of multiple targets and thus are

related to rate-dependent cellular response. LCC is influenced

by Ca2+-dependent inactivation and Ca2+-dependent facilitation

via activations of CaMKII and CaN (Pitt et al., 2001; Hudmon

et al., 2005; Tandan et al., 2009). CaMKII and CaN also affect

rate-dependent acceleration of relaxation via regulation of

SERCA activity (Toyofuku et al., 1994; Munch et al., 2002).

Therefore, future work is needed to implement individual

modules of these proteins and then combine them with

existing model.

During the diastolic phase, the myocardium stretches and

passive tension is developed. Passive tension contributes to the

diastolic wall tension, which determines the degree of ventricular

filing and subsequent stroke volume (Allen and Kentish, 1985).

At sarcomere lengths of 1.8–2.2 µm, titin and collagen are the

most important contributors to passive tension (Granzier and

Irving, 1995). Titin is a single giant polypeptide spanning from

the Z disk to the M band region of sarcomere, with three

isoforms. The isoform of titin varies with development and

isoform variation causes the alteration of cardiac stiffness in

the presence of heart diseases (Crocini and Gotthardt, 2021). In

addition, cardiac stiffness is modulated by phosphorylation of

titin by protein kinases. Therefore, in future study, it is necessary

to develop a cross-bridge kinetic model that includes the role of

titin.

In fact, cardiac muscle relaxation is a system-level

characteristic, requiring fundamental integration of three

governing systems: intracellular calcium decline, thin filament

deactivation, and cross-bridge cycling kinetics (Danziger et al.,

1990). Therefore, although this model is a simplified model of a

complex multiphysics system, in future work we plan to use this

study framework to link the overall process step by step. In

addition to our modeling approach enabling the reuse of

constituents from existing models, the approach used here

also allows future exploration of the effects seen here at the

cellular level at the tissue and organ scale. For example, tools like

OpenCMISS (Bradley et al., 2011) can directly integrate CellML

models, like the one developed here, into electrophysiology and

mechanical models and simulations at those larger scales

(Nickerson et al., 2014).

Conclusion

In the present study, we exploit the model reuse capabilities

of CellML, using individual components such as those described

above. We constructed each constituent of the model separately.

Once each simulation is validated, all numerical values using the

CSV file were obtained. We plotted the behavior of the simulated

components and justified them using experimental data. Then we
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implemented the comprehensive electromechanical model by

assembling these reusable modules via component instances

and encapsulation hierarchies.

In addition, our model can reproduce the experimentally

observed AP, Ca2+ transients, and force development as a

function of temperature. The model could be useful in other

related experiments and simulations.

The value of the current experimental study lies in the

determination of both quantitative and qualitative differences

between the left and right heart at different spatial levels.

Findings that the fundamental properties of the myocardium

differ between the left and right heart gives us an insight on which

to base medical planning or interventions, using appropriate

approaches for the two ventricles. This simple approach could

allow one to account for phenomenological functions which are

able to capture signal traces as well as the kinetic of tension

development.

The current modeling study allowed the implementation and

testing of each of the currents individually, providing a database

of validated modular models (component models), which are

available to reuse. To construct models by reusing components

encoded with CellML enables computational efficiency and easy

optimization. We successfully constructed the integrated cellular

model by using a modular approach with CellML. This model,

informed by the present experimental data, demonstrates well

how the underlying mechanisms at a molecular level contribute

to phenotype in higher levels, especially based on the description

of the Ca2+ handling mechanism in the sarcoplasmic reticulum

and the sarcolemmal membrane. This enables understanding of

wall stress development in the left and right ventricles. Therefore,

modeling is suggested as one of the best ways to assess both left

and right ventricular function together, as the assessment of right

ventricular function has previously been very difficult. This

approach could allow one to account for the effect of certain

drugs on cardiac functions.
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