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Association between DNA 
methylation variability 
and self‑reported exposure 
to heavy metals
Anna Freydenzon1, Marta F. Nabais1,2, Tian Lin1, Kelly L. Williams3, Leanne Wallace1, 
Anjali K. Henders1, Ian P. Blair3, Naomi R. Wray1,4, Roger Pamphlett5 & Allan F. McRae1*

Individuals encounter varying environmental exposures throughout their lifetimes. Some exposures 
such as smoking are readily observed and have high personal recall; others are more indirect or 
sporadic and might only be inferred from long occupational histories or lifestyles. We evaluated the 
utility of using lifetime‑long self‑reported exposures for identifying differential methylation in an 
amyotrophic lateral sclerosis cases‑control cohort of 855 individuals. Individuals submitted paper‑
based surveys on exposure and occupational histories as well as whole blood samples. Genome‑wide 
DNA methylation levels were quantified using the Illumina Infinium Human Methylation450 array. We 
analyzed 15 environmental exposures using the OSCA software linear and MOA models, where we 
regressed exposures individually by methylation adjusted for batch effects and disease status as well 
as predicted scores for age, sex, cell count, and smoking status. We also regressed on the first principal 
components on clustered environmental exposures to detect DNA methylation changes associated 
with a more generalised definition of environmental exposure. Five DNA methylation probes across 
three environmental exposures (cadmium, mercury and metalwork) were significantly associated 
using the MOA models and seven through the linear models, with one additionally across a principal 
component representing chemical exposures. Methylome‑wide significance for four of these markers 
was driven by extreme hyper/hypo‑methylation in small numbers of individuals. The results indicate 
the potential for using self‑reported exposure histories in detecting DNA methylation changes in 
response to the environment, but also highlight the confounded nature of environmental exposure in 
cohort studies.

DNA methylation (DNAm) is the addition of a methyl group to DNA, most commonly at CpG dineculotide 
sites in mammals. DNAm provides an epigenetic mechanism for the regulation of transcription, playing a vital 
role in cellular differentiation, X chromosome inactivation and maintaining genomic  stability1. Furthermore, 
DNAm is influenced by both innate effects (i.e., ageing and cell type) as well as environmental exposures which 
further interact with each  other2.

If predictable DNAm changes occur as a consequence of environmental exposure then DNAm measures can 
be used to construct a proxy measure for exposure in the absence of direct measurement of the exposure. For 
example, cigarette smoking results in substantial changes in DNAm at hundreds of sites across the  genome3, 
with the changes in a proportion of these sites remaining long after smoking  cessation4. The methylation at these 
CpG sites can be used to predict both current and prior smoking status, with the potential to validate or replace 
inaccurate measures such as self-reporting5. Individuals whose exposure to cigarette smoking is secondary (e.g., 
through living with a spouse who smokes or being raised in a smoking household) can be identified from DNA 
methylation measures, whereas they would otherwise self-report as a non-smoker6. This approach of identifying 
historical exposures from their effects on DNAm has a range of potential uses, particularly in disease epidemiol-
ogy, because relevant exposures may be difficult to quantify or are unknown to the study participant.
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Environmental toxicants are suspected to have a role in the etiology of some neurodegenerative  disorders7,8. 
For example, lead and aluminium exposure accelerates the accumulation of amyloid-peptide deposits related 
to Alzheimer’s  disease8,9 and manganese can trigger  Parkinsonism10. Amyotrophic lateral sclerosis (ALS) is a 
neurodegenerative disease characterized by upper and lower motor neuron dysfunction with little variation 
being explained by known heritable genetic factors, and is the most prevalent form of all motor neurone diseases 
(MND)11. ALS has been reported to be associated with a large range of environmental factors, including heavy 
metals such as  lead7,12, cycad  genotoxins13, and unknown causative agents associated with military  service14. 
However, the replication of these association studies has been  poor15, mostly due to difficulties in quantifying 
individual exposure due to a lack of standardised methodology.

In the current study, methylation-wide association studies (MWAS) were performed on a range of self-
reported environmental exposures as potential ALS risk factors. While the study participants were ALS patients 
and non-ALS controls, the focus was on the exposures using ALS status as a covariate. Several associations 
between DNA methylation and metal exposures were identified, which highlights the confounded nature of 
assessing many exposures.

Materials
Sample collection and participant inclusion. ALS patients (cases) and controls were recruited between 
April 2000 to June 2011 as part of The Australian MND DNA Bank from the University of  Sydney16. Cases were 
white Australians older than 25 years recruited from around Australia via state-based MND association news-
letters, which were classified as having ALS based on verification by a  neurologist17. Controls had no history of 
neuromuscular disease, and were recruited as friends or spouses of case participants, or community volunteers. 
Exclusion criteria were any family history of ALS and slowly progressive disease, defined as survival for greater 
than 10 years after diagnosis. Participants provided a blood sample for DNA analysis.

Participants were asked to complete a 6-page paper questionnaire. This questionnaire included short-form, 
multiple-choice and yes/no questions under the following categories: General, lifetime residences, lifetime travel, 
family illnesses, lifetime employment, exposure to chemicals or toxins, injuries, physical exercise, personal habits, 
past illnesses, and medication. A total of 855 genetically confirmed unrelated individuals (438 ALS cases and 417 
controls) were included in the analysis. The age and sex distributions of the groups are reported in Table S1, with 
mean age and percentage female being 59 years and 54% for controls, 62 years and 38% for cases, respectively.

Collection of DNA and questionnaire information was approved by the Human Research Ethics Committee 
of the Sydney South West Area Health Service. All DNA data generation and analyses were approved by the 
University of Queensland Human Research Ethics Committee. All research was performed in accordance with 
relevant regulations and guidelines, and informed consent was obtained from all participants.

Evaluation of environmental exposures reported in questionnaire. Figure S1 delineates the steps 
of the analysis as a flowchart. A total of 15 binary-response (yes/no) questions relating to environmental expo-
sures were selected from the questionnaire. Unmarked fields were interpreted as an implied ‘no’, since partic-
ipants often responded only in the case of  exposure18. To consolidate highly-related exposures, we used the 
hierarchical clustering algorithm within the R Clustovar  package19. Cluster numbers from 2 to 15 were tested, 
with the cluster stability (Figure S2) and the variance explained by the first principal component of the clusters 
(Figure S3) used to determine the optimal grouping. The principal component analyses of the final clusters are 
reported in Figure S4. All 15 individual binary variables were exported as outcome variables for the methylation 
profiling, as well as the first principal component of each of the four final clusters (Fig. 1). Self-reported current 
smoking status was used as a validation variable due to its established status as an exposure that causes methyla-
tion changes.

Array and DNA methylation processing. Measurement and normalisation of DNAm is described 
 elsewhere20. Briefly, typing for 468, 521 DNAmsites was conducted using the Infinium HumanMethylation450 
BeadChip array, following the standard Infinium HD Methylation protocol. The R Bioconductor package 
 meffil21 was used for initial processing, normalization and quality control following filtering thresholds, as 
detailed  previously20. The mean and minimum bisulfite II conversion efficiencies were 12.47 and 11.51, respec-
tively, falling above the suggested manufacturer threshold of 1 for successful conversion and higher than the 
majority of values reported in a metanalysis of 80  datasets22. Cell-type proportions were estimated based on the 
GSE35069 blood methylome profile through the meffil implementation of the Houseman  algorithm23. Probes 
which were sex-chromosome linked, non-uniquely hybridized, or with internal SNPs adjacent to the 3’ end were 
removed according to previously recommended  criteria24. In addition, probes with low variability (SD < 0.02) 
were removed. After quality control, a total of m = 156, 874 DNAm sites remained.

Probe measures were precorrected with predicted scores for sex,  age25,  smoking26 (omitted for the smoking 
analysis), and for predicted cell types B, CD4-T, CD8-T, NK-T, monocytes and neutrophils to address bias in cell 
type composition in  DNAm23. To account for batch effects, row and column position were added to the models, 
with slide (beadchip) as the sole random effect. The residuals of these linear mixed-effects models, generated 
through the R lme4  package27, were taken forward for the analyses.

Methylome‑wide association analysis. Omics-data-based Complex Trait Analysis (OSCA)  software28 
was used to conduct the methylome-wide association analysis for the exposure variables. The effects of environ-
mental exposures on DNA methylation were tested using several approaches. First, simple linear regressions 
with each exposure or exposure PC considered as the dependent variable regressed on a single probe fitting 
ALS status (a binary value denoting control or case) as a covariate. Secondly, we used OSCA’s mixed model 



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10582  | https://doi.org/10.1038/s41598-022-13892-w

www.nature.com/scientificreports/

approach MLM-based omic association, or MOA using ALS as a covariate, but with a random effect added to the 
linear model representing genome-wide DNAm level of an individual. The variance/covariance structure of the 
random effect is described by the omic-data-based relationship matrix (ORM), in which off-diagonal elements 
capture the genome-wide similarity of DNA methylation values between pairs of individuals. This approach has 
been shown in the original publication to be robust to confounding of probes across the the genome. When pos-
sible, we also ran the highly conservative multi-component MLM-based omic association excluding the target 
(MOMENT) method which used two random effects in the model constructed from two sets of probes grouped 
based on genome-wide significance, omitting those within 50 kb of the tested probe. Applying the MOMENT 
method is only possible or relevant when a set or locally high correlated probe associations is  detected29. We 
stringently accounted for multiple testing across CpGs by using a Bonferroni correction for epigenome-wide 
significance threshold ( 0.05/m = 3.19 ∗ 10−7 for the m DNAm sites tested). No additional multiple testing cor-
rections were made for the 15 exposures due to their extensive correlation structure.

To verify the robustness of the significance tests, 1000 permutations of the MOA model were performed for 
phenotypes with epigenome-wide significant probes, by random reassignment of the phenotype (with or without 
replacement) to the DNAm data. The number of epigenome-wide significant probes for each permutation, as 
well as the p-values of previously detected probes, was extracted from each model.

A differentially methylated region (DMR) analysis was applied to the complete results of all MOA models 
using comb-p to determine whether the epigenome-wide differentially methylated probes belong to a DMR of 
probes methylated in the same direction. This software’s full pipeline aggregates the p-values of adjacent probes 
to calculate an autocorrelation factor, combines p-values through the modified Stouffer-Liptak-Kechris (SLK) 
correction and finally returns region p-values with and without the multiple testing Sidak  correction30. The 
parameters for seed threshold was set to 0.05 and window distance to 750 base pairs as the best performing set-
tings according to a previously published benchmark  study31.

Results
Endorsement counts of environmental exposures included in the analyses are reported in Table 1. Across these 
15 variables, the median response rate was 96% with a minimum of 71%. These variables all had high propor-
tions of nonresponse which were interpreted as ‘no’ responses, given that other parts of the questionnaire had 
been fully completed.

Clustering of environmental exposures. The clustering analysis of the questionaire response items gen-
erated four partitions, with this choice being justified by cluster stability analyses, and the variance explained by 

Figure 1.  Correlation network of tested environmental phenotypes. Edges shown have p < 0.05 after Holm 
correction for multiple testing. Edge weight and repulsion are based on strength of correlation, which are all 
positive. Nodes are colored based on final cluster allocation: Mine (blue), Chem (orange), Farm (green) and 
’blue collar’ Work (purple) exposures. HP: Herbicide/pesticide. Chem/Solv: Other chemicals or solvents. Cu: 
Copper. Cd: Cadmium. Hg: Mercury. Pb: Lead. For variables suffixed with n mo., they qualify living in that 
locale within the last n months.
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the principal components of the partitions (Figures S1-3). The correlation network (Fig. 1) and the clustering 
dendrogram (Fig. 2) illustrate these final four partitions. The cluster with the largest height or homogeneity, 
with 5 constituent exposures, represents questions that can be broadly summarized as metal exposures. These 
relate to either exposure to named metals (cadmium, lead, copper or mercury) or working in occupations that 
involve metallurgy, either handling metallic ores or creating metals. We labelled this partition ‘Metal’. The second 
largest partition represents indicators for living or working in rural/farm areas. In addition to survey questions 
relating to residence outside of urban areas, the exposure to and use of bore water was included in this cluster 
which we refer to as ‘Farm’. The third partition consists of a grouping of herbicide/pesticide (HP) exposures 
(Intermittent domestic, Regular domestic or Industrial use) as well as exposure to other chemicals or solvents. 
The fourth partition was “blue collar” or “manual” work, with the inclusion of diesel exposure, or manual labor 
roles obtained from occupational reporting. We refer to these two groups as Chemical (abbreviated Chem) and 
Work, respectively.

The grouping of manual labor and exposure to diesel fuel in the fourth partition may reflect the use of 
occupation-reporting fields to identify diesel exposure. Diesel exposure was not explicitly indicated on the 
questionnaire, but we interpreted likely diesel exposure as having worked within a set of ANZCO/ISCO occu-
pation codes (Table S2) formerly established as high users of diesel fuel through this cohort by Pamphlett and 

Table 1.  Proportion of cases and controls reporting exposure to each phenotypic variables. Individual 
exposures were tested using Fishers Exact Test. The difference in means of the first principal component 
of each cluster were tested using a two-sided student’s t-test. HP: herbicide/pesticide, OR: odds ratio, PC1: 
principal component 1.

Control (n = 417) ALS (n = 438) 95% CI

n % Mean n % Mean p OR Low High

Metal PC1 − 0.17 0.16 0.002 − 0.55 − 0.12

Cadmium 13 3.1 27 6.2 0.036 2.04 1 4.37

Metallurgy 22 5.3 40 9.1 0.034 1.8 1.02 3.25

Lead 40 9.6 78 17.8  < 0.001 2.04 1.34 3.15

Mercury 21 5 30 6.8 0.312 1.39 0.75 2.59

Copper 45 10.8 67 15.3 0.054 1.49 0.98 2.29

Chemical PC1 − 0.27 0.26  < 0.001 − 0.71 − 0.35

Chemicals/solvents 146 35 238 54.3  < 0.001 2.21 1.66 2.94

Any HP use 224 53.7 290 66.2  < 0.001 1.69 1.27 2.25

Regular HP use 24 5.8 47 10.7 0.009 1.97 1.15 3.43

Industrial HP use 43 10.3 83 18.9  < 0.001 2.03 1.35 3.1

Farm PC1 − 0.2 0.19  < 0.001 -0.57 -0.2

Bore water 57 13.7 80 18.3 0.076 1.41 0.96 2.08

Rural ≥ 24 months 62 14.9 110 25.1  < 0.001 1.92 1.34 2.76

Farm ≥ 12 months 93 22.3 130 29.7 0.016 1.47 1.07 2.03

Non-city ≥ 12 months 202 48.4 260 59.4 0.002 1.55 1.18 2.06

Blue Collar PC1 − 0.21 0.2  < 0.001 − 0.56 − 0.24

Diesel 98 23.5 157 35.8  < 0.001 1.82 1.33 2.48

Manual labor 170 40.8 244 55.7  < 0.001 1.83 1.38 2.42

Smoker 50 12 32 7.3 0.027 0.58 0.35 0.94

Figure 2.  Hierarchical clustering of exposure measures. Exposures were separated into k = 4 clusters 
(coloured) based on cluster stability over 100 bootstrap samples.
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Rikard-Bell32. The classification of former or current work in manual labor was directly indicated for each listed 
occupation on the questionnaire form.

The correlation network (Fig. 1) shows a degree of correlation between all exposures. In the case of the metal 
exposures, the proportion of cases and controls who have reported exposure is relatively small ( ≤ 17.8% , Table 1). 
The first principal component generated from each of the four partitions was then used as a continuous variable 
representative of its correlated constituents, which are otherwise binary. The proportion of variance explained 
by each are 51% for Mine, 46% for Chem, 50% for Farm, and 72% for Work (Figures S2-3).

Methylome‑wide association analyses. We benchmarked our dataset for the ability to detect effects 
on DNAm from environmental exposures by using the exposure variable of self-reported smoking. Within our 
cohort of 855 participants, 50 of 438 ALS cases and 32 of 417 controls report themselves as current smok-
ers (Table 1). Linear and MOA analyses identify m = 212 and m = 74 smoking-associated probes, respectively 
(minimum association p-value of 3.19e − 7). The Pearson correlation of smoking probe effect sizes compared 
to those published  previously33 (for the current versus never-smoker contrast) was 0.64 and 0.68 for the lin-
ear and MOA and models respectively, comparing probes FDR < 0.05 in the reference data ( m = 18, 760 ). The 
MOMENT analysis identified two probes associated with AHRR that have been shown to explain the largest 
proportion of variation in smoking status and lung cancer  risk34, as well as an unannotated intergenic region. 
These AHRR probes (cg05575921 and cg26703534) are hypomethylated in smokers, while the significance of the 
unannotated region appears to be driven by hypomethylated outliers in the nonsmoking group (Figure S5). The 
stringency of MOMENT compared to the linear and MOA methods is visualized within Figures S5-6. The top 
20 probes detected in the MOA analysis are reported in Figure S4. These results demonstrate that our cohort size 
is well-powered to detect these known effects, with a smoking rate of ~ 10%.

In contrast to self-reported smoking status, there were fewer associations detected across the 15 individual 
binary environmental exposure variables. A total of 7 epigenome-wide significant sig- natures were detected 
by linear regression across exposures for cadmium, mercury, and metallurgy (Table 2). Of these associated 
CpG sites, cg10071091 (annotated to KSR2) for metallurgy was the only one that did not pass the significance 
threshold via MOA. Likewise, the Chem PC1 continuous variable was associated with cg09369863 (annotated 
to LINGO1) through the linear method, though not MOA. The peaks of co-located inflated loci as seen in the 
smoking MWAS using MOA (Figure S7b) are not present in any of the environmental MWAS with associated 
CpGs (Figure S8) and as such the gain in stringency from  MOMENT28 is not needed. The Q-Q plots of each of 
these models are reported in Figure S9, with little difference between the linear and MOA methods. We consider 
the small deflation in significance from the linear to the MOA models as indicative that the observed associations 
in the linear models were not solely influenced by the confounding structure within local and distal probes, and 
regard probes detected by both methods as less likely to be false positives.

The direction of differential methylation at these CpG sites was mixed (Fig. 3, Table 2). In response to cad-
mium exposure, cg03085637 (in proximity to GNRHR2 and within PEX11B) and cg16655883 (annotated to 
ZFR2) were hypermethylated, while cg21124714 (P2R76) was hypomethylated. For Metallurgy, cg07503918 
(PRKG1-AS1) was hypermethylated and the cg10071091 site hypomethylated. Mercury exposure replicated a 
similar effect for cg03085637 as cadmium exposure, while cg16845679 (an intergenic CpG site on on chromo-
some 12) was hypomethylated.

Table 2.  Significant probe associations ( p < 3.19e
−7 ) detected across the 15 environmental exposure traits 

studied, as well as the 4 cluster PC1s. 1 MOA and linear not on the same scale. 2 Probe is not methylome-wide 
significant for the MOA model, but is for the linear model.

Variable Probe Genes Chr Position Method β1 SE p

Cadmium

cg03085637
GNRHR2;

1 145,918,458
Linear 1.86 0.29 9.4 ×  10–11

PEX11B MOA 0.05 0.01 7.5 ×  10–11

cg21124714 P2RY6 11 73,272,052
Linear − 1.54 0.3 2.6 ×  10–7

MOA − 0.04 0.01 1.8 ×  10–7

cg16655883 ZFR2 19 3,868,626
Linear 1.18 0.23 2.7 ×  10–7

MOA 0.04 0.01 1.8 ×  10–7

Chem PC1 cg093698632 LINGO1 15 77,820,505
Linear 11.68 2.25 2.1 ×  10–7

MOA 0.24 0.05 3.7 ×  10–7

Mercury

cg03085637
GNRHR2;

1 145,918,458
Linear 1.72 0.33 1.3 ×  10–7

PEX11B MOA 0.04 0.01 1.6 ×  10–7

cg16845679 N/A 12 114,624,854
Linear − 0.85 0.16 2.0 ×  10–7

MOA − 0.04 0.01 2.3 ×  10–7

Metallurgy

cg07503918 PRKG1-AS1 10 52,308,834
Linear 1.39 0.25 1.8 ×  10–8

MOA 0.05 0.01 3.1 ×  10–8

cg100710912 KSR2 12 117,762,563
Linear − 1.57 0.31 3.0 ×  10–7

MOA − 0.05 0.01 4.4 ×  10–7
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Figure 3.  Violin plots of the distribution of normalised DNA methylation values for significant probe-exposure 
associations. Cd: cadmium; Mtl: metallurgy; Hg: mercury; -: no exposure + : exposure.
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The association of the cg03085637 site to both cadmium and mercury exposure highlights the correlation 
between the two exposures and abnormal hypermethylation. For example, of 855 participants, 19 reported 
exposure to cadmium and not mercury, 30 to mercury and not cadmium, and 21 to both. Figure 3 shows the 
DNAm values for these epigenome-wide significant sites. Figure 3a shows cg03085637 DNAm values plotted by 
the cadmium exposure, while Fig. 3e shows the sites separated by the mercury exposure. Notably, the significance 
of this GNRHR2/PEX11B probe is driven by two cadmium and mercury-exposed individuals with extreme 
hypermethylation ( v > Q3 + 100× IQR , where IQR is the interquantile range, Q is the quantile and v is the 
adjusted methylation value), which illustrates the difficulty in differentiating the exposures.

This pattern of few extreme methylation values skewing the distributions in the exposure groups is reflected 
in other MOA-significant DNAm sites. The association between DNAm values of cg21124714 and expo-
sure to cadmium (Fig. 3c) was driven by one individual ( v ≈ Q1 − 15× IQR ). Of the 22 individuals report-
ing having worked with metals, 6 showed extreme methylation in the cg07503918 site, as evident in Fig. 3d 
( v ≤ Q3 + 9× IQR ). Both cadmium and mercury exposures are associated with DNAm levels which are not 
principally driven by a few outliers, cg16655883 and cg16845679, respectively (Fig. 3b,f). Associations at indi-
vidual CpG sites were not supported by differences at nearby methylation loci, although this is common in MWAS 
due to lack of correlation between co-located probes on the  array35.

Figures S9 and S10 show results of the permutation analyses of the MOA models for cadmium, mercury and 
metallurgical exposures. The six epigenome-wide significant loci remain significant under permutation mode as 
visualized in Figure S10. This indicates that the reported associations based on hyper- or hypomethylated outli-
ers are unlikely to be incidentally captured by chance. However, genome-wide permutations given in Figure S11 
show the number of epigenome-wide significant loci in this study was not more than expected by chance. Hence, 
these results should be treated with caution until future studies are able to provide validation data.

Our DMR analysis of the MOA results indicate that none of the previously detected significant probes fall 
within DMRs and exist as singular hyper- or hypomethylated points. However, the DMR analyses were conducted 
on the subset of probes passing the 0.02 SD threshold on the already limited 450 k probe array which covers a 
small fraction of CpG sites across the genome. Figure S12 is a histogram displaying the number of probes in a 
given 750 bp window, with 43.4% of the probes in the analysis having no others within their own window (Fig-
ure S12a). There is little evidence of artificial inflation of the previous results due to spatially correlated probes; 
however, this does not discount that methylation can occur in the flanking region. Of the 15 phenotypes tested 
through comb-p, 13 reported DMRs of more than 1 probe with significant Sidak-corrected regional p-values, 
with the highest number ( n = 16 ) of DMRs associated with bore water exposure. All DMRs comprised probes 
with the same direction of effect. These significant DMRs are reported for each tested phenotype in the sup-
plementary file Table S4.

Discussion
We performed MWAS with a range of environmental exposures potentially associated with ALS, identifying 
several associations between DNAm and exposure to heavy metals in analyses that fitted ALS case/control status 
as a covariate. DNAm near the PEX11B gene was found to be associated with cadmium exposure. PEX11B is 
expressed widely across tissue types, and its aggregation on the perixosomal membrane initiates the elongation 
and then constriction required in the replication pathway of  peroxisomes36. This gene family has been measured 
to respond to cadmium exposure in Arabidopsis in targeted time-course analyses, with increased expression of 
PEX11 isoforms (PEX11A and PEX11E)37.

We replicated previously published observations of methylation changes in response to smoking status. Unlike 
smoking, the effects of the other exposures on DNAm were more limited, possibly attributable to reporting and 
recall. Exposures were variably reported, with cadmium exposure as the least frequent (5%). Exposures were self-
reported or derived in the case of diesel, with severity, duration and temporal period unreported for all exposures 
excepting smoking. We acknowledge that exposures should be regarded as continuous and not binary as encoded 
in the MWAS analysis, specifically those which are able to be physiologically measured through established 
biomarkers. For example, the long half-life of 13.6 years of Cadmium in  urine38 would enable it to be a tested 
as a continuous outcome variable in MWAS if measured in this cohort. Including biological verification of self-
reported exposures would be an advantage for future study designs of the epigenetic effects for environmental 
factors. Additionally, while extreme variations in methylation values (epivariations) are principally associated 
with epigenetic remodelling, others are a secondary consequence of cis-linked DNA mutations that can be veri-
fied through targeted sequencing 39.

There are several possibilities for the differences in epigenome-wide significant sites of methylation as a result 
of environmental exposures. In particular, cigarette smoke is a ubiquitous and highly frequent exposure with 
evidence of bioaccumulation in most of the  population40 and highly associated tobacco-related biomarkers in 
active  smokers41. Biomarkers for other exposures may have short half-lives in the span of weeks or be rapidly 
metabolized, as well as having low chemical concentrations, vulnerability to handling  contamination42, and vari-
ability in measurements within and between  laboratories43. Measurable toxicants emitted per cigarette dose are 
comparatively large, with tar levels between 7.4− 19.4  mg44. In comparison, ambient air cadmium concentrations 
measured at a cadmium pigment factory ranged from 0.02− 1.22 mg/m3 in the first year, to 0.01− 0.52 mg/m3 
in the second, depending on the tasks  performed45. Finally, the measurement method (self-reported exposure as 
a binary trait) limits the detection of the effect. Our permutation analyses highlighted that while the individual 
significant probes have robust significance, we did not observe more significant probes epigenome-wide than 
expected by chance. These limitations indicate the need for substantially larger sample sizes to robustly detect 
associations with such exposures.
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Correlation between exposures reported by participants introduces additional difficulties in interpreting the 
relationship between DNAm and exposures. This is illustrated by the association with PEX11B and cadmium, 
where the two individuals who drove the significance of this effect both shared self-reported cadmium and mer-
cury exposures. Whether this effect is related to either of the two reported metal-based variables, or to another 
unknown shared exposure or cause remains indecipherable with the available data and the limitation of it being 
observed in only two individuals. Replication in other data sets is needed to verify these results. The first principal 
component of all metal-related exposures, which accounted for 51% of their variance, was used as a proxy for 
this invisible “lifestyle type”. However, no associations were identified with metal-PC1 at the methylome-wide 
significance threshold.

In summary, we attempted to predict a set of self-reported environmental exposures through an MWAS 
consisting of 855 ALS cases and controls. We illustrate the utility of capturing historical exposures as a way of 
elucidating the epigenome, with the qualifier that larger study cohorts will be required to differentiate these 
effects. While smoking may be detected in a small cohort owing to its effect size, other exposures will require 
more individuals to distinguish small effects or to correctly differentiate outliers in methylation. We present the 
summary statistics of associations to allow future replication and meta-analyses.

Data availability
The DNA methylation array data are available in the NCBI dbGaP repository with accession number phs002068.
v1.p1.
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