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On a daily basis, people are exposed to numerous stimuli, ranging from colors and smells

to sounds and words, that could potentially activate different cognitive constructs and

influence their actions. This type of influence on human behavior is referred to as priming.

Roughly two decades ago, behavioral priming was hailed as one of the core forces

that shape automatic behavior. However, failures to replicate some of the representative

findings in this domain soon followed, which posed the following question: “How robust

are behavioral priming effects, and to what extent are they actually important in shaping

people’s actions?” To shed a new light on this question, I revisit behavioral priming

through the prism of a dynamical systems perspective (DSP). The DSP is a scientific

paradigm that has been developed through a combined effort of many different academic

disciplines, ranging from mathematics and physics to biology, economics, psychology,

etc., and it deals with behavior of simple and complex systems over time. In the present

paper, I use conceptual and methodological tools stemming from the DSP to propose

circumstances under which behavioral priming effects are likely to occur. More precisely, I

outline three possible types of the influence of priming on human behavior, to which I refer

as emergence, readjustment, and attractor switch, and propose experimental designs to

examine them. Finally, I discuss relevant implications for behavioral priming effects and

their replications.
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INTRODUCTION

Behavioral priming has recently been subjected to harsh criticisms, primarily because of numerous
replication failures (e.g., Doyen et al., 2012; Pashler et al., 2012; Harris et al., 2013; Shanks et al.,
2013; Rohrer et al., 2015; Wagenmakers et al., 2015). This has resulted in various recommendations
regarding how to improve research practices, largely focused on conducting high-powered studies,
pre-registration, and replication (e.g., Francis, 2012; Wagenmakers et al., 2012; Asendorpf et al.,
2013; Cesario, 2014; Stroebe and Strack, 2014; Jonas and Cesario, 2015; Simonsohn, 2015). The
question is, however, whether behavioral priming has been such a controversial topic because
of undesirable research practices (e.g., underpowered studies), or because researchers have been
using inappropriate methodological tools to investigate priming effects. In the present article, I
argue that, for the “crisis” of priming to be resolved, this phenomenon needs to be tackled from a
dynamical systems perspective (DSP; see Vallacher and Nowak, 1994, 1997; Nicolis and Prigogine,
1977; Beer, 2000; Guastello et al., 2009; Wiese et al., 2010). More specifically, by relying on the
DSP, I identify precise circumstances under which priming can influence behavior and present
appropriate methodological tools for modeling the behavioral effects. Finally, I discuss how failing
to consider the DSP when designing behavioral priming research can lead to failures in detecting
and replicating the effects.
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WHAT IS BEHAVIORAL PRIMING?

Behavioral priming refers to the notion that exposing people
to an external stimulus (e.g., a list of words describing old
people) activates a mental construct associated with this stimulus
(e.g., “being old”), which may in turn affect overt behavior
without the actor necessarily being aware of this influence
(e.g., Bargh et al., 1996). Whereas most researchers agree that
priming operates by making a mental construct accessible (e.g.,
Loersch and Payne, 2011; Schröder and Thagard, 2013; Fujita
and Trope, 2014; Klatzky and Creswell, 2014; Stroebe and
Strack, 2014; Wentura and Rothermund, 2014; Barsalou, 2016),
it remains debatable how and when exactly this accessibility
should influence behavior. There are generally two different types
of theories regarding the prime-behavior link (see Fujita and
Trope, 2014). More traditional approaches (e.g., Dijksterhuis
and Bargh, 2001) suggest that enhanced construct accessibility
(e.g., “being old”) automatically activates the tendency to execute
associated behaviors (e.g., walking slowly). Therefore, these
approaches are based on the ideomotor principle (James, 1890),
according to which thinking of a behavior automatically evokes
processes necessary to execute it. In contrast, recent theoretical
models (e.g., Loersch and Payne, 2011; Klatzky and Creswell,
2014; Barsalou, 2016) emphasize “more active interpretation
and meaning-making processes as key determinants of priming
phenomena” (Fujita and Trope, 2014, p. 72). Broadly speaking,
these models suggest that a mental construct activated by
priming is just one of the inputs the decision maker needs to
consider, alongside one’s goals and various situational factors,
when determining how to best respond to the situation at hand.
The present article does not intend to criticize the existingmodels
or theorize on specific mechanisms through which primes
impact behavior. Instead, it uses conceptual and methodological
tools stemming from the DSP to provide a unique outlook on
basic psychological forces that constrain priming effects and to
examine how to effectively model these effects. To accomplish
this objective, I next introduce the relevant DSP constructs.

FUNDAMENTALS OF THE DYNAMICAL
SYSTEMS PERSPECTIVE

Grasping the DSP requires unveiling the meaning behind
“dynamical” and “systems.” Different scientific disciplines and
streams tend to define the notion of a system in different
ways. From a viewpoint of certain theorists who work within
the realm of the DSP, a system is broadly defined as “a
theoretical construct that simplifies nature” (Ward, 2002, p.
46) and involves precise mathematical modeling (see also Beer,
2000). Indeed, many real-world phenomena, ranging from the
human brain to an ecosystem, are highly complex and consist
of numerous interconnected elements that operate on many
different scales and whose interactions constitute the phenomena
(Vallacher et al., 2002b, 2015; Ward, 2002; Stephen et al., 2009b;
Wiese et al., 2010). For example, in the context of behavioral
priming, a behavior (e.g., eating, walking, solving intellectual
problems) involves interactions among different bodily organs,

cells constituting these organs, chemical elements constituting
the cells, atoms constituting the chemical elements, and different
subatomic particles constituting the atoms. All these elements
and their interactions across and within the scales on which they
operate would be highly difficult to model individually, at least
with the technologies that are currently available, and hence,
from the dynamical systems perspective (DSP), human behavior
can be more effectively studied if it is conceptualized as a system.
To conceptualize a phenomenon such as human behavior as
a dynamical system means to model its change over time by
focusing on a smaller number of variables that capture its essence.
For example, a simple way to model eating as a dynamical system
would involve investigating how the quantity of food consumed
changes per intervals (e.g., 1 min) of a certain period (e.g., 20
min). Alternatively, one could involve additional variables such
as arousal and model their role in eating over time. I will get
deeper into mathematical representations of dynamical systems
as I introduce other relevant DSP constructs.

So far, the DSP has been implemented in numerous
academic disciplines, ranging from mathematics and physics to
biology, neuroscience, economics, and psychology (Gleick, 1987;
Vallacher and Nowak, 1997; Gregson and Guastello, 2011). This
indicates that the paradigm has been highly effective in studying
various natural phenomena, but also that its tools and concepts
have been shaped by each of these disciplines, thus leading to
certain terminological inconsistencies. For example, in relation
to dynamical systems, many different theoretical labels have been
used, such as dynamical systems theory (Vallacher and Nowak,
1994, 1997; Nicolescu and Petrescu, 2013), dynamical systems
approach (Finkenstädt and Grenfell, 2000), DSP (Beer, 1995;
Shenoy et al., 2013), non-linear dynamics (Stephen et al., 2009b),
complex dynamical systems (Richardson et al., 2014), etc. In the
present paper, I use the DSP as a broad term that comprises
dynamical systems theory (DST), which evolved to tackle simple
systems that can be modeled with high accuracy using only
few variables (e.g., mathematical pendulum; Robinson, 1995;
Gros, 2008), and complex systems theory (CST), which provides
more advanced tools to study phenomena of higher degrees
of complexity (e.g., ecosystems, living cells, human cognition,
and behavior, Prigogine and Stengers, 1984; Gilden et al., 1995;
Ward, 2002; Gros, 2008). In psychology and biological sciences,
which usually deal with complex systems, these two theories are
often conflated for a good reason: DST provides basic conceptual
and computational tools that, despite being aimed at simple
deterministic systems, can also be applied to more complex
systems and are a prerequisite for understanding them—CST
is therefore an extension of DST (see Gros, 2008; Guastello
and Gregson, 2011; Butner et al., 2015). In the present paper, I
hence treat DST and CST as a continuum under the umbrella
term of the DSP, but it is important for readers to understand
terminological intricacies to delve deeper into dynamical systems
literature.

One of the most important concepts stemming from the DSP
is that of an attractor—a stable state toward which a system
evolves over time. Attractors can be illustrated in two different
ways—conceptually and mathematically. I will start with a
conceptual explanation. Figure 1 depicts a hypothetical attractor
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FIGURE 1 | A conceptual attractor model of restrained eaters’ eating

behavior. Attractor 1 corresponds to restrained eating, whereas Attractor 2

corresponds to enhanced eating. Repeller corresponds to an eating pattern

that falls between enhanced and restrained eating and is unlikely to occur.

model of restrained eating. Based on previous research (e.g.,
Heatherton et al., 1991; Fedoroff et al., 1997; Harris et al., 2009),
it is plausible that restrained eaters have two attractors for eating:
one corresponding to restrained eating (Attractor 1), and one
to enhanced eating (Attractor 2). The valley representing each
attractor—formally known as the basin of attraction—denotes
the strength of an attractor (depth) as well as its likelihood of
occurrence (width). Attractor 1 has a wide basin, which indicates
that restrained eaters are on average likely to restrain their food
consumption (Rideout and Barr, 2009). However, the basin is
also shallow. Therefore, certain situational circumstances such
as priming (Fedoroff et al., 1997) or anxiety (Heatherton et al.,
1991) can influence the eating behavior to leave Attractor 1 and
settle in Attractor 2. This attractor has a deep basin of attraction
and is therefore strong, which means that, once activated, it
may be difficult for restrained eaters to stop overeating. The hill
between the two attractors represents a repeller—an unstable
state unlikely to occur (Butner et al., 2015); for example, eating
that is neither restrained nor enhanced.

The above-reviewed attractors are referred to as fixed point,
or set point attractors (Butner et al., 2015; Vallacher et al., 2015).
These are, however, not the only attractor types. Other possible
attractors include limit cycles, strange attractors, or chaotic
attractors (for an overview, see Barton, 1994). In the present
paper, the focus is on fixed point attractors because I find them
relevant in relation to priming, whereas other attractors may
not be as useful given the type and quality of data that priming
research can produce. In the context of fixed point attractors, it
is important to know that a behavioral system does not always
need to be characterized by two attractors, as in the example
of restrained eating. In fact, some behavioral systems may have
more than two attractors, and some only one. For example,
behavior of unrestrained eaters can be characterized by a single
attractor, given that their eating does not considerably change in
different circumstances (e.g., Fedoroff et al., 1997).

Let us now move beyond conceptual explanations and
examine mathematical formulations of fixed point attractors.
The primary mathematical tool for modeling dynamical systems
constitutes differential equations which describe how certain
variables comprising a system change over time (Beer, 2000;

Gros, 2008). As an example, I will start with a simple first order
differential equation (see Butner et al., 2015):

dx/dti = b0 + b1xi (1)

In this equation, the expression dx/dti (it can also be written
as ẋ) corresponds to a change in variable x (to continue the
previous example, we can assume that x represents the quantity
of food consumption in grams) per certain temporal interval
(for example, 1 min). Furthermore, b0 is a constant, whereas b1
corresponds to the slope of change. In a nutshell, the equation
specifies that the change in x per temporal increment dt follows a
linear pattern.

To bring this equation to life, I will use a hypothetical dataset
comprising a person’s eating pattern over a 20-min period.
Figure 2 depicts a time series of the quantity of snacks in grams
(x) the person consumed per 1-min intervals of this period. We
can see that the person started by eating four grams during the
first minute, which then dropped to three grams, and during
the final minute the consumption was one gram. To implement
Equation (1), we need to transform the time series into a variable
that corresponds to the change in food consumption: dx/dt.
This variable is obtained by calculating the difference between
adjacent data points in the series. For example, for the first five
points (4, 3, 1, 2, 2) the difference is −1, −2, 1, and 0 (Butner
et al., 2015; Wong et al., 2016). To obtain specific parameters for
Equation 1, we need to fit the equation to variables dx/dt and
x. Given that the formula essentially represents linear regression,
the fitting is done by conducting a regression analysis, with dx/dt
as a dependent variable and x as a predictor (the final data point
needs to be removed from x for the two variables to have equal
length).

Fitting the model (R2 linear= 0.4676) produces the following
best fit line: dx/dt = 0.977−0.744x. Figure 3 constitutes
a graphical representation of this model. In “dynamical”
terminology, the graphical representation of differential
equations is known as topology, and different names such as
state space or phase space are also used (e.g., Spivey and Dale,
2006; Shelhamer, 2011; Butner et al., 2015). The point where the
best fit line crosses the x-axis corresponds to the fixed point.
If the slope is negative, the fixed point is an attractor, and if
the slope is positive, it is a repeller (see Butner et al., 2015). In
our example, we have therefore identified an attractor, and to
calculate its value, we need to set dx/dt to 0, which indicates the
point of no change, and solve the equation 0 = 0.977−0.744x.
The solution corresponds to 1.313, which is the attractor. The
strength of the attractor is conveyed by the magnitude of the
slope of the best fit line (b1 =−0.744 in our example). The larger
the magnitude, the stronger an attractor, thus indicating that
the system quickly moves toward the fixed point (Butner et al.,
2015).

Equation (1) is relatively simple and allows identifying only
one fixed point attractor, which means it can be used to model
behaviors such as eating of non-restrained eaters or even of
restrained eaters in situations where only one attractor would
be expected (e.g., only restrained eating). However, to identify
more attractors in a time series, a more elaborate equation would

Frontiers in Psychology | www.frontiersin.org 3 July 2017 | Volume 8 | Article 1204

http://www.frontiersin.org/Psychology
http://www.frontiersin.org
http://www.frontiersin.org/Psychology/archive


Krpan Behavioral Priming 2.0

FIGURE 2 | A hypothetical time series of the quantity of snacks in grams (x) a person consumed per 1-min intervals of a 20-min period.

FIGURE 3 | A graphical representation (topology) of a differential equation (dx/dt = 0.977−0.744x) reflecting the change in food consumption over a 20-min period

depicted in Figure 2. The point at which the best-fit line crosses the x-axis (1.313) corresponds to the fixed-point attractor—the stable value of food consumption

toward which the eating pattern evolves over time.

be needed. The most effective way to proceed in this respect
would be fitting polynomial regression models of different order
(Butner et al., 2015; Wong et al., 2016). Linear regression itself
corresponds to a polynomial regression model of a first order
(Equation 1) and can capture only one fixed point; a quadratic
expression corresponds to a second order polynomial regression
model (Equation 2) and can identify two fixed points; a cubic

expression corresponds to a third order polynomial regression
model (Equation 3) and can capture three fixed points, and so
on (Draper and Smith, 1998).

dx/dti = b0 + b1xi + b2x
2
i (2)

dx/dti = b0 + b1xi + b2x
2
i + b3x

3
i (3)
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Therefore, based on predetermined theoretical predictions, one
can fit different polynomial regression models to time series data
and compute fixed point attractors or repellers using a similar
procedure as described in the previous paragraph (for more
details, see Mourrain and Pavone, 2009; Butner et al., 2015).

Beyond fitting more complex differential equations, the
intricacy of dynamical systems modeling increases if multiple
dimensions are considered. A dimension of a dynamical system
corresponds to the number of mathematical variables used to
describe its behavior (Shelhamer, 2011; Butner et al., 2015).
In the previous examples, we tackled only one variable (x),
and the equations we employed expressed how this variable
changes over time. In other words, we were modeling a
one-dimensional system. However, perhaps we may want to
investigate how two variables change simultaneously over
time; for example, how a person’s mood changes alongside
eating, and whether they exhibit certain stable states. In
that case, we would need to measure both the amount of
food eaten and the person’s mood per 1-min increments.
This dynamical system would need to be modeled using two
differential equations rather than one (in general, one dimension
corresponds to one differential equation, and multidimensional
systems consist of multiple differential equations) and solve
them simultaneously to calculate attractors, repellers, and their
strength. For a tutorial on how to tackle multidimensional
dynamical systems and their topologies, see Butner et al.
(2015).

Although one can model natural systems by fitting various
differential equations, there are certain limitations in this regard.
First, the more complex a system gets, the less easy it is to
identify the appropriate equations and dimensionality, in which
case one may need to make a pragmatic decision to fit relatively
oversimplified models that do not involve all the important
variables capturing the system’s essence (Gros, 2008). In this
case, certain complexity measures can yield deeper insights
into the system’s intricacies. Second, to model some of the
most important properties of natural systems that are highly
relevant to priming—self-organization and emergence (these will
be tackled in Section Emergence)—it is necessary to capture how
a system’s complexity changes over time (Stephen and Dixon,
2009; Stephen et al., 2009a,b; Dixon et al., 2010).

The number of measures that quantify complexity is immense
(Pincus, 1991; Wackerbauer et al., 1994; Bar-Yam, 1997;
Rezek and Roberts, 1998; Lloyd, 2001; Marwan et al., 2002;
Wagenmakers et al., 2004; Webber and Zbilut, 2005; Gros,
2008; Gershenson and Fernández, 2012). A family of complexity
measures of highest relevance within the present article is the
entropy family (Guastello, 2011c). Entropy was first defined in
the realms of thermodynamics and statistical mechanics (Carnot,
1824; Clausius, 1865; Boltzmann, 1886/1974; Atkins, 1984; Ben-
Naim, 2007; Lemons, 2013), where it captures the complexity of
the microscopic structure of different thermodynamic systems.
A more relevant entropy measure in the present context is
information entropy (Shannon, 1948), given that it conveys the
complexity of a string of symbols (e.g., letters or numbers),
such as a time series. The formula for information entropy is as
follows:

H = −

∑n

i
p(xi)log2p(xi) (4)

This formula computes the quantity of information contained in
a string (in bits) by capturing the probability of occurrence of
each symbol within the string.

To clarify Equation (4), I will use two hypothetical time series
(Figures 4, 5) quantifying the snacks (x) a person consumed per
1-min intervals of a 20-min period. The distribution of variable x
in Figure 4 can be summarized as String 1 (2, 2, 1, 1, 2, 2, 1, 1, 2,
2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1), whereas its distribution in Figure 5 can
be summarized as String 2 (13, 9, 8, 3, 2, 2, 0, 0, 0, 1, 3, 4, 5, 1, 7,
2, 9, 9, 12, 14). Even intuitively, we can already see that String 2 is
more complex than String 1 because it contains a larger variety of
symbols (=different numbers). Computing information entropy
for each string indeed confirms this assumption: H (String 1)
= 1 bit; H (String 2) = 3.41 bits. If we attempted to compute
the attractors in the two datasets by fitting different polynomial
regression models, we would see that the first time-series has
only one fixed point attractor because it is possible to fit only the
linear regression model. However, the second time-series yields
a better fit with higher-order polynomial regression models (e.g.,
order 4) and has more than one fixed point. Thus, as entropy of
a system increases, more complex attractor structures that may
be difficult to capture become possible, and clear attractors may
even be absent.

Overall, the present section introduced some of the basic DSP
concepts and mathematical tools I will later extend and apply to
behavioral priming. However, the DSP comprises an immense
body of concepts and mathematical tools, and readers who want
to get a deeper understanding of this paradigm can consult
resources from the Appendix. In the next section, I examine
the link between the DSP and behavioral priming to specify the
circumstances in which this phenomenon is likely to occur and
propose how to test it.

CONNECTING THE DYNAMICAL SYSTEMS
PERSPECTIVE TO BEHAVIORAL PRIMING

Although tools and concepts stemming from the DSP have
been introduced to psychology (Barton, 1994; Vallacher and
Nowak, 1994, 1997, 2007; Ayers, 1997; Carver and Scheier,
1998; Guastello et al., 2009), only three studies that classify
as priming have adopted its insights so far (Wegner et al.,
1984, 1986; Vallacher et al., 2002a). Moreover, they were
conducted before major advancements in psychological
applications of the DSP methodology took place (Riley and
Van Orden, 2005; Guastello and Gregson, 2011; Holden
et al., 2013; Butner et al., 2015). To show that, despite being
overlooked by priming researchers so far (for potential
reasons, see Gelfand and Engelhart, 2012), the DSP can
provide crucial insights into behavioral priming, I will first
consider this phenomenon through the prism of “dynamical”
terminology.

In this context, priming can be defined as an external
perturbation of a behavioral system (Vallacher et al., 2002a, 2015).
External perturbations are any influences that act on a dynamical
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FIGURE 4 | A hypothetical time series of the quantity of snacks in grams (x) a person consumed per 1-min intervals of a 20-min period characterized by low

information entropy.

FIGURE 5 | A hypothetical time series of the quantity of snacks in grams (x) a person consumed per 1-min intervals of a 20-min period characterized by high

information entropy.

system and do not arise from the elements that constitute the
system but from the surroundings (Prigogine and Stengers, 1984;
a system can also be internally perturbed, see Bender and Orszag,
2013). For example, a system of two people talking to each other

can be perturbed by loud noise from the surroundings, whereas
the workings of the human body can be perturbed by a sudden
temperature change. Based on previous theorizing on priming, it
is plausible that primes perturb a behavioral system by evoking
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cognitive constructs that have automatic associations with the
motor system and/or by serving as inputs into decision-making
processes that shape behavior (e.g., Dijksterhuis and Bargh, 2001;
Loersch and Payne, 2011; Klatzky and Creswell, 2014).

A remarkable characteristic of many natural systems is that
their behavior can resist even strong external perturbations
and maintain stable attractor dynamics (Prigogine and Stengers,
1984). An obvious example is human behavior. We are exposed
to numerous stimuli at any givenmoment, ranging from different
sounds and objects to other people with whom we interact,
and yet, considering all these perturbations, our behavior seems
relatively constant. Indeed, we can maintain purposeful and
goal directed behaviors and are not completely at the mercy of
occurrences in our environment (Austin and Vancouver, 1996).
In fact, some behaviors, such as addictions or habits, are so
difficult to alter that major perturbations, such as interventions
from friends and family members, are necessary to change them
(Aarts and Dijksterhuis, 2000; Duhigg, 2012).

Considering all events a person may daily encounter, primes
are relatively minor perturbations. Indeed, priming researchers
posit that primes are subtle cues that usually impact behavior
outside of awareness (Bargh, 2006). Hence, if one considers the
DSP, primes may be construed as control parameters that could
alter behavioral dynamics only in very specific circumstances (see
Kelso, 1995), and it is unlikely that they generally shape people’s
actions in a more robust manner. In line with this assumption,
I propose there are three different types of influence to which
I refer as (a) Emergence; (b) Readjustment; and (c) Attractor
switch. In the next sections, I provide the rationale behind these
influences, discuss when they should occur, and propose how to
investigate them.

Emergence
Situations in which priming may be most likely to impact
behavior are the ones where clear cognitive patterns that shape
action have not yet emerged, and the behavioral system therefore
lacks stable attractors (Vallacher et al., 2015). In fact, cognitive
psychologists have used the concept of entropy to describe such a
complex mental state (Hirsh et al., 2012). To think of the link
between cognition and entropy, let us conceptualize cognition
as a string of symbols corresponding to different possible
perceptions or interpretations of a situation. In a cognitive state
called String 1 (1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2), there is one
dominant interpretation of a situation, denoted by number 1, and
if we apply Equation (4) to this string, the calculated entropy will
be low (H = 0.65 bits). In contrast, in a cognitive state called
String 2 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), there are many
different interpretations, and the entropy is higher (H = 3.58
bits). String 1 therefore corresponds to a coherent cognitive state
that may be associated with clear action patterns, whereas String
2 corresponds to an incoherent, “entropic” state possibly linked
to ambiguous action patterns.

In literature stemming from the DSP, systems in high-
entropy states are labeled as “far-from-equilibrium” and tend to
self-organize (Gershenson and Heylighen, 2003; Guastello and
Liebovitch, 2009). Self-organization is one of the main qualities
of complex systems in nature (Prigogine and Stengers, 1984). By

continuously interacting over time, elements of a system in a state
of high entropy can organize themselves into stable structures,
thus reducing the entropy. The process is called self-organization
because it is not controlled by some central supervisory unit
and occurs through continuous interactions among the elements.
Highly entropic systems are characterized by inefficient use of
energy; therefore, whenever a system’s entropy level reaches a
critical point, the system needs to self-organize into a new stable
state (Guastello and Liebovitch, 2009). The transition of a system
from a disordered into ordered state is known as emergence
(Stephen et al., 2009b).

Whereas self-organization and emergence have primarily been
construed in relation to thermodynamic entropy (Prigogine and
Stengers, 1984), recent advancements in cognitive psychology
showed that information entropy contributes significantly to
the scientific understanding of self-organization in human
cognition (Dixon et al., 2010). For example, a hypothetical
cognitive state called String 2 that I introduced earlier has high
information entropy and may therefore self-organize into the
stable state represented by String 1. This way, the cognitive
system would maintain its efficiency and remain functional in
meeting situational demands.

Beyond theoretical speculations, how is cognitive entropy
actually measured? This cannot be done via self-reports because
people do not have the required level of insight (Nisbett and
Wilson, 1977) and it would be impossible to capture short-
term cognitive changes necessary to compute cognitive entropy
by relying on this method. Therefore, based on the principle
of embodied cognition that human mind is grounded in the
body (Glenberg and Kaschak, 2002; Wilson, 2002), cognitive
psychologists found a way to access cognitive dynamics by
measuring the dynamics of bodily movements (Vallacher et al.,
1994, 2015; Magnuson, 2005; Spivey et al., 2005; Spivey and
Dale, 2006; Spivey, 2007; McKinstry et al., 2008; Duran et al.,
2010, 2013; Freeman and Ambady, 2010; D’Mello et al., 2012;
Pärnamets et al., 2015; Wong et al., 2016).

To clarify this, I will rely on research by Stephen et al. (2009b).
They investigated cognitive dynamics involved in solving gear-
system problems. A typical problem consists of a series of
interconnected gears; the task is to predict the movement of
the last gear from the movement of the first one. To capture
changes in participants’ cognitive entropy during problem
solving, the authors tracked their hand motion and computed
information entropy from a time series of angular velocity of
this motion over time. In the initial problem solving stage,
participants would typically follow each gear in the sequence
to predict the movement of the final gear. This stage was
marked by highly variable hand motion, thus indicating high
cognitive entropy. Then, something extraordinary happened:
after cognitive entropy reached its peak, participants started
realizing that all even (odd) gears in the sequence turn in the
same direction, and the movement of the final gear can be
determined by counting whether it is even/odd. This insight
was marked by entropy decrease. Thus, an initially entropic
cognitive state (not having a clear view of how to best solve
gear-system problems) emerged into a new lower entropy state
(knowing how to effectively solve the problems). This cognitive
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change was related to a behavioral change—emergence of a new
behavioral attractor—given that the time series of the number of
gear problems solved over timewas remarkably different after (vs.
before) participants realized the efficient problem-solving rule.

Considering the process of emergence, why would behavioral
priming effects be most potent under high cognitive entropy?
When cognition is in an unstable, far-from-equilibrium state,
its sensitivity to external perturbations increases because it uses
them as information that will guide the emergence of a new
stable state (Vallacher et al., 2015). In that case, even seemingly
irrelevant information such as primesmay be incorporated by the
brain into cognitive structures that shape behavior. Although this
assumption has not yet been demonstrated by employing motion
tracking and modern dynamical methods, it was supported by
Wegner et al. (1984, 1986) in the context of Vallacher andWegner
(1987, 1989, 2014) action identification theory.

According to the theory, people construe their actions in
low or high level terms. For example, locking a door can be
thought of as putting a key in the lock (low-level interpretation)
or securing the house (high-level interpretation). Because low-
level interpretations are detail-oriented and lack meaning and
purpose, they may reflect high-entropy cognitive states, whereas
high-level interpretations provide meaning behind actions and
may thus reflect low-entropy states. Wegner et al. (1984,
1986) indeed showed that, under low-level understanding of
a situation, contextual information such as primes impact
behavioral intentions and lead to emergence of a high-level
understanding. For example, when participants interpreted an
experiment they just completed in low (vs. high) level terms, they
were more likely to comply with a random statement proposing
a high-level reason behind their participation (e.g., an altruistic
reason to help the experimenter), thus suggesting that the high-
level interpretation emerged from arbitrary external information
(Wegner et al., 1986). Furthermore, the statement primed them
to indicate they would be more likely to participate in a future
activity that is motivationally congruent with the concept evoked
by the statement (e.g., altruism). Although the data collected
by Wegner et al. (1986) are not suitable for precise dynamical
modeling that would allow computing attractors as in Butner
et al. (2015), one could specify attractors conceptually. Being
more “attracted” to undertake a prime-congruent activity (A)
rather than another activity (B) indicates that activity A itself is
the attractor. For other research linking priming to high-entropy
situations, see Keefer et al. (2011) or Mussweiler and Strack
(2000).

Overall, in this section I argued that priming should influence
behavior in the context of emergence. In the next section, I
further decompose this assumption using precise methodological
language and propose how to test it.

Investigating Emergence
Emergence is a multilayered process; hence, investigating
behavioral priming within its realm is not an easy task. I suggest
four crucial components need to be considered when devising
an appropriate research design: priming, situation, cognition,
and behavior. Behavior is the core component and needs to be
carefully selected, given that it will determine how other elements

are tackled and how the data are analyzed. Broadly speaking,
behaviors can be classified into two types—those that are time-
series compatible, and those that are not. Some behaviors, such as
eating (Harris et al., 2009), solving intellectual tasks (Dijksterhuis
and Van Knippenberg, 1998), or walking (Bargh et al., 1996;
Cesario et al., 2006) can be expressed as time series, assuming
they are assessed over an appropriate duration. In this regard, the
main measure of interest is usually a specific quantity conveying
“how much of a behavior” has been accomplished (e.g., grams of
foods eaten, distance traveled, number of tasks correctly solved,
etc.), and this quantity can be assessed per specific time intervals
(e.g., every 30 s, every minute). However, some behaviors are
time-series incompatible; for example, one-off decisions that
constitute single acts, such as buying wine (North et al., 1997),
choosing a product (Chartrand et al., 2008), or voting (Hassin
et al., 2007). These behaviors could in principle be repeated
numerous times and therefore expressed as time series. However,
this would create different kinds of issues that may attenuate
the interpretability of the data. For example, a researcher may
record the shopping behavior of a person purchasing groceries
online or in a supermarket and compute the number of products
selected or the amount of money spent per time unit. However,
these products may greatly differ in terms of packaging, price,
health value, etc., and it would therefore be more relevant to
focus on the types of products in the shopping cart rather than
on the quantity purchased per certain temporal interval. Overall,
time-series incompatibility reflects the general observation that
some standalone actions may not be suitable for time-series
analysis.

To investigate priming under emergence, a behavioral time
series should ideally be used because this allows computing
attractors as described in Section Fundamentals of the Dynamical
Systems Perspective (Butner et al., 2015). Otherwise, the
researcher would need to treat attractors metaphorically and
assume that choosing action A (over B) indicates that A
itself is the attractor. In the context of time-series compatible
behaviors, an important decision to make is how many data
points one should measure. A general rule is—the more data
points the better. Emergence is a subtle process, and having
too few data points may decrease the sensitivity with which
important behavioral changes throughout this process can be
captured. An accurate rule on this issue has not been clearly
specified. Although required time samples will vary by domain
and research question, some recommend that, to use time series
methods, a measurement requires at least 20 data points where
possible (see Butner et al., 2015). However, with certain behaviors
this will be unfeasible and the researcher will thus be forced
to measure fewer data points at the expense of sensitivity.
Furthermore, the question is how to specify a time unit at which
the behavior should be quantified (e.g., per 30 s, 1min, etc.).
This value needs to be appropriate considering the behavior
investigated and the situation in which it occurs. For example,
measuring eating per 1-s intervals may be inappropriate in
many contexts where people eat at a normal pace and do
not take a new bite every second, in contrast to competitive
eating, so a more sensible longer time interval would be
required.
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Once the appropriate behavior has been determined, one
needs to examine how to construct a high-entropy situation
in which this behavior will be investigated. Previous research
suggested that such situations are characterized by uncertainty
(Hirsh et al., 2012), internal conflicts (Vallacher et al., 1994;
McKinstry et al., 2008; Duran et al., 2010, 2013), low-
level interpretations (Vallacher and Wegner, 1987, 2014), or
unfamiliarity with the behavior that needs to be performed
(Stephen et al., 2009b). Hence, it is plausible that high-entropy
situations are the ones where previous goals, habits, skills, or
experiences cannot easily inform the person of an appropriate
course of action. The best way to construct a high-entropy
situation is probably by selecting an unfamiliar behavior without
mentioning any purpose regarding why it is being performed, or
by giving ambiguous instructions. Another option is to choose a
familiar behavior (e.g., eating) while employing unfamiliar type
of stimuli (e.g., foods with unusual shapes) and/or providing
ambiguous or incoherent instructions (e.g., specifying that the
foods are made of unknown exotic ingredients, or providing
many different conflicting purposes regarding why the behavior
needs to be performed). Alternatively, a high-entropy situation
could be initiated by creating disorder within the environment
where the behavior is being enacted (see Stephen et al., 2009b).

Selecting an appropriate prime is also essential. Researchers
have devised many priming manipulations over the past 20
years and conceived different ways to classify them (e.g., Förster
and Liberman, 2007; Loersch and Payne, 2011; Molden, 2014;
Wentura and Rothermund, 2014). Concerning the timing of
administration, a priming manipulation can be displayed either
before the behavior of interest or simultaneously. For example,
visual primes, such as colors, posters, etc. can be administered
alongside a behavior by being embedded in the context of action
(e.g., computer screen; Mandel and Johnson, 2002; Mehta and
Zhu, 2009). Other priming manipulations, such as a scrambled
sentences task (Shariff and Norenzayan, 2007), remembering
an event from one’s past (Lee and Schnall, 2014), or watching
a video (Schreibman et al., 2000) can only be administered
prior to a behavior. In general, a researcher can use either
type of priming manipulations to study emergence, assuming
they are theoretically linked to a behavior of interest. However,
I discourage using subliminal primes because the effects of
such primes may be short-lasting and incompatible with more
complex behaviors captured as time series (Aarts et al., 2008).

Specifying how to capture changes in cognitive entropy is
the final prerequisite for investigating behavioral priming under
emergence. As previously suggested, this can be done by tracking
participants’ bodily movements and translating them into a
motion time-series (e.g., change in velocity; Stephen et al.,
2009b). For this purpose, it is possible to use professional motion
tracking devices (e.g., Stephen et al., 2009a,b; Duran et al., 2013),
track mouse movements on the computer screen (e.g., McKinstry
et al., 2008; Freeman and Ambady, 2010), or video-record a
participant throughout the experiment and extract the motion
time-series using open-source software (e.g., Westlund et al.,
2015) or commercial software (e.g., Matlab Computer Vision
System Toolbox). These methods could be used in isolation, but
combining them may also be interesting to see whether they

would yield convergent results. Motion time-series are usually
sampled at high frequencies (e.g., 100 times per second; Stephen
et al., 2009b), which means they consist of many data points.
In this context, information entropy can be computed using
recurrence quantification analysis (RQA) that is suitable for
such relatively large time series (for tutorials, see Pellecchia and
Shockley, 2005; Webber and Zbilut, 2005; for statistical packages,
see Coco and Dale, 2014; Garcia, 2015; Rawald et al., 2017).
Computing other entropy measures, such as sample entropy,
would also be plausible (Richman and Moorman, 2000).

Considering all the options reviewed above, priming under
emergence could be investigated in numerous ways. Here I
propose a prototypical research design that can be easily modified
to accustom different possibilities—a 2 (situation: high vs. low
entropy) × 2 (priming manipulation: 1 vs. 2) between-subjects
design that yields four conditions: Condition 1 (high-entropy
situation + prime 1), Condition 2 (high-entropy situation +

prime 2), Condition 3 (low-entropy situation + prime 1), and
Condition 4 (low-entropy situation + prime 2). The situation
variable refers to whether the situations in which the behavior
of interest, which should be the same for all participants, is
introduced to them activate high vs. low cognitive entropy. The
priming manipulation variable refers to the type of priming
procedure used; primes 1 vs. 2 indicate any two priming
manipulations that induce different mental constructs (e.g.,
Dijksterhuis and Van Knippenberg, 1998).

Figure 6 constitutes a schematic representation of the
proposed experiment. On one level, the figure depicts
experimental flow. In each condition, participants should
first receive a priming manipulation. Furthermore, they should
be presented with experimental instructions (labeled as Instr.)
conveying the behavior of interest in a way that induces either
high or low cognitive entropy (depending on the condition
to which they have been allocated), and then undertake the
behavior (measured as a time series). In the figure, the quantity
of behavior is computed per 1-min intervals (the duration should
be appropriate in the context of the behavior as previously
discussed). It is worth noting that participants will differ
regarding the time taken to complete the behavioral task, but the
researcher should ensure that the task is sufficiently long for even
the quickest participants to yield an appropriate number of data
points as previously discussed.

As can be seen from Figure 6, cognitive entropy (red line
with the squares) should be assessed even while participants
are reading experimental instructions, given that it is important
to show that the instructions in the high-entropy condition
indeed yield higher cognitive entropy relative to the low-entropy
condition. The red squares also indicate that entropy scores in
the figure are computed from time series of participants’ bodily
motion every 30 s. I suggest that entropy is always computed
at shorter time intervals than the behavior itself (e.g., 2–3
entropy scores per each time unit at which the behavior is
assessed) because this may provide more sensitive insights into
the cognition behind the emergence of the behavioral pattern.
Although it is not clearly specified how many data points RQA
requires to reliably calculate entropy from a time series of
bodily motion, 300 or more data points should be sufficient
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FIGURE 6 | A schematic representation of a prototypical experiment investigating emergence. On one level, the figure depicts experimental flow, where a priming

manipulation should be administered first, followed by experimental instructions (Instr.) introducing the behavior being investigated, and finally the behavior should be

captured as a time series (in the present graph, the behavior is sampled per 1-min intervals). The figure also depicts idealized data patterns demonstrating that priming

may influence behavior only in high-entropy situations (Conditions 1 and 2), where emergence is likely to take place, but not in low entropy situations (Conditions 3

and 4). In the former situations, primes evoking different cognitive constructs (Prime 1 vs. 2) may result in the emergence of distinct behavioral patterns (represented

by blue dots) characterized by different fixed-point attractors, whereas this may not be the case in low-entropy situations. Fluctuations of cognitive entropy (per 30-s

intervals) are depicted by the red squares.

(for more comprehensive discussion, see Aks, 2011). Considering
that motion tracking can yield numerous data points per second
(Pellecchia and Shockley, 2005), in some cases even just a few
seconds of data would be sufficient for entropy calculation.

Figure 6 also depicts idealized data patterns from which
hypotheses that need to be met to demonstrate that priming
influences behavior only under emergence can be extrapolated.
As Hypothesis 1, I propose that priming will change behavior
only in high-entropy situations (Conditions 1 vs. 2), but not

under low entropy (Conditions 3 vs. 4). In this regard, to
change behavior means to produce different attractors, given
that, in high-entropy situations, the two priming manipulations
may result in different prime-consistent behavioral patterns. To
investigate this, one could utilize the tools of Butner et al.
(2015) and compute attractors for each participant’s behavioral
time series by fitting Equation (1). Indeed, we are interested
only in single fixed point attractors, given that I speculate the
emergence is most likely to result in an attractor that is stable
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and does not further change, as in Figure 6. Then, one should
use the attractor value for each participant as the dependent
variable and compute an interaction between situation and
priming manipulation (Aiken and West, 1991; Hayes, 2013). The
interaction should be significant, given that only attractors in
Conditions 1 and 2 (but not in Conditions 3 and 4) are expected
to differ. Additionally, one could probe attractor strength as the
dependent variable. From Graph 6, we can see that the behavior
in Conditions 3 and 4 (vs. 1 and 2) stabilizes relatively more
quickly, which means these conditions should yield stronger
attractors (Butner et al., 2015). However, in some circumstances
even Conditions 1 and 2 may differ in attractor strengths; for
example, if a priming manipulation itself paces up the process of
emergence.

To construct Hypothesis 2, we need to take a close look at
the cognitive entropy lines in each of the four conditions in
Figure 6. The lines indicate that, in Conditions 1 and 2 where
emergence occurs, entropy may start at a relatively higher level
than in Conditions 3 and 4, reach its peak between the points
A and B that comprise the emergence region, and then drop to a
lower level (Stephen et al., 2009b). The timing of this process may
differ across participants, but I speculate it would follow a similar
pattern. In contrast, in Conditions 3 and 4, entropy may remain
relatively stable. I propose this difference could be quantified
using two values—standard deviation of the distribution of
entropy points computed for each participant as well as the
maximum entropy point. Therefore, according to Hypothesis
2, distribution of entropy values for participants in the high
(vs. low) situation entropy conditions should have relatively
higher standard deviation, and these participants should also
have higher maximum entropy.

Finally, it is essential to show that the situation variable
indeed influenced cognitive entropy levels. In other words,
while reading experimental instructions (which serve as the
manipulation of the situation), participants in the high (vs. low)
entropy conditions should experience elevated cognitive entropy
(Hypothesis 3). To investigate this, the researcher could compute
average cognitive entropy over the duration of experimental
instructions for each participant and then conduct t-tests,
ANOVAs, or regressions comparing this measure for Conditions
1 and 2 vs. Conditions 3 and 4. Overall, an experiment supporting
all the three hypotheses would support the notion that priming
affects behavior only under emergence.

The experimental design I proposed can be adapted to
different priming manipulations and behaviors. For example,
instead of priming people before the behavioral task, one can use
a prime that can be presented alongside the behavior. The biggest
challenge is in fact how to deal with behaviors that are inherently
linked to high-entropy cognitive states because they are novel
to the extent that they involve many possible interpretations. In
that case, it would be difficult to experimentally create a low-
entropy situation. Therefore, the researcher could use one set
of experimental instructions for all participants, and then assess
their cognitive entropy while reading the instructions. Given that
not all people are the same, some participants would probably
experience higher cognitive entropy than others even in this case,
and we could divide the participants into two groups—low vs.

high cognitive entropy—based on their experiences. This variable
could then be used as a moderator to test Hypotheses 1 and also
to probe Hypothesis 2, whereas Hypothesis 3 is inherent in the
variable itself.

Another difficulty may arise if the behavior cannot be assessed
as a time series (e.g., one-off choices), in which case computing
attractors via differential equations would not be plausible. In
that case, one could assume that the choice itself constitutes
an attractor and test Hypothesis 1 by analyzing the choice as a
dichotomous dependent variable by applying logistic regression,
and Hypothesis 2 may be tested on changes in cognitive entropy
between the onset of the choice option and eventually making
the choice (see McKinstry et al., 2008). Overall, there are many
creative ways to investigate priming in the context of emergence,
and given that standard procedures have not yet been established
I encourage researchers to probe different possibilities.

Readjustment
Another type of influence concerns situations in which the
impact introduced in Section Emergence is unlikely to occur
because it is clear what the actor needs or wants to do and
her/his goals (Moskowitz and Grant, 2009), habits (Aarts and
Dijksterhuis, 2000), and/or personality traits (Vallacher et al.,
2002a) are likely to quickly “take control” over the behavior. In
other words, these are the situations that have an inherent strong
attractor. For example, a person late for work is likely to walk
quickly as soon as leaving the house, which means that quick
walking will ensue from the start and comprise a strong attractor.
Another example is an unrestrained eater who finds her/himself
in a familiar eating situation. Because unrestrained eaters usually
have one strong attractor for eating (e.g., Fedoroff et al., 1997),
the person is likely to quickly settle on an eating pattern that
corresponds to this attractor.

To remove any natural system from a strong attractor, a
substantial external perturbation is necessary (Prigogine and
Stengers, 1984; Vallacher et al., 2015). Based on this premise
known to apply to various natural systems, ranging from an
embryo to bacteria and even to cognitive systems (Prigogine and
Stengers, 1984; Ward, 2002; Gallopín, 2006), it is plausible that
priming may not considerably impact behaviors driven by strong
attractors. In this context, I speculate that any priming effect,
if it occurs at all, may be relatively minor and short lasting: it
should not change the attractor value but only slightly decrease
its strength, depending on whether the prime is compatible or
incompatible with the attractor (Vallacher et al., 2002a).

As a hypothetical example, let us consider a person whose
work starts in 30 min but who left the house too late and
thus needs to hurry. This person’s walking behavior will be
driven by the goal to arrive to work as quickly as possible,
and may therefore follow a stable pattern of distance over time
corresponding to quick walking (e.g., roughly 50 meters per each
30-s interval of the 30-min period). If this person encounters a
compatible prime that activates the mental construct of “walking
quickly,” a behavioral impact is unlikely, given that the person
is already walking quickly. An incompatible prime (walking
slowly) may, in contrast, briefly decrease the speed of walking
(e.g., over few 30-s intervals), but the goal to arrive to work
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as quickly as possible will soon take over and the fast pace
of walking will resume. If we computed the attractor for the
person’s time series of the distance walked per 30-s intervals
in situation A (compatible prime) vs. situation B (incompatible
prime), we would probably see that the attractor value itself
would stay relatively similar, and only the attractor strength may
be smaller in situation B (Butner et al., 2015). This is the type of
priming influence to which I refer as “readjustment,” given that
the behavior of interest is briefly impacted by an incompatible
prime but quickly readjusts by returning to its initial attractor
state (see Vallacher et al., 2002a).

Investigating Readjustment
When designing an experiment to demonstrate readjustment,
three prerequisites need to be met. First the researcher needs to
select a situation where a person’s goals, habits, personality traits,
and/or previous experiences can easily manifest themselves in
the shape of strong behavioral attractors. These are essentially
low-entropy situations as discussed in Section Investigating
Emergence. Second, it is imperative that the population being
tested has one strong behavioral attractor that should occur
in that situation, rather than multiple possible attractors of
different strength, given that under those circumstances priming
may lead to attractor switch rather than readjustment (see
Section Attractor Switch). This can be established by carefully
researching relevant literature. For example, I already referred
to restrained eaters as the type of population that may have
two attractors—one for restrained and one for enhanced eating
(Fedoroff et al., 1997)—and unrestrained eaters may therefore
be more suitable for studying readjustment in relation to eating.
Finally, the researcher needs to determine psychological variables
that strongly predict the behavior being investigated. These can
be any person variables, ranging from the Big Five Personality
Traits (Costa andMcCrae, 1992) to more specific constructs such
as behavioral inhibition/activation system (Carver and White,
1994) or need for cognition (Cacioppo et al., 1996), implicit
attitudes (Greenwald and Banaji, 1995), goals (Little, 1983),
habits (Verplanken and Melkevik, 2008), and even demographic
variables including gender, age, education, etc. (Teo, 2001).
Relevant psychological variables should be measured in the
experiment because they are likely to determine the value of
the attractor (Vallacher et al., 2002a) and may therefore allow
specifying whether priming manipulations used are compatible
or incompatible with the attractor.

Figure 7 constitutes a schematic representation of a
prototypical experiment investigating readjustment. At the
beginning of this experiment, it is crucial to assess a psychological
variable (Variable M) that determines attractor dynamics as
indicated above to be used as a continuous moderator of the
impact of priming on attractor strength. Thereafter, participants
should be subjected to the relevant priming manipulation.
As depicted in Figure 7, priming manipulation could be a
between-subjects variable consisting of three levels (Prime 1,
Control, Prime 2). Prime 1 should be compatible with high
values of Variable M. For example, if Variable M corresponds
to a person’s hunger, and high values of this variable indicate
very hungry, then Prime 1 should encourage eating, which is

compatible with being hungry. In contrast, Prime 2 should be
compatible with low values of Variable M (=satiated), which
means it should discourage eating. In the control condition,
participants should complete a neutral task (e.g., the one that
does not prime eating constructs). Finally, all participants should
undertake a time-series compatible behavior of interest. In
Figure 7, I do not refer to instructions introducing the behavior
given space constraints, but I assume the instructions are part of
the experimental flow.

To produce the dependent variable, one would need to fit
Equation (1) to each participant’s behavioral time series and
compute attractor strength (Butner et al., 2015). An analysis of
simple slopes (Aiken andWest, 1991; Hayes, 2013) could then be
performed, with Variable M as a continuous moderator, priming
manipulation as a categorical independent variable (it would
comprise two dummy variables, one for Prime 1 and one for
Prime 2), and attractor strength as the dependent variable. This
analysis would compute the impact of Primes 1 and 2 vs. the
control condition on attractor strength at values of themoderator
compatible or incompatible with the primes.

The overarching prediction (Hypothesis 1) would be that the
impact of priming on attractor strength will change at different
values of the moderator, thus yielding a significant interaction
effect. At high values (+1 SD), I speculate that the incompatible
Prime 2 (vs. Control) would decrease attractor strength, whereas
Prime 1 would have no influence, given that it encourages the
behavior in the same direction that is already facilitated by
Variable M (Hypothesis 2). In contrast, at low values (−1 SD)
of M, the opposite may be the case (Hypothesis 3). In Figure 7,
these predictions are reflected in the pattern of behavior. When
Prime 2 is paired with high M, the first few data points have a
tendency toward low quantity of the behavior, thus reflecting the
short-lasting effect of the prime, but the behavior then stabilizes
at high quantities, as would be expected given that highM should
predict high quantity of the behavior. For Prime 1 and the control
condition, the pattern of behavior is relatively stable because it
starts at high levels and finishes at high levels. Hence, whereas
under Prime 1 and the control condition attractor strength is
expected to be similarly high, under Prime 2 it may be slightly
lower given the readjustment has taken place. At low values of
M, I speculate this would switch, and readjustment may now
be found only for the incompatible Prime 1. To show that
only readjustment took place in the experiment and there was
no change of attractor values, one could compute these values
(Butner et al., 2015) and show that no differences were found
between Primes 1 or 2 and the control condition.

Although this experimental design is flexible and can be
adjusted to different priming manipulations and behaviors, it is
worth discussing whether readjustment should be investigated
with time-series incompatible behaviors. In this regard, it would
be possible to focus on behaviors that comprise numerous
choices, such as online grocery shopping, and investigate whether
priming influences the shopping behavior (e.g., the type of foods
purchased) only very early in the process but not later, which
would correspond to readjustment. My view is, however, that
such behavioral measures are not sensitive enough to capture
readjustment for several reasons. First, some participants may
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FIGURE 7 | A schematic representation of a prototypical experiment investigating readjustment. On one level, the figure depicts experimental flow, where the

Moderator Variable M should be assessed first, followed by the administration of the priming manipulation. Finally, the behavior of interest should be introduced (the

instructions are not shown in the graph due to space constraints) and captured as a time series (in the present graph, the behavior is sampled per 1-min intervals).

The figure also depicts idealized data patterns demonstrating that readjustment may occur when a cognitive construct activated by priming is incompatible with the

expected attractor value (expected attractor value is determined by the moderator: at +1 SD a high quantity of behavior is expected, whereas at −1 SD a low quantity

of behavior is expected). Hence, at high values of the moderator (+1 SD), readjustment may occur for the incompatible Prime 2 (vs. control), but not for the

compatible Prime 1. The opposite would be the case at low values of the moderator (−1 SD).

wait for too long to make the first choice for readjustment to
be captured. Second, choice itself corresponds to an attractor
that cannot be easily decomposed into different temporal units,
and given that readjustment may not change the attractor but
only its strength, capturing this type of influence may be difficult
because it is unclear how to measure attractor strength with one-
off choices (e.g., does the time needed to make a choice indicate
attractor strength, or is it some other feature). Overall, when
investigating readjustment, I recommend that researchers use
time-series compatible behaviors.

Attractor Switch
So far, I discussed how priming can contribute to the emergence
of a new behavioral attractor or slightly perturb an existing
attractor that quickly readjusts. Another type of influence—
attractor switch—can occur for individuals who have two ormore
attractors for one behavior, and one of these attractors is relatively
weak, whichmeans that relevant external perturbations can easily
cause the other attractor to become dominant. An ideal example
is the behavior of restrained eaters to which I keep returning
in this paper. Restrained eaters have two fixed-point attractors
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for food consumption (Figure 1)—one of them corresponds to
restrained eating (Attractor 1), and one to enhanced eating
(Attractor 2). Hence, if these people are not exposed to any food
primes (Fedoroff et al., 1997) or do not feel anxious (Heatherton
et al., 1991), their eating pattern is likely to correspond to
Attractor 1. However, if they are primed with food smell or feel
anxious, the food intake is likely to correspond to Attractor 2
(Heatherton et al., 1991; Fedoroff et al., 1997).

The difference between attractor switch and emergence is that,
whereas under emergence a new behavioral attractor is being
instigated under the influence of priming, attractors involved in
attractor switch are already present in latent form and priming
simply determines which one will become active (Coleman et al.,
2007; Dixon et al., 2010). The example with restrained eaters
corresponds to the simplest type of attractor switch, where only
one attractor is likely to become activated in a given situation,
depending on the priming manipulation previously encountered;
I refer to it as Type A attractor switch (Figure 8). Although
Type A has not been directly investigated in relation to priming
by employing state of the art attractor computation techniques
(Butner et al., 2015), research suggests that it may be a common
behavioral priming effect (e.g., Fedoroff et al., 1997; Cesario et al.,
2006).

There are other more complex types of attractor switch, to
which I jointly refer as Type B. In a nutshell, this type of influence
would occur if a priming manipulation not only changed the
attractor itself, but instead changed the number of attractors, thus
completely altering the system’s dynamics. For example, if some
Prime 1 led people to exhibit restrained eating, but another Prime
2 led them to exhibit both enhanced and restrained eating in
the same situation, that would correspond to Type B attractor
switch (Figure 8). In other words, Prime 2 would change the type
of differential equation that best describes the behavioral change
over time from Equations (1) to (3). In theory, Type B attractor
switch can refer to a change of any simpler differential equation
into any more complex differential equation, or the other way
around. More precisely, it can refer to a system with n attractors
transforming into one with n+1 (or n−1) attractors.

In the next section, I describe how to design research that
would demonstrate attractor switch, with primary focus on Type
A. The reason for this is two-fold. First, Type B attractor switch
can be investigated using a variety of statistical models, and going
into depth in this regard would require a separate article. Second,
even if this type is methodologically possible, research so far does
not indicate to what extent its occurrence in relation to behavioral
priming may be plausible. Hence, Type A attractor switch may be
more relevant given the current state of knowledge.

Investigating Attractor Switch
The first step in probing Type A attractor switch is identifying
individuals who may have two attractors in relation to a behavior
being investigated. One possibility is to first consider different
personality characteristics that may suggest multiple attractors.
Beyond restrained eating that I already discussed, one example
is self-concept clarity, which concerns the extent to which
people think they know themselves and their self-concepts are
stable (Campbell et al., 1996). People with low self-concept

clarity usually have unstable perceptions (=multiple attractor
states) of their own ability to succeed in different situations
and their behavior may therefore be susceptible to primes
encountered in these situations (Campbell, 1990). Another
option to identify people characterized bymultiple attractors is to
consider dissociation between implicit and explicit measures of
certain cognitive constructs. Indeed, people’s attitudes and self-
views may have two components—implicit and explicit—that
can be either congruent or discrepant (Hofmann et al., 2005).
For example, a person may have negative explicit but positive
implicit attitudes regarding candies (Hofmann et al., 2007, 2008),
or high explicit but low implicit self-esteem (Asendorpf et al.,
2002). Research suggests that explicit attitudes or self-views rely
on self-control, and given that self-control is fragile, they can
be disrupted by relevant external forces that will cause implicit
attitudes and self-views to take over (Strack and Deutsch, 2004;
Vohs, 2006; Hofmann et al., 2009). Hence, priming may impair
the dominance of explicit forces in shaping behavior, thus causing
the behavioral attractor to switch.

Finally, one possibility is that individuals with multiple
attractors can be determined if we assess their cognitive entropy
(via motion tracking) while they are answering a personality
questionnaire or some other behaviorally relevant measure.
Indeed, given that higher cognitive entropy indicates uncertainty
(Hirsh et al., 2012), it may uncover individuals who are less
certain of how they view themselves regarding the construct
being assessed and therefore have multiple attractors. Overall,
to capture Type A attractor switch, individuals with multiple
attractors need to be clearly specified. Otherwise, any priming
manipulations are likely to result only in readjustment, as
discussed in Section Readjustment.

Determining an effective priming procedure is also important,
given that it needs to be directed at the weaker rather than
the stronger behavioral attractor, or else the switch is unlikely
to occur (Vallacher et al., 2015). For example, we know that,
for restrained eaters, restrained eating is a weaker attractor
that may be disrupted by relevant perturbations, and once
the stronger attractor (enhanced eating) has been activated,
it may be difficult to switch it back to restrained eating
(Heatherton et al., 1991). In general, it is plausible that attractors
determined by explicit attitudes or self-concepts are always
weaker, given that self-regulatory forces on which they rely
are fragile, and external perturbations can therefore influence
attractors consistent with implicit attitudes or self-concepts to
occur (Hofmann et al., 2009). Hence, designing an appropriate
experiment would require one control primingmanipulation that
is either neutral or evokes a cognitive construct that encourages
behavior consistent with the weaker attractor and will not cause
any change (e.g., Prime 1 in Figure 8-Type A Attractor Switch
which is consistent with restrained eating), and onemanipulation
that is inconsistent with the weaker attractor and can thus disrupt
it to enforce the other attractor (e.g., Prime 2 in Figure 8-Type A
Attractor Switch which fosters enhanced eating). Therefore, the
experimental design would involve a between-subjects variable—
priming manipulation (Prime 1 vs. 2).

Behavior itself should ideally be measured as a time series, and
the hypothesis is that Prime 1 will on average lead to a different
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FIGURE 8 | Examples of Type A and Type B attractor switch based on topologies of hypothetical food consumption data. When an attractor switch corresponds to

Type A, some two priming manipulations should give rise to different attractors. In the example above, the fixed-point attractor present in the topology under Prime 1

is 1.316, whereas it corresponds to 5.316 under Prime 2. In contrast, when an attractor switch corresponds to Type B, some two priming manipulations should

change the number of attractors. For example, under Prime 1, there is one fixed point attractor corresponding to 5.316. In contrast, under Prime 2, there are three

fixed points: two attractors (1.597 and 8.733), and one repeller (6.618).

attractor compared to Prime 2 (Figure 8 depicts two hypothetical
topologies that are in line with this prediction). Although time-
series compatible behaviors are desirable, I suggest that the
incompatible behaviors may also be sensitive enough to capture
Type A attractor switch. For example, if the dependent variable is
a one-off choice, we can treat it as a dichotomous outcome and
analyze the impact of priming using logistic regression. Showing
that a priming manipulation increased the odds of one behavior
over another would indicate that it created Type A attractor
switch, given that the two choices themselves correspond to two
different behavioral attractors.

Attempting to probe Type B attractor switch could complicate
matters because, based on previous research, it may be difficult
to determine when exactly a priming manipulation would create
this kind of impact. On a methodological level, modeling
may also get difficult depending on the complexity of change
taking place. The simplest way to test Type B attractor
switch would involve comparing the number of attractors

under Prime 1 vs. Prime 2. For example, the researcher
could attempt to fit polynomial regression models of different
order to each participant’s behavioral time series, identify
the one with the best fit, and count the number of fixed
point attractors (Figure 8). This number could be used as a
categorical dependent variable, and the impact of priming on this
variable investigated via ordered logistic regression. A significant
influence would indicate that Type B attractor switch has taken
place.

Another possiblemethod of investigation involves catastrophe
modeling, which is frequently used by the DSP researchers (e.g.,
Zeeman, 1977; Latané and Nowak, 1994; Guastello, 1995; Liu
and Latané, 1998; Guastello et al., 2012) to investigate change
in the number of attractors as a function of a splitting factor (in
our case, priming would be the splitting factor). Resources that
can be consulted for catastrophe modeling include Cobb (1981),
Grasman et al. (2009); Guastello (2011a,b); Van der Maas et al.
(2003), and Zeeman (1976).
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DISCUSSION

In the present article, I argued that the DSP offers conceptual
and methodological tools that can improve the understanding of
when exactly behavioral priming effects are likely to occur and
allow precise measurement of these effects. Three main types
of the impact of priming on human behavior were identified:
Emergence, Readjustment, and Attractor Switch. Emergencemay
be expected to occur in situations that are likely to involve high
cognitive entropy. In these situations, the actor’s cognition is
marked by different possible perceptions or interpretations, and
a clear course of action is therefore missing (Hirsh et al., 2012).
Given the absence of a strong attractor, the actor is likely to be
sensitive to external perturbations such as primes, which may
inform the emergence of a new stable behavioral attractor, thus
lowering cognitive entropy in the process and allowing cognition
to remain functional in meeting situational demands (Stephen
et al., 2009b; Dixon et al., 2010; Vallacher et al., 2010).

However, not all situations are marked by high cognitive
entropy, given that they involve demands and outcomes the actor
is familiar with, and her/his goals, habits, personality traits, and
previous experiences are likely to manifest themselves in well-
established attractors (Vallacher et al., 2002a). I argue that the
underlying attractor structure may then determine the impact
of priming on behavior. If one strong behavioral attractor is
dominant, priming may have a minor impact on behavior and
influence only attractor strength but not its value—a type of
influence to which I refer as readjustment (Butner et al., 2015).
If, on the contrary, the person has two potential attractors, one of
which is relatively weaker, priming may disrupt the occurrence
of the weaker attractor and result in the onset of the stronger
one—a type of influence to which I refer as attractor switch (Type
A). More complex types of attractor switch are also possible
(Type B) and can comprise a change in the number of attractors
manifested in a situation (Zeeman, 1977; Guastello, 2011a,b;
Butner et al., 2015). However, based on previous research
regarding behavioral priming, it is unclear whether and when
exactly such complex influences should occur.

To demonstrate how to investigate the three types of effects,
I introduced some of the relevant tools of dynamical modeling
that have not been implemented by priming researchers so
far and showed how to combine them with more traditional
methods. For example, I demonstrated how Butner et al. ’s
(2015) approach of computing attractors and their strength by
employing differential equations, as well as the computation of
information entropy based on behavioral time series (Shannon,
1948; Stephen et al., 2009b; Guastello, 2011c), can be embedded
into traditional research designs (e.g., between-subjects) to probe
emergence, readjustment, or attractor switch. Overall, the present
article demonstrated that concepts and methodological tools
used by the DSP researchers can enrich the science of behavioral
priming.

Limitations
Although drawing on insights from the DSP allows profound
understanding regarding potential priming influences on
behavior and how they should be investigated in different

circumstances, there are certain limitations to usingmethodology
stemming from the DSPwhen studying behavioral priming. First,
many behaviors in which priming researchers are interested,
such as eating or solving intellectual tasks, can be computed
only as relatively short time series, which may be sufficient for
identifying simple attractor structures, but may prevent more
complex dynamical modeling that could provide insights into
intricate attractor dynamics (Guastello and Gregson, 2011).
Some behaviors are in fact time-series incompatible, which
means that dynamical modeling of attractor strength is difficult
to achieve, and sensitive types of influence such as readjustment
may be hard to capture (Butner et al., 2015).

Furthermore, the type of data that behavioral priming can
yield is in most cases not suitable for being modeled as a
multidimensional dynamical system. For example, if we wanted
to model how a specific behavior (e.g., eating) changes alongside
another relevant variable (e.g., hunger) over time, which would
comprise a two-dimensional system (Butner et al., 2015), we
would need to measure both eating and hunger at identical
temporal intervals (e.g., every minute). This is easier said
than done because asking participants how hungry they feel
every minute is intrusive and could destroy the behavioral
dynamics that would otherwise evolve. Hence, my suggestion is
to use only variables that can be measured without self-reports
(e.g., physiological measures) alongside behavior to model
multidimensional dynamical systems, but suchmeasuresmay not
always provide us with desired psychological information.

Despite these limitations, the DSP has profound implications
for capturing behavioral priming effects and their replications,
which is what I discuss next.

Implications for Priming Effects and
Replications
If a priming researcher does not clearly understand dynamical
principles on which priming is based, successfully capturing a
priming effect of interest may be sheer luck. In this paper, I
suggest that priming should be most likely to impact behavior
only in situations where strong attractors are absent and need to
emerge given high cognitive entropy. Based on this assumption,
a priming researcher may unknowingly construct an unclear
experimental situation, or simply test the type of participants
who perceive the situation as such, and obtain strong priming
effects on behavior (e.g., the mean value of behavior under
one priming manipulation being different than under another
manipulation). However, if a conceptual or direct replication of
this study is undertaken, the situation or type of participants may
slightly change, thus changing the effect type to readjustment or
attractor switch, which may cause the replication to fail because
the researcher did not consider the factors and statistical tools
necessary to capture either of these effects.

In reality, it is quite possible that, in a single priming
experiment, emergence, readjustment, and attractor switch may
occur for different participants. Some participants may find
the experimental situation ambiguous and thus experience
emergence, whereas some participants may find the situation
clear and either experience readjustment or attractor switch,
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depending on the underlying attractor structure. If the
experiment has not been designed to probe such a complex
dynamic, it can easily fail to capture any behavioral priming
effects, or capture them by chance. It is only possible to guess
how many priming experiments have failed because the design
and data analysis have not been approached from an accurate
methodological perspective.

Finally, these insights allow me to discuss the role of
replications in “saving the field” and determining which priming
effects are robust. Given that, from the perspective of dynamical
systems, priming researchers so far have not been designing
their research in a way that would accurately capture priming
effects, attempting to replicate the research does not necessarily
make sense because the replications do not lead to improved
understanding of behavioral priming. In fact, they may lead to
the conclusion that the impact of some priming manipulations

on behavior is not robust, whereas in reality it may be robust if
measured in an appropriate manner. Even successful replications
may not be informative because they may not provide an
insight into why a robust priming effect occurs (e.g., because
the situation evokes high cognitive entropy). Therefore, my
position is that priming effects should first be investigated by
employing dynamical modeling, and only once a more profound
understanding of these effects has been achieved as a result
replications should ensue. Otherwise, replication efforts may be
in vain because of repeating the same old mistakes that hampered
the understanding of behavioral priming in the first place.
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