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INTRODUCTION

Graphene nanoplatelet (GNP) is a well-known 2D carbon nanomaterial composed of network
structure of sp2-hybridized carbon atoms. So far, two main strategies (exfoliation and chemical
oxidation-reduction) have been used for the preparation of GNP from graphite. Unfortunately, a lot
of defects are caused by the strong oxidizing reagents on the GNP produced by chemical oxidation-
reduction method, and such GNP lost the remarkable electrical and mechanical properties
(Coleman, 2013). Exfoliationmethod could be adopted to product high-quality GNP from graphite,
but the yield of GNP is quite low (∼1 wt.%) (Hernandez et al., 2008). Hence, the requisite large scale
production of high-quality GNP remains a challenging task.

Even so, GNP is expected as a promising material for gas sensing due to its unrivaled
physiochemical and electronic properties such as excellent flexibility, large specific surface area
and high conductivity. Nevertheless, owing to the poor gas-sensing selectivity, GNP exhibited
responses to several kinds of gas (Yoon et al., 2012; Nemade and Waghuley, 2013). But when
GNP was incorporated with other sensor materials, like metal oxide semiconductors (MOSs), it
could remarkably improve the sensing performance of the sensor materials (Eom et al., 2017; Thu
et al., 2018). The MOSs phase facilitates the adsorption/desorption process of tested gas, thereby
activating the reactions occurring on the carbon surface, which in turn increases the response speed
and response/recovery time. In addition, n-p junctions can be formed by GNP with n-type metal
oxides, and the resulting novel nanostructures perform much better gas sensing performance than
single materials (Neri et al., 2013).

As an n-type metal oxide semiconductor, tin dioxide (SnO2) has a wide band gap of Eg =

3.6 eV and excellent optical and electrical properties. SnO2 have been one of the most extensive
studied materials due to its wide applications including in transparent conductive electrodes and
transistors (Liu et al., 2018; Satoh et al., 2018), lithium-ion batteries (Zhao et al., 2016; Shi et al.,
2017), dye-sensitized solar cells (Hagfeldt et al., 2010), photocatalysis (Aslam et al., 2018; Praus
et al., 2018) and gas sensors (Narjinary et al., 2017; Long et al., 2018; Xu et al., 2018). For gas sensing
application, SnO2 and SnO2 based composites also show admirable gas sensing properties like low-
cost, low detection limit, fast response and recovery, high response and good stability (Yan et al.,
2015; Cao et al., 2017; Kim et al., 2017).

Herein, we put forward a simple and potentially scalable method to obtaining massive
high-quality GNP from exfoliation of flake graphite in K2FeO4/H2SO4, and use the
solid-state method to synthesize SnO2 decorated graphene nanoplatelet nanocomposites
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(SnO2/GNP) with different mass ratio of SnO2 and GNP.
The as-prepared SnO2/GNP nanocomposites possess the two-
dimensional (2D) structure, and the 2D GNP accelerating
the preferential growth and preventing the agglomeration of
the SnO2 nanoparticles. The gas sensing tests indicated that
the sensors based on GNP/SnO2 nanocomposites possess high
sensitivity and excellent characteristic of response and recovery
toward ethanol vapor. The sensor response was found to be
dependent on the mass ratio of GNP in the composites and it
reaches the maximum response when the mass percentage of
GNP in the composites is 5%.

EXPERIMENTAL

Preparation of the GNP/SnO2

Nanocomposites
All the reagents were of analytical grade (AR) and used as
received without further purification. The preparation of GNP
was listed in the Supplementary Material. A typical synthesis
process of GNP/SnO2 nanocomposites with 5 wt.% GNP content
can be described as follows: 7 g of SnCl4·5H2O, 0.15 g of
GNP and 6ml of PEG-400 were mixed adequately and ground
together in an agate mortar. Subsequently, 3.2 g of NaOH was
slowly added to the mixtures and ground together for about
30min. The reaction started readily during the addition process
of NaOH, accompanied by release of heat. As the reaction
proceeded, the mixture became mushy. Then samples were
collected, washed several times with distilled water and absolute

FIGURE 1 | (A) XRD patterns of pristine graphite and GNP. (B) XRD patterns of SnO2 and the SnO2/GNP nanocomposites with different GNP contents. (C,D) TEM

and HRTEM images of the SnO2/GNP-5 nanocomposite. (E) TG-DSC profiles of the SnO2/GNP-5 nanocomposites. (F) The pore size distribution curves of the SnO2

and SnO2/GNP-5 nanocomposite.

ethanol, and dried at 60◦C overnight in a drying oven. Finally,
the product was ground to powder, marked as GNP/SnO2-5. 2.5
and 7.5 wt.% GNP of GNP/SnO2 nanocomposites were prepared
using the aforementioned method, and marked as GNP/SnO2-
2.5 and GNP/SnO2-7.5, respectively. For comparison, the
same method was used to synthesize SnO2 nanoparticles
without GNP.

The characterization, sensor fabrication and measurement
(Figure S1) were listed in the Supplementary Material.

RESULTS AND DISCUSSION

The XRD diffraction pattern of GNP is almost identical to that of
pristine graphite (Figure 1A), revealing that no structural change
occurred during the exfoliating process. The intensity of (002)
peak centered at 26.5◦ of GNP decreases obviously compared
with that of pristine graphite due to the ultrathin thickness of
GNP (Zhang et al., 2016). The XRD diffraction patterns of pure
SnO2 nanoparticles and GNP/SnO2 nanocomposites are shown
in Figure 1B. We can see that four distinct diffraction peaks of
SnO2 centered at 2θ of 26.6◦, 33.9◦, 51.7◦, and 65.9◦, which are
corresponding to the reflection from the (110), (101), (211), and
(301) planes of the tetragonal rutile SnO2 (JCPDS Card No. 41-
1445), respectively. This confirmed that the synthesis method
that SnO2 was successfully prepared by solid-state reaction is
feasible and complete. However, as seen from Figure 1B, there
are no diffraction peak around 26.6◦ of SnO2 observed in the
curves, because the diffraction peaks of 26.5◦ of GNP is so high
that the peak around 26.6◦ of SnO2 is covered.
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Figure S2a shows the representative FESEM image of
pristine graphite. In Figure S2b (FESEM image of GNP), two-
dimensional (2D) structure of the thin layers can be seen clearly.
As shown in Figure S2c, the FESEM image of the pure SnO2

exhibits particles with the size of 100–200 nm. The FESEM and
TEM images of the GNP/SnO2-5 nanocomposite are presented
in Figure S2d and Figure 1C, respectively, and which show that
numerous particles are dispersed on the surface of 2D sheets of
GNP. Meanwhile, as can be seen from Figure 1D, two phases of
GNP and SnO2 are clearly observed and closely in contact to form
an intimate interface. And, the lattice fringes with interplanar
spacings of 0.26 nm and 0.34 nm can be corresponding to the
(101) and (110) planes of SnO2 nanoparticles. It can be concluded
that the GNP/SnO2 composites were synthesized successfully
using the solid-state method.

TG-DSC analysis revealed the weight change situation of
GNP/SnO2-5 nanocomposites from room temperature to 800◦C
with the heating rate of 10◦·min−1. As is shown in Figure 1E,
there are two stages of weight loss in the TG curve according
to the peaks of DSC curve. The first stage in temperature before
300◦C is due to desorption of moisture and solvent. The second
stage of weight loss is due to the combustion of GNP in air.
This result proves that the GNP/SnO2-5 nanocomposite was
not decomposed at the operating temperature of 280◦C in the
procedure of measuring gas-sensing properties.

Figure 1F displays the pore diameter distribution of the SnO2

and GNP/SnO2-5 samples. It can be clearly seen that the pore
diameters of pure SnO2 and GNP/SnO2-5 are relatively small,
which both the majority concentrate on about 2 nm and 4 nm.
The specific surface areas of GNP/SnO2-5 sample is 167.01
m2

·g−1, which is higher than SnO2 (119.67 m2
·g−1). Increasing

specific surface area could be in favor of enhancing gas-sensing
properties.

Figure 2A shows the response values of pure SnO2

nanoparticles-based sensor and GNP/SnO2-based sensors
to 500 ppm of ethanol at different temperatures. From the
curves of GNP/SnO2-2.5, GNP/SnO2-5, and GNP/SnO2-7.5, it
can be clearly observed that the response values increased with
the increase of the temperature. However, the response values

decrease when the temperature is above 280◦C. As a result,
the best operating temperature of GNP/SnO2-based sensors
is 280◦C. Similarly, the best operating temperature of pure
SnO2 sensors is 300◦C. We can get a conclusion that the best
operating temperature is lowered 20◦C because of the joining
of GNP. Compared between the different curves, it reaches the
maximum response when the mass percentage of GNP in the
composites is 5%. The response value of GNP/SnO2-7.5 sample
is lower than that of the GNP/SnO2-5 sample. It is because
that activation center still focuses on the SnO2 nanoparticle,
and the high content of GNP may lead to the decrease of
SnO2 nanoparticle on the unit specific surface area. Some
SnO2-based materials of ethanol sensing from the literature are
summarized in Table S1. It can be observed that the GNP/SnO2

composite exhibits superior performances compared with other
SnO2-based materials.

Figure S3 displays the response values of sensors based
on pure SnO2 and GNP/SnO2-5 to different concentrations
of ethanol at 280◦C. As shown in the curves, the response
values of the two sensors increased with the increasing of
ethanol concentrations in the range of 50–2,000 ppm. We
can find its regularity through a large number of relevant
experiments to establish the relationship between response value
and concentration of ethanol. From comparison of two curves,
a gradual enhancement in response amplitude was observed for
both sensors, and the response amplitudes of GNP/SnO2-5 based
sensor are always higher than that of pure SnO2, demonstrating
its better sensitivity to ethanol.

It is well known that selectivity is another key criterion
for measuring the quality of gas sensors. Figure 2B shows the
selectivity test results of the pure SnO2 and GNP/SnO2-5 sensors
to five different gases of 500 ppm, including methanol, ethanol,
methylbenzene, glycerine and methanal. It can be observed that
the GNP/SnO2-5-based sensor has good selectivity to ethanol
compared to that of pure SnO2 sensor at 280◦C. The higher
response to ethanol may be because ethanol is more likely to lose
electrons in the process of a redox reaction with the absorbed
oxygen, and the hydroxyl group (–OH) is much easier to oxidize
at the optimum operating temperature.

FIGURE 2 | (A) The response values of SnO2, SnO2/GNP-2.5, SnO2/GNP-5, and SnO2/GNP-7.5 sensors toward 500 ppm of ethanol at different working

temperatures. (B) The responses of sensors (SnO2 and SnO2/GNP-5) operated at 280◦C in 500 ppm of different gases. (C) The response-recovery curve of SnO2

and SnO2/GNP-5 toward 500 ppm of ethanol at 280◦C.
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The response–recovery time curve of GNP/SnO2-5-based
sensor to 500 ppm of ethanol is shown in Figure 2C. Response
and recovery time are defined as change in the resistances
from Ra to [Ra−90% × (Ra – Rg)] for gas-in and [Ra +

90% × (Ra – Rg)] to gas-out, respectively (Zhang S.S. et al.,
2018; Zhang Y.J. et al., 2018). It can be clearly observed
that the response increased and decreased quickly when the
GNP/SnO2-5-based sensor was exposed to and separated from
ethanol, respectively. The response time and the recovery time
of GNP/SnO2-5-based sensor are 26 and 64 s, respectively,
which are much shorter than of the pure SnO2-based sensor
that are 81 and 171 s. The relatively rapid response and
recovery time could be due to the unique structure, which
is the SnO2 nanoparticles are decorated on the 2D sheet of
GNP. This indicates that the large specific surface area is
favorable to the adsorption of ethanol, which verifies the above
conjecture. Figure S4 depicts the response values of GNP/SnO2-
5-based sensor to 500 ppm of ethanol for every 3 days in 30
days at 280◦C, which fall slightly but are maintained around
295. Therefore, the conclusion could be obtained that the
GNP/SnO2-5-based gas sensor to ethanol has a satisfactory
stability, which confirms that the sensor might have a practical
application.

CONCLUSION

In conclusion, we reported an easy method to successfully
prepare massive high-quality GNP from exfoliation of flake
graphite, and GNP/SnO2 nanocomposites were successfully
synthesized by a facile solid-state method. The 2D GNP has

no structural change during the exfoliating process from flake
graphite, and the SnO2 nanoparticles were highly distributed

on the surface of GNP. The GNP/SnO2 based sensor showed
excellent gas sensing performance toward ethanol, and the

ameliorative gas-sensing properties may be due to the accrescent
specific surface area and the interaction between 2D GNP and
SnO2 nanoparticles. Due to the procedure is convenient and
environment-friendly, and good gas sensing property of the
SnO2/GNP nanocomposite, it could be a promising candidate for
ethanol detection.
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