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Abstract

The optic lobes of the fruit fly Drosophila melanogaster form a highly wired neural network

composed of roughly 130.000 neurons of more than 80 different types. How neuronal diver-

sity arises from very few cell progenitors is a central question in developmental neurobiol-

ogy. We use the optic lobe of the fruit fly as a paradigm to understand how neuroblasts, the

neural stem cells, generate multiple neuron types. Although the development of the fly brain

has been the subject of extensive research, very little is known about the lineage relation-

ships of the cell types forming the adult optic lobes. Here we perform a large-scale lineage

bioinformatics analysis using the graph theory. We generated a large collection of cell

clones that genetically label the progeny of neuroblasts and built a database to draw graphs

showing the lineage relationships between cell types. By establishing biological criteria that

measures the strength of the neuronal relationships and applying community detection tools

we have identified eight clusters of neurons. Each cluster contains different cell types that

we pose are the product of eight distinct classes of neuroblasts. Three of these clusters

match the available lineage data, supporting the predictive value of the analysis. Finally,

we show that the neuronal progeny of a neuroblast do not have preferential innervation pat-

terns, but instead become part of different layers and neuropils. Here we establish a new

methodology that helps understanding the logic of Drosophila brain development and can

be applied to the more complex vertebrate brains.

Introduction

Over a century ago Cajal and Sanchez initiated studies on the neuroanatomy of the insect

brains [1]. Their Golgi impregnations from flies, bees or horseflies provided the first insights

on the neural circuits and neuron types present in their exquisitely organized brains. Later

work by Fischbach and Dittrich in Drosophila using the same technique provided a compre-

hensive catalogue of the multiple cell types populating the optic lobe (OL) [2]. In recent years,

the Drosophila nervous system has been studied with extraordinary precision up to the single
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cell level thanks to the development of modern clonal analysis techniques (reviewed in [3] and

[4]) combined with the availability of thousands of gene/cell specific lines [5], [6] and the use

of high-resolution electron microscopy [7], [8].

Despite its small size the fly brain is capable of accomplishing a variety of complex behav-

iors. The optic lobes in both sides of the central brain account for over 80% of the total neurons

of the brain, whose activity result in motion detection [9, 10], the processing of color vision

[11], [12] or polarized light detection [13]. This versatility is achieved by the precisely assem-

bled neuronal circuits arising from the well-diversified collection of neuron types of the optic

lobes [2, 14].

Each optic lobe has approximately 60,000 neurons of over 80 neuron types. They are dis-

tributed in four retinotopically-organized ganglia that lay beneath the retina: the lamina, the

medulla, the lobula and the lobula plate (see Fig 1A). The photoreceptors (PR) from the retina

receive the light input and innervate the lamina and the medulla, where they synapse with

other neurons. The lamina is composed by ~4,000 neurons of 6 cell types (the monopolar L1

to L5 neurons and a lamina intrinsic Lai amacrine cell). This relatively simple structure con-

trasts with the medulla, composed by ~40,000 neurons of over 70 cell types. Their projections

in the medulla result in 10 synaptic layers (M1 to M10) [2, 15]. The majority of the medulla

cells have their cell bodies in the medulla cortex, between the medulla and the lamina neuro-

pils. Local neurons project only in the medulla and include intrinsic, distal and proximal

medulla neurons (Mi, Dm and Pm respectively). In contrast, projecting neurons arborize into

deeper layers interconnecting the medulla with the lobula (Tm transmedullary neurons) or

with the medulla, the lobula and the lobula plate (TmY neurons). The medulla tangential neu-

rons (Mt), with a descending axon towards the central brain, project widely in parallel to sev-

eral layers of the medulla.

The remaining ~15,000 neurons belong to the lobula complex, with two separate neuropils

orthogonal to the medulla: the lobula and the lobula plate, with 6 and 4 synaptic layers respec-

tively. Four cell types form a crescent that surrounds part of the proximal medulla, with cell

bodies in the medulla rim. These neurons innervate the medulla and lamina centrifugally

(C2 and C3) or bifurcate in a “T” shape with an ascending axon to the medulla and a descend-

ing axon towards the lobula (T2 and T3). T4 and T5 cell bodies sit below these neurons and

interconnect the lobula plate with the proximal medulla (T4 cells) or with the lobula (T5 cells).

Translobula plate neurons (Tlp), with soma in the proximal lobula cortex, interconnect the

lobula and the lobula plate. Additionally, Y cells bifurcate in the inner chiasma to project in

the proximal medulla and the lobula. Another two major classes of neurons reach the central

brain: the lobula columnar neurons, (Lcn) that innervate different layers of the lobula and

the central brain (CB), and the lobula complex columnar neurons (Lccn), which connect the

lobula plate and the lobula with the CB. Finally, two classes of giant tangential neurons inner-

vate the lobula plate and include the horizontal system cells (HS) and vertical system cells (VS).

Recent studies have shown how the neuroblasts (NBs) of the OL proliferate and diversify

during larval stages. The generation of neuronal diversity involves the spatial and temporal

activation of transcription factors during neurogenesis that determine the fate of the lineage

of a NB [16–18]. Exhaustive screenings using combinations of antibodies that label multiple

transcription factors (TFs) helped understanding the temporal sequence of genes expressed in

NBs during larval stages and their early cell lineages. However, very little is known about the

lineage relationships of the multiple adult neuron types that they produce. Besides, it is not

possible to decipher the lineage of the adult OL cells using this approach because in most cases

TF expression in NBs is not maintained in the adult neurons.

The development of the lineage tracing techniques MARCM and Twin Spot MARCM

have greatly contributed to lineage studies of the Drosophila nervous system [19, 20]. These
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techniques allow the labeling of the progeny of a NB by inducing the expression of fluorescent

proteins that label their daughter cells. The expression of fluorophores in the adult neurons

reveals clonally related populations. The analysis of cell type relationships based on clonal anal-

ysis together with the use of tissue-specific drivers helped understanding the development and

Fig 1. Neuron types in the optic lobe. (A) Model showing a sample of neuron types in the optic lobe. The neuropils of

the OL and the layers of each neuropil are shown in grey. La: lamina. Me: medulla. Lo: lobula. Lop: lobula plate. Mer:

medulla rim. (B) Lawf2 neurons homogeneous MARCM clone. Arrowheads indicate projections in the lamina

(yellow) and cell bodies in the medulla cortex (white). Projections reach M1 and M9 of the medulla neuropil (labeled

with DN-cadherin in red). (C) T1 homogeneous MARCM clone. Arrowheads indicate projection in the lamina

(yellow), cell bodies in the medulla cortex (white). (D) Lcn7 neurons homogeneous twin spot MARCM clone. Cell

bodies (white arrowheads) and projections (yellow arrowheads) remain in the lobula. (E) T2-T3 neurons

homogeneous twin spot MARCM clone. Projections are in the medulla (white arrowhead) and lobula (yellow

arrowhead). (Neuropils in D and E stained in blue with DN-cadherin).

https://doi.org/10.1371/journal.pone.0227897.g001
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lineage relationships of mushroom body neurons [21], the olfactory system [22] or regions of

the ventral nerve cord [23]. However the use of tissue-specific drivers may result in the loss of

partial lineages because some neurons may not express it. To overcome this limitation, in an

effort to find the lineage relationships of as many cell types as possible of the OL, we used ubiq-

uitous neuronal drivers. The expression of these markers is maintained along development

and remains in the adult neurons. We generated a database with our collection of clones and

used tools from the graph theory, a mathematical approach capable of processing large and

complex data sets, with the aim of clustering these neuron types into lineage groups. Graphs

represent collections of objects (nodes) that are linked by edges when there is a defined rela-

tion between them. The graph theory has proven a powerful tool for addressing diverse prob-

lems, ranging from genome and protein organization, [24], [25] prediction of protein function

[26] or population genetics [27]. In Neuroscience it has facilitated the understanding of the C.

elegans connectome [28] or the functional organization of the human brain [29]. Here we pro-

pose a novel use of the graph theory to establish a methodology that assesses lineage relation-

ships between neuron types of the OL of Drosophila. We combined the current knowledge on

how neuroblasts divide to generate neuron diversity, with intensive data computing to find

clusters of neuron types sharing a common precursor and to analyze their connectivity.

Results

Generating cell clones to analyze cell lineage in the optic lobes: Clones

selection and classification

To study the lineage of the wide variety of cell types within the OL we performed a large-scale

clonal analysis by using the twin spot MARCM system [20], which allows marking the dau-

ghter neurons of a dividing NB. In the nervous system of Drosophila, a NB generally divides

asymmetrically to self-renew and produce a ganglion mother cell (GMC) that divides once

more into two neurons (S1A Fig). This process is repeated multiple times, so that a NB may

sequentially express different transcription factors leading to different cell types [16]. With

the twin spot MARCM, the release of a molecular repressor by a heat-shock allows the clonally

inherited expression of one of two fluorescent markers (GFP or RFP) in each daughter cell

of a dividing precursor (a GMC or a NB). The number and distribution of the marked cells

varies depending on the stage and type of precursor where the recombination event took place

(S1A Fig). We also included some samples with the MARCM system [19] (less than 5% of the

clones) that follows a very similar approach to the Twin Spot MARCM but labels neurons

only with GFP [19]. To prevent the loss of partial lineages, we used ubiquitous drivers (actin5c,

tubulin and elav) that label the entire progeny of a NB. Because chances of heat shocking a

single or very few NBs per OL are very low, many of our clones had a large number of cells

(>100) with overlapping axons and cell bodies that made neuron type identification impossi-

ble. Consequently from the approximately initial 7500 clones we selected for our analysis 350,

where the morphological identification of neurons was possible. We classified each clone con-

sidering the neuron types marked with GFP and/or RFP as well as the quality, size, symmetry,

homogeneity and ability to recognize the neuron types within the clone (S1 Table).

Most of the clones analyzed contained multiple cell types. Although it might be safe to

assume that neurons within a clone of few cells (20 neurons or less) are related by lineage, the

nature of our analysis does not exclude the possibility of overlapping clones generated by the

final divisions of two or more NBs. Rather than considering all the cell types within a clone

as part of the same progeny, we studied pairs of cell types as independent events, accounting

for the repetition of pairs of neuron types in our clone collection. Although most of the clones

analyzed contained multiple cell types, the simplest exhibited only one cell type (homogeneous
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cell clones), indicating that at least the last rounds of divisions of the NB generated the same

cell type. We recently reported this mode of division for the Lawf1 and Lawf2 neurons [30]

(Fig 1B). We show a similar pattern for the neuron types T1 (Fig 1C) or Lcn4 (Fig 3C). Our

results also indicate that NBs generating T2-T3 neurons may divide symmetrically as it can

be inferred from the two resulting populations, with similar number of RFP and GFP labeled

neurons (Fig 1E). A similar case is shown for the Lcn7 neurons (Fig 1D). Some of our clones

only show one of the GFP or RFP markers, indicating that cell death plays an important role

during the neurogenesis of the OL (S1 B), in agreement with the apoptosis reported at larval

stages [16–18].

Using the graph theory to analyze cell lineage in the OL

To study lineage relationships of the OL neuron types with a higher throughput we used a

network approach. This approach allows us to assess the strength of the relationships between

pairs of neurons in our dataset and cluster those that are closely related and therefore share a

common NB.

Neuronal diversity within a clone arises from two different sources. First, a NB can generate

different neuron types following a temporal sequence, so the number of cell types depends on

the stage where the NB was labeled. Second, one clone can be the product of more than one

NB and, as a result, large clones exhibit wide combinations of cell types. To study the lineage

relationships between these types, we represented the neurons of our clones as a network of

interacting nodes. Although two cell types in a clone are not necessarily related by lineage, if

the same neuron pair appears in multiple clones, the likelihood of the relationship increases.

The graph theory provides the tools to formally describe and analyze a network. It provides

a representation of the objects or nodes forming the network and the interactions between

them. A graph is defined as a pair (V,E) where V is a set of objects and E is a subset of V rep-

resenting the relationships or edges between them. Thus, two nodes i and j from V are adja-

cent if the pair (i,j) belongs to E. We computed the relationships between neuron types of all

our clones (S1 Table) to build a graph where neurons are vertices linked by an edge whenever

they appear together in at least one clone (Fig 2 and S2 Fig). However neurons that appear

together in these graphs do not necessarily share the same precursor. The quantity and qua-

lity of the information varies from clone to clone and depends on multiple parameters. For

instance, whereas homogeneous small cell clones clearly indicate a common NB, large clones

with several cell types labeled by both GFP and RFP may arguably be the product of more than

one NB. In the latter case, the resulting neuron types may or may not be related by lineage. To

assess this, we provide a measure of the quality of the information by setting a scoring system

that weighs the relative contribution of each clone in the evaluation of pairwise relationships.

The neuron types, the total number of neurons within the clone or the colors labeling them

are all parameters that can be used to calculate the strength of this relationship. We scored our

clones (0 to 1) according to these variables so higher values (e.g. >0.75) indicate stronger rela-

tionships between two cell types. We defined this score as the reliability (R) of the relationship

between two neuron types, adding a weigh that assess the lineage connection between vertices.

The first parameter to measure the R is the quality (q) of the GFP signal in the clone and

ranges from 0 to 4 (S2 Table). A clear GFP signal, where all the neuron processes were identi-

fied leads to the highest score (4), whereas clones where processes of some neurons are lost or

intermingled have a low q value (0–1). The q is a useful parameter to discard low quality clones

or for comparative analysis between lower versus higher quality clones. We represent each of

our clones in the form:

q ðAðg; rÞ;Bðg; rÞÞ
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Where A and B are a pair of neuron types, g is the number of cells labeled by GFP and r is the

number of cells labeled by RFP. Fig 3 shows some samples of the clones, ranging from the sim-

plest ones, which are the product of the division of a GMC (Fig 3A and 3B) or the last rounds

of division of a NB (Fig 3C) to complex ones, representing a symmetric division of the NB and

Fig 2. Graph representing the neuron types in the clone collection. Each node of the graph represents one of the 68 neuron types found in our clones. Two nodes are

linked by an edge if the corresponding pair of neurons appears in one clone.

https://doi.org/10.1371/journal.pone.0227897.g002
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the generation of 2 neuron types (Fig 3D) or multiple neuron types that might be the product

of several NBs (Fig 3E).

The second parameter for measuring R is the total number of neurons in a clone. We

defined all the possible combinations of pairs of neuron types within the clones and scored

them following a biological rationale (see clones scoring method in Material and methods).

Subsequently we calculated R for every pair of neuron types within each clone (see an exa-

mple in S2 Fig). We integrated this information in the graphs from Fig 2 to generate weighted

graphs (V,E) where the weigh of the edges is given by R. If i and j are two vertices (i.e. neuron

types) from V, for each clone k where i and j are present simultaneously, we denote rijk as the

R of the relationship between two different neuron types i and j. Each pair of i and j is an

Fig 3. Samples summarizing the types of clones. (A) Sister cell clones of Lawf2 labeled with GFP and RFP projecting in the medulla

neuropil (blue). (B) Sister cell clone of TmY9 neurons labeled by GFP projecting in the medulla and the lobula neuropils. (C)

Homogeneous clone of 10 Lcn4 lobula neurons, with cell bodies (white arrowheads) and projections (yellow arrowheads) in the lobula.

(D) Cell clone showing two different neuron types: the lobula Lccn2 and the medulla Mt8 (white arrowheads point cell bodies in the

medulla rim and projections in the medulla), both labeled by GFP and RFP. (E) Cell clone with 5 different medulla neuron types (Dm3,

Tm8, Y1, Tm3 and Tm18) combining uni-columnar, multi-columnar, local and projecting neurons labeled by GFP and RFP. The

nomenclature for each clone is indicated below. Medulla and lobula neuropils stained in blue with DN-cadherin.

https://doi.org/10.1371/journal.pone.0227897.g003
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independent event. To measure the total reliability rij of two neuron types we use the principle

of inclusion-exclusion, similar to the union of probabilistic independent events (see Methods).

The rij values for all the neuron pairs provide the edges to build new weighted graphs (S4A and

S4B Fig).

We built graphs for R values of 0.5, 0.75 and 0.95 (Fig 4A–4C) as well as 0 and 0.95 (S5A and

S5B Fig). By increasing the R threshold, we increase the strength of the relationship of the nodes

displayed. In this case, while enhancing the strength of the relationship, we also lose cell types

with lower representation in our sample. We aim to find an optimal R with a strong correlation

between pairs while minimizing the loss of neuron types. But most importantly, we aim to

understand lineage relationships between groups of cell types rather than pairs of neurons.

Community detection techniques to find lineage-related neuron types

To approach the broader question of which cell types share a common progenitor, we attempted

a community detection analysis. Biological networks commonly present high concentration

of edges between groups of vertices that in turn, display low connectivity with other vertices.

These groups of nodes are called communities. For instance, in graphs representing the protein

interactome, communities represent clusters of functionally related proteins [26, 31]. For our

purpose, an edge with a high weight (R) between two vertices indicates a strong lineage relat-

ionship. We identified clusters of neurons with high edge concentration that must arguably

correspond to the progeny of the same NB. From the different tools for community detection

assayed we opted for the optimal modularity algorithm (Q) because it allows defining community

partitions within a graph and provide a measure of the goodness of the partition (see Methods).

We built graphs from clones with q values 2–4 and R intervals between 0 and 0.95 to com-

pare the resulting community structures (Fig 5A, and S6 Fig). Our graphs analyses show inter-

community edges that may be interpreted as neurons that belong to two different communi-

ties. We exclude these relationships because the same neuron type cannot be generated by two

different NBs. In fact the density of inter-community edges is low and can be explained by

random repetition of pairs of neurons in clones generated by more than one NB. We also rep-

resent the weighted graphs in adjacency matrices (Fig 5B) that show neuron types sharing an

edge in the graph (an adjacency matrix for all our clones is shown in S7A Fig). These matrices

provide information about the graph structure and can also be arranged in communities (Fig

5C and S7B Fig). As shown for the weighted graphs, we also lose neuron types in the commu-

nity graphs as we increase R. For instance, R�0.5 shows 57 neuron types divided in 4 com-

munities (S6C Fig) whereas the community graph with clones with R equal or greater than

0.75 contains 42 neuron types forming 8 different communities (Fig 5A). As we increase R,

although the content of the communities is almost identical, their number is reduced due to

the loss of neuron types.

To find the best community match we use modularity (Q), a measure that estimates the

goodness of the partition of a network. In fact the modularity indicates whether or not a parti-

tion has community structure. The maximum value (Q = 1) indicates perfect community

structure, and while values equal or lower than 0.3 indicate bad community structure, negative

values indicate that the graph has no community structure [32]. We calculated the modularity

for communities with R-values of 0 to 0.95 (Fig 6A) using all the clones with all qualities and

clones with quality 2–4. In both cases the modularity first improves with higher thresholds,

and maximum modularity is observed for R 0.75, matching the notion that modularity grows

with the number of edges in the graph despite the reduction in the number of vertices and

edges [33]. The modularity is not affected by the quality of the clones because low reliability

clones disappear as we increase the threshold.
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Fig 4. Discrete graphs for two different R values. (A) Graph built using an R value of 0.5. (B) and (C) show

increasing R values (0.75 and 0.9), resulting in strength of the nodes relationships, but also in loss of nodes with lower

representation in our dataset.

https://doi.org/10.1371/journal.pone.0227897.g004
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Fig 5. Community detection techniques find clusters of neurons related by lineage. (A) Community detection graph for R�0.75 and clones with quality of 2–4. This

graph represents the optimal modularity value and identifies 8 communities (C1 to C8) of neuron types with tightly connected nodes, indicating that each group may be

the product of one class of NB. (B) Adjacency matrix from the previous graph indicating the connected nodes. This matrix can be arranged in communities by adding a

color code (C).

https://doi.org/10.1371/journal.pone.0227897.g005
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We analyzed in more detail the community graph with maximum modularity (R�0.75).

High modularity values imply a stronger relationship between the neurons in a cluster. This

supports the idea that the neuron types within a cluster arise from the same NB, so we posit

that the 8 communities of this graph are generated by 8 distinct classes of NBs. Although

communities C6, C7 and C8 are too small and most likely incomplete, communities C1 to

Fig 6. Representation of modularity (Q) as a function of the reliability (R) and the occurrence. (A) The modularity of the

communities grows as R increases, reaching a maximum for R�0.75. We show the modularity for the communities that include clones

of any quality (red) versus clones of higher quality (2–4, blue). (B) Modularity of graphs as a function of the occurrence. The modularity

decays with the increase of the edges due to the drastic reduction of the size sample.

https://doi.org/10.1371/journal.pone.0227897.g006
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C5 range from 5 to 10 neuron types. A close look to the morphologies of cell types within

these communities indicates that unlike the central brain, where NBs commonly produce

similar cell types projecting to only a few different neuropils [34, 35], the NBs of the OL

produce neurons with non-related morphologies projecting to sparse layers of different

neuropils. For instance, the projecting columnar medulla neuron Tm5 and the local non-

columnar lobula neuron Y1 belong to the community C2. Similar instances are found in

communities C1 (neurons Tm3 and Y6, R = 0.960379) or C6 (Tm14 and Mi4, R = 0.855).

However, community C1 shows almost exclusively Tm type neurons, which share similar

shape. In the OL, 800 medulla columns act as functional units matching the 800 ommatidia,

with R7 and R8 photoreceptors innervating the medulla to replicate a retinotopic map in

the brain. Each unit is innervated by 800 uni-columnar (UC) neurons, with projections

restricted to one column, and multi-columnar (MC) neurons, with wider projections that

include several columns and are less numerous [7]. A recent work [18] shows that whereas

UC neurons come from all NBs in the outer proliferative center of the medulla (OPC), the

MC neurons are born from NBs that are in spatially delimited regions. Interestingly, 7 out

of the 9 neuron types in community C1 are MC (all except Tm1 and Tm3). We propose that

a regionalized NB produce these cell types, so the cell fate switches after each round of the

NB division.

The NBs producing community C2 follow a similar strategy, with 4 MC neurons and 1 UC

neuron. In fact all the communities have predominantly MC cell types, except the community

C6, which may correspond to a non-regionalized NB producing Tm14 and Mi4 UC neurons. In

summary, the NBs producing these communities (except for community C6) may belong to spa-

tially restricted areas with distinct gene expression patterns that determine the cell types that they

generate.

It is remarkable that the communities we found match the lineage data available so far in

the OL. Previous lineage studies relating Mt8, Lccn2 and Lcn neurons are coincident with the

types in the community C5; Lawf1 and Lawf2 neurons are part of the community C3 [30];

and T2, T3 and T5 neurons are part of the community C4 [36] (see Fig 5A and Discussion).

All these observations support the idea that the 8 communities we define are the product of 8

distinct classes of NBs.

To compare the effect of the biological criteria (R) versus graphs representing the occur-

rence (number of events where two neuron types are in the same clone), we built graphs using

the occurrence. The vertices of occurrence graphs share an edge when two neurons appear

together, so the weight corresponds to the number of times two neuron types appear in a clone

(S8 Fig). We applied community detection to these graphs and calculated their modularity

(Fig 6B). In these conditions the modularity values are lower, and they decrease as the weight

of the edges increases. This indicates that occurrence alone is a poor tool to establish lineage

relationships between neuron types, at least in a sample limited by size. Here we show that the

information included in R significantly improves the quality of the communities. We conclude

that the use of R is critical to analyze the cell lineage in complex systems where there is an

intrinsic size constraint or whenever only an approximation is sought.

We finally pondered whether neuron types of the same community innervate the same

neuropil or the same layers within a neuropil. We analyzed the neuronal arborizations to dif-

ferent layers of the OL for the neurons of the 8 communities (S9 Fig). Our data shows a hetero-

geneous distribution of the projections, which indicates that NBs of the OL generate neurons

with no neuropil or layer preference. Additionally, we generated bipartite graphs to study the

correlation of layers and neuron types. A bipartite graph has two classes of nodes, for our pur-

pose neuron types and neuropil layers. A neuron type projecting to a layer represents an edge.

The resulting bipartite graph shows that neurons from the same community exhibit a wide
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repertoire of projection patterns that comprise several layers from different neuropils (Fig 7).

This suggests that neurons from the same NB will be part of different neural circuits.

Discussion

The upswing of Systems Biology has popularized and extended the use of graphs to analyze

the structure of complex biological networks, from genomes to ecosystems. For instance,

community detection techniques are useful for clustering highly interconnected nodes or

predicting nodes function [37], [38]. In neural sciences, graphs have been particularly useful

for the identification of hubs that interact with multiple nodes, acting as global communica-

tion centers [39, 40]. Analogous studies in C. elegans showed that “rich-club” neurons are

connector hubs that play an integrative role in the communication between modules [28].

Community detection analysis also evidenced the modular structure of the Drosophila cen-

tral brain [34, 35] as well as the “rich-club” concept [41, 42], seemingly conserved in differ-

ent phyla.

Here we used the graph theory to set a method to analyze the lineage relationships of

the neuron types of the optic lobes. We generated a large collection of clones to build graphs

that represent the connections between the nodes of our collection. To strengthen this inform-

ation we first considered biological relevant data within the clones, establishing a scoring sys-

tem that resulted in the concept of reliability (R). R rates how likely a pair of neurons of a

clone shares a common progenitor. We used the R-value to weigh the edges of our graphs and

showed how it dramatically improves the quality of the community partitions and their predic-

tive value. In our study, the occurrence alone does not produce good partition in communities

due in part to the relatively small size of the sample. We overcome this limitation by using the

inherent biological information provided by the reliability. We applied community detection

tools to the R-weighed graphs to identify clusters of neurons with a tighter connection. Finally,

we examined the modularity of the communities in our graphs to assess the goodness of the

partitions, and analyzed with more detail our optimal modularity graph (R�0,75). This graph

shows 8 clusters of neurons that we posit correspond to the progenies of 8 distinct classes of

neuroblasts in the optic lobes. Our results match previous lineage analysis of the communities

C3, C4 and C5, and complete them with new neuron types. Most significantly, we find 5 new

communities corresponding to 5 novel classes of NBs.

The confidence of our results is supported by the available data of the OL lineages. For

instance, the neuroblasts of the tip of the larval outer proliferation center contribute neurons

that innervate different layers of all three neuropils [17]. These neuron types include Mt8,

Lccn2, and Lcn neurons that are all part of our community C5. Additionally, Lawf1 and Lawf2

appear in the community C3. These two neuron types are generated in the tips of a crescent

with the same developmental origin. Both of them have the same glial siblings and share the

expression of the transcription factors Homothorax and Eyes absent [30]. In this case we are

revealing the lineage of a precursor in early larval stages (L2), before the tips develop, that later

generates both Lawf neurons precursors. Finally, different T neurons (T2, T3 and T5), which

are the central core of the community C4, are part of the same lineage [36]. These results indi-

cate the high confidence of our analysis.

Some of our clones show sparse cell bodies distribution, consistent with the cell migration

of Lawf1 and Lawf2 neurons [30] and neural progenitors [36]. This active cell migration, a

common feature during the development of the mammalian brains [43, 44] accounts for an

extensive reorganization during circuit formation in the Drosophila OL [18] as opposed to

the central brain, where cell bodies generated by the same NB remain in spatially restricted

compartments [34, 35].
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Fig 7. Projections of the neuron types in the different communities. The graph shows the projections of the neuron

types in each community (C1 to C8) to the layers 1, 1–10, 1–6, 1–4 of the lamina, medulla, lobula and lobula plate

neuropils, respectively. The communities show a heterogeneous projection patter, indicating that communities do not

have an apparent neuropil or layer projection preference.

https://doi.org/10.1371/journal.pone.0227897.g007
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One possible weakness of our analysis is the presence of Tm neurons in the C4 comm-

unity that also includes T2, T3 and T5 neuron types. Tm neurons are likely to arise from neu-

roblasts from the outer proliferation center [18], whereas T-C cells are part of neuroblasts

from the inner proliferation center [36]. This discordance may be the result of the relatively

small size of our clone sample, leading to few nodes assigned to a dubious community. Gen-

erating clones is extremely labor consuming due to the intrinsic constraints of using pan-

neuronal drivers. While our community analysis shows 65 cell types for an R of 0.25, the

number of cell types decreases to 42 for the optimal R (�0.75). Despite these limitations,

rather than a developmental analysis, we aim to set a method that can be applied to other

complex systems where the acquisition of data is tedious or technically limited, and it is pos-

sible to define an R. In these cases, the application of our method will help to establish accu-

rate approximations. In addition, our protocol allows for incorporation of new data leading

to a comprehensive catalogue of the lineage relationships of the neuron types of the optic

lobe of Drosophila. Future data from existing or newer lineage tracing techniques [3, 45] will

contribute towards this end.

Understanding the structure of the fly brain circuits may help explaining how it functions.

In the human brain, where structure-function correlation has been widely studied, areas or

nodes with similar patterns of connections tend to share similar functions [29, 46]. Analo-

gously, in the Drosophila central brain lineage related modules form brain structures that are

involved in the same sensory pathway [34, 35]. However, although some graphs show that neu-

rons within a community are part of the same functional circuits (e.g. T5 and T2 neurons), our

bipartite graphs indicate no correlation between the neurons of a community and their func-

tionality. This establishes a difference between optic lobes versus central brain regions in the

Drosophila brain, as well as a link with mammal brain development. Similar to the fly optic

lobes, in the mice brain most of the forebrain interneurons share a common progenitor and

then migrate to sparse brain structures contributing to different circuits [47, 48]. The develop-

mental similarities of vertebrates and invertebrates and the existing lineage tracing techniques

in mice permit the application of this method in their higher nervous systems, where bipartite

graphs will be useful for large-scale analysis of circuit formation. Defining the variables that

result in the R to each particular case will help deducing the cell lineage of the hundreds of

neuron types of these complex nervous systems. The methodology that we develop here will

also allow identifying related clusters of nodes in other systems with restricted sampling and

where an R can be defined.

Material and methods

Descriptive parameters of the clones

We annotated in the S1 Table the following parameters for each clone. Size: indicates the num-

ber of cells present in the clone. We establish a binary system for the next three parameters.

Symmetry: “1” indicates clones with two equal populations of neurons (in size and cell type)

and “0” indicates non-symmetric clones. Homogeneity: “1” indicates that all the cells are of the

same cell type (homogeneous clone) versus “0” (heterogeneous clone), indicating several cell

types in the clone. Quality (q): the expression intensity of GFP or RFP in fine neuronal pro-

cesses varies in different clones. We ranked our clones from “0”, for clones where the stainings

were not uniform and the identification of neurons may lead to confusion due to the similarity

between certain neuron types. “2” indicates that the neurons are clearly identifiable. “3” and

“4” indicate clones of exceptional quality, with a bright fluorescent signal. Unidentified neu-
rons: “1” indicates that some neurons of the clone remained unidentified, whereas “0” indicates

all neurons can be recognized. Clones with unidentified neurons can be easily discarded for

Deciphering neuron lineage using graphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0227897 February 5, 2020 15 / 22

https://doi.org/10.1371/journal.pone.0227897


high threshold analysis, however our analysis in pairs allows us to use them, as this fact does

not affect the results.

Clones scoring method. For all the clones analyzed in our study (S1 Table) we score each

of them as follows.

Clones with one cell type. Homogeneous cell clones, either sister cells (Fig 3A and 3B) or

larger (Figs 1B–1D and 3C) get the highest score (R = 1) because they are arguably the progeny

of a dedicated NB. The R for these clones only depends on the q (S2 Table).

Clones with two different cell types. 1. For clones with two different cell types of the

same color the strength of the relationship decreases with the number of neurons (S3

Table). We assume that larger clones are the product of more than one NB. We rate with

maximum score (0.95) clones of few cells (1–4 cells of each cell type). The score is slightly

reduced as the number of neurons increases, but the strength remains high for up to 20 neu-

rons. We reason that when one GFP or RFP is lost in the clone (S1B Fig), the result is a

clone with neurons labeled with one color that are very likely related regardless of the num-

ber of cells or cell types. However, we penalize this relationship as the number of cells

increase, so clones with more than 20 cells get lower score (0.50). Although in some cases

we might be penalizing cell types potentially related, we increase the robustness of the analy-

sis using a conservative approach. Besides, if these cell types are recurrent in other clones,

their relationship will be restored. 2. For clones with two different cell types and two colors

(S4 Table) the score decreases more significantly because each color-related population

might be the product of a NB. Although this is very unlikely for sister cell clones (which we

score 0.95) (Fig 3A), this likelihood increases with the number of neurons. 3. If one of the

neuron types is single-colored and the other is bicolored we apply S3 Table to the single-col-

ored type, as established previously, and we apply a correction factor proportional to the

number of bicolored neurons (S5 Table). This correction is inversely proportional to the

number of neurons. 4. In a few cases we see clones with two cell types, each of them labeled

by both colors. If there is symmetry (Fig 1D and 1E and S1C Fig) between the cell types (i.e.

(a, a), (b,b), Fig 3D), we give a high score (0.8), as this is a strong indicator of lineage rela-

tionship. If there is no symmetry, we apply a strong correction factor (S6 Table) that penal-

izes proportionally to the total number of neurons. We reason that even for relatively small

cell clones of this kind, the color code indicates that each cell type correspond to an inde-

pendent NB.

Clones with more than two cell types. Clones in the optic lobe, with a population of

around 66,000 neurons of more than 80 cell types, can display an overwhelming number of

combinations. The chances of getting duplicates of samples with more than two cell types are

extremely low, requiring hundreds of thousands of samples for a complete analysis. For this

reason, as most of our clones have more than two cell types (Fig 3E), we propose a study in

pairs. Each pair of neuron types is subjected to the scoring detailed in the previous section

and we add a correction factor proportional to the number of neuron types and the total num-

ber of neurons (S7 Table). We set the maximum score for two neuron types and penalize the

relationship as the number of cell types increase. The penalization is stronger when the total

number of neurons in the clone is larger than 20. We set this benchmark reasoning that the

probability of labeling the last 5 rounds of division of two independent NBs (generating 10

neurons each) is extremely low. In other words, larger clones have more chances of being the

product of more than one NB.

For a flow chart summarizing the calculation of the R for each pair of neuron within a clone

see S10 Fig. We also performed a statistical analysis of the R by pairs of neuron types (S1

Appendix).
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Calculation of the total reliability

For the summation of independent events we follow the inclusion-exclusion principle:

rij ¼
X

;6¼K�f1;2;...;ng

ð� 1Þ
jKj� 1

Y

k2K

rk
ij ð1Þ

For instance, if i and j are present in the clones “1”, “2” and “3”, we use the equation:

rij ¼ r1

ij þ r2

ij þ r3

ij � r1

ijr
2

ij � r1

ijr
3

ij � r2

ijr
3
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ijr
2
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3

ij ð2Þ

Community detection algorithm

To know whether our graphs have a community structure we use the widely tested null-

model [49], where the expected degree sequence equals that of our graph. Based on this

model, we can quantify the quality of the community structure through the modularity

function.

We use the null model to compute the probability of an edge linking two vertices with the

equation:

Q ¼
1

2jEðGÞj

X

ij2VðGÞ

Aij �
didj

2jEðGÞj

� �

dðCi;CjÞ ð3Þ

where i,j go over all the vertices of the graph G = (V,E), di represents the degree of the vertex i
and Ci the community to which i belongs. The summatory only considers edges from the same

community, so we can use the equation:

Q ¼
Xnc

c¼1

lc
jEðGÞj

�
dc

2jEðGÞj

� �2
" #

ð4Þ

Where nc is the total number of communities and Ic and dc are, respectively, the number of

edges and the degrees summatory of the vertices within the community c. Therefore, if the

communities are formed by complete graphs, the modularity is 1, whereas modularity in ran-

dom graphs is 0.

All the graphs of our study were built using the program Mathematica. The calculation of

the communities was done with the library iGraph on the programming languages Python and

C. The algorithm solves large integer optimization problems and finds the optimal modularity

score as well as the corresponding community structure. The calculation time ranged from the

hundredth of seconds for simple graphs, to 50 hours for the most complex ones. We used a

Mac Pro 6.1 equipped with a Quad-Core Intel Xeon E5, OS Mac OSX 10.9.5, 3,7 GHz proces-

ser and 4 nucleus.

Fly strains

For twin spot MARCM, (elav) c155-gal4; FRT40A,UAS-CD8::GFP,UAS-rCD2-miRNA/CyO,

y+, yw; FRT40A,UAS-CD8::GFP,UAS-rCD2-miRNA/CyO,y+ or actin5c-gal4/TM6b males

were crossed with hsFLP; FRT40A,UAS-rCD2RFP,UAS-GFP-miRNA/CyO,y+ females.

MARCM clones were generated by crossing hsFLP, UAS-CD8::GFP; FRT42D, tub-Gal80;
tub-Gal4/TM6B females with y,w; FRT42D/CyO; TM2/TM6B males (stocks were gifts from

T. Lee).
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Brain immunostainings

Twin spot MARCM and MARCM clones were induced between 48 and 72 hours larval stage

(early L2 to early L3), by heat shocking the vials at 37˚C during 8 to 20 minutes. No significant

difference was detected in the clones generated in this interval. The brains were dissected in

1xPBS from 3–7 days old adult flies. After dissection they were placed on glass wells on ice and

fixed in PBS and 4% paraformaldehyde during 1h in the orbital shaker. Fixed brains were incu-

bated in the primary antibody solution (PBS, 01% triton X-100, GFP, RFP and N-Cadherin;

for MARCM clones RFP is replaced by chaoptin antibody) overnight at RT. The solution was

washed with PBST three times and secondary antibody solution (PBS, 01% triton X-100, Alexa

555 anti-rabbit or anti-mouse, Alexa 488 anti-rabbit or sheep, Alexa 647 anti-rat or antimouse)

was added during 5 hours. Brains were washed 3 times in PBST and mounted on the slides

with vectashield (Vector Laboratories, H-1000). Primary antibodies: rabbit anti GFP 1:1000

(molecular probes A11122), sheep anti GFP 1:1000 (AbD Serotec), mouse anti RFP 1:500

(MBL International), rabbit anti-DS-red 1:1000 (Clontech). Chaoptin anti mouse and N-cad-

herin anti rat (both 1:25; Hybridoma bank). Secondary antibodies: Alexa 488 donkey anti-rab-

bit (1:1000), Alexa 488 donkey anti-sheep (1:1000), Alexa 555 donkey anti-mouse (1:500),

Alexa 555 donkey anti-rabbit (1:500), Alexa 647 donkey anti-rat (1:200) and Alexa 647 donkey

anti-mouse (1:200), all secondary antibodies from Molecular Probes.

Microscopy imaging

Images of the clones were acquired using a Leica SP5 confocal laser scanning microscope and

stack projections processed with Leica AF-Lite and Fiji softwares.

Supporting information

S1 Fig. Models of NB division and resulting clones using the twin spot MARCM technique.

(A) The left panel shows in red and green the resulting progeny of a GMC clone. The central

and right panels display the color distribution of the resulting progeny from a NB dividing asym-

metrically. (B) In the events of cell death, clones can display only one color. (C) Model showing

the resulting lineage of a progenitor (neuroblast or neuroepithelial cell) dividing symmetrically.

(PDF)

S2 Fig. Calculation of the R in a sample clone. We show the different pairs of neurons within

the clone in Fig 3E and calculate the R for each of them according to the S2–S7 Tables. t2-t7

indicate the (S2 to S7) Table applied to each pair. The value 0.72, obtained from S2 Table and

the total number of neurons in a clone (S6 Table), multiplies every pair value to obtain the

final R for each pair.

(PDF)

S3 Fig. Circular representation of the occurrence graph of the clones. This graph is a circu-

lar version of the graph in Fig 2.

(PDF)

S4 Fig. Weighed graphs. Random (A) and circular (B) weighed graphs of the entire clone col-

lection using the R instead of the occurrence as a weigh for the edges. The thickness of the

edge between two nodes is proportional to the R.

(PDF)

S5 Fig. Discretized weighed graphs. Weighed graphs for values of R�0 (A) and R�0.95 (B).

(PDF)
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S6 Fig. Community graphs for discretized R values. Graphs built using community detection

algorithm for R values� 0 (A), 0.25 (B), 0.5 (C), 0.9 (D) and 0.95 (E).

(PDF)

S7 Fig. Adjacency matrix for R = 0. (A) Adjacency with all the clones of our collection distrib-

uted randomly or ordered by communities (B).

(PDF)

S8 Fig. Discretized occurrence community graphs. (A) Graph showing community structure

of neuron types that appear together at least one time (occurrence = 1). (A) Graph for occur-

rence = 2. (B). Graph for occurrence = 3 (C). Graph for occurrence = 4 (D).

(PDF)

S9 Fig. Neuronal projections in the optic lobe. Axonal projections of the neuron types from

the 8 communities to the different layers of the optic lobe (layers 1, 1–10, 1–6, 1–4 of the lam-

ina, medulla, lobula and lobula plate neuropils).

(PDF)

S10 Fig. Flow chart for the calculation of the R for each pair of neurons. The flow chart

shows all the possible combinations of pairs of neurons in our clones and the correction coeffi-

cients to be applied from S2–S7 Tables.

(PDF)

S1 Appendix. Statistical analysis of R. Distribution of R for all pairs of cells, number of cell

types in each clone, distribution versus number of clones, mean, standard deviation and quar-

tiles are shown.

(PDF)

S1 Table. Clone collection. This table contains all the clones analyzed in our study. Each file

corresponds to one clone and the color of the number indicates the cells of a specific type in

the clone. To compute large clones we use the value 100, if there are between 60 and 100 cells

of one type and 200 for larger values.

(PDF)

S2 Table. Clones with one cell type.

(PDF)

S3 Table. Clones with two cell types of the same color.

(PDF)

S4 Table. Clones with two cell types of different color.

(PDF)

S5 Table. Clones with two neuron types of different color.

(PDF)

S6 Table. Clones with two neuron types of two colors.

(PDF)

S7 Table. Clones with more than two neuron types.

(PDF)
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Data curation: Alberto del Valle Rodrı́guez, Martı́n Cera, José R. Portillo.
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