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Abstract

Network clustering is a very popular topic in the network science field. Its goal is to divide

(partition) the network into groups (clusters or communities) of “topologically related” nodes,

where the resulting topology-based clusters are expected to “correlate” well with node label

information, i.e., metadata, such as cellular functions of genes/proteins in biological net-

works, or age or gender of people in social networks. Even for static data, the problem of

network clustering is complex. For dynamic data, the problem is even more complex, due to

an additional dimension of the data—their temporal (evolving) nature. Since the problem is

computationally intractable, heuristic approaches need to be sought. Existing approaches

for dynamic network clustering (DNC) have drawbacks. First, they assume that nodes

should be in the same cluster if they are densely interconnected within the network. We

hypothesize that in some applications, it might be of interest to cluster nodes that are topo-

logically similar to each other instead of or in addition to requiring the nodes to be densely

interconnected. Second, they ignore temporal information in their early steps, and when

they do consider this information later on, they do so implicitly. We hypothesize that captur-

ing temporal information earlier in the clustering process and doing so explicitly will improve

results. We test these two hypotheses via our new approach called ClueNet. We evaluate

ClueNet against six existing DNC methods on both social networks capturing evolving inter-

actions between individuals (such as interactions between students in a high school) and

biological networks capturing interactions between biomolecules in the cell at different ages.

We find that ClueNet is superior in over 83% of all evaluation tests. As more real-world

dynamic data are becoming available, DNC and thus ClueNet will only continue to gain

importance.
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Introduction

Networks (or graphs) can be used to model complex real-world systems in a variety of

domains. Examples include technological systems such as the Internet or power grids, infor-

mation systems such as the World Wide Web, social systems such as Facebook or real-life

friendships, ecological systems such as food webs, or biological systems such as the brain or

cell [1, 2]. There exist many computational strategies for network analysis, each answering a

different applied question. One of the popular computational strategies is network clustering

(also known as community detection). In particular, we focus on clustering of a dynamic net-

work as opposed to traditional clustering of a static network.

In general, the goal of network clustering is to divide the network into groups (i.e., clusters

or communities) of “topologically related” nodes. The resulting topology-based clusters are

expected to “correlate” well with node label information, i.e., metadata. Examples of metadata

are cellular functions of genes/proteins in biological networks, or age or gender of people in

social networks.

Even for static data, the problem of network clustering is complex. First, while often “topo-

logically related” means “densely interconnected”, “topologically related” can mean different

things. Other notions of topological relatedness have been used [3–5], partly because dense

interconnectedness does not always “correlate” well with node metadata [6, 7]. That is, the

notion of a cluster is not precisely defined. Second, the problem is computationally intractable

(i.e., NP-hard) [8]. Hence, heuristic approaches for network clustering need to be sought.

Third, these approaches typically have a number of parameters, and it is often difficult to

determine their optimal values. All of these factors contribute to the complexity of the network

clustering problem for static data. For dynamic data, the problem is even more complex, due

to an additional dimension of the data, namely their temporal (evolving) nature. This not only

makes the definition of a dynamic network cluster more complicated, but it also adds to the

computational complexity of the problem, including a likely increase in the number of method

parameters. So, further problem formulations and methodological solutions are needed in the

context of dynamic network clustering (DNC). This is exactly the focus of our study.

Before we can further discuss the topic of DNC, we need to comment on how a temporal

dataset is modeled as a dynamic network. A temporal dataset contains information on when

each temporal interaction (i.e., event) occurs and between which elements. Such a dataset is

typically represented as a series of network snapshots, where each snapshot aggregates the tem-

poral data (i.e., all events) observed during the corresponding time interval (see Fig 1 for an

illustration and Section Definitions for a formal definition).

There exist two general categories of approaches for DNC, each with its own (dis)advan-

tages: snapshot clustering [9] and consensus clustering [10]. On the one hand, snapshot clus-

tering finds a separate partition (i.e., division of a network into clusters) for each network

snapshot. Given the snapshot-level partitions, this type of clustering can be used to track the

evolution of the network by matching individual clusters in adjacent snapshots [11–14]. How-

ever, snapshot clustering partitions each snapshot in isolation from all other snapshots. As

such, it disregards any inter-snapshot relationships in the dynamic network, which capture

valuable temporal information from the underlying data. On the other hand, consensus clus-

tering finds a single partition for the entire network that fits reasonably well all of the snap-

shots. Thus, this type of clustering takes into consideration the evolution of the network as a

whole, even though because of this, consensus clustering loses more detailed, snapshot-specific

information. Yet, because consensus clustering accounts for more temporal information than

snapshot clustering, and because of recent popularity of consensus clustering (e.g., it can be

used to cluster not just dynamic but instead heterogeneous data [15]), we focus on this
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clustering type. Henceforth, we refer to consensus clustering simply as DNC. Prominent exist-

ing approaches of this type are: Louvain [16], Infomap [17], Hierarchical Infomap [18], label

propagation [19], simulated annealing [20], and MultiStep [21]. The existing approaches have

two major drawbacks, which we aim to address in this study, as follows.

First, all of the existing approaches assume that nodes should be in the same cluster if they

are densely interconnected within the network. This common notion of nodes being topologi-

cally related if they are densely interconnected with each other is known as the structural equiv-
alence [1]. In some domains and applications, it might be of interest to group (cluster) nodes

that are topologically similar to each other instead of or in addition to requiring the nodes to

be densely interconnected. This notion of nodes being topologically related if they are topolog-

ically similar is known as the regular equivalence [1]. We hypothesize that clustering based on

nodes’ topological similarity instead of or in addition to their interconnectivity denseness will

result in a higher-quality partition, and we propose an approach for achieving this (see below).

Second, all of the above approaches except MultiStep were originally designed for solving

the static network clustering problem and were later adjusted to the problem of DNC. Possibly

because of their original intention, even when using their adjusted versions on dynamic net-

work data, they still tend to ignore some of the valuable temporal information in the dynamic

data. Specifically, this is because they generate a partition of the given dynamic network as fol-

lows. These methods are run on each snapshot, in order to produce one partition per snapshot.

Then, they aim to combine the snapshot-level partitions into a single network-level consensus

partition by relying on the concept that if two nodes i and j appear in the same cluster in many

of the snapshot-level partitions, then i and j should have a high chance of being in the same

cluster in the consensus partition. Specifically, i and j will have a high similarity score if they

appear in the same cluster in many of the snapshot-level partitions, and a low similarity score

otherwise. The resulting pairwise node similarity scores are stored in what is called a consensus

matrix, which existing methods use to generate the consensus partition (see Section Existing

methods and S3 Section for more details about this process). Clearly, the first and major step

of the existing consensus DNC approaches (prior to constructing the consensus matrix) is sim-

ply snapshot clustering as defined above. Thus, these approaches inherit the key problem of

snapshot clustering—they ignore any inter-snapshot relationships in their first step, and they

only implicitly consider them when they combine the individual snapshot-level partitions into

Fig 1. Illustration of how a raw temporal dataset (left) is modeled as a dynamic network (right). One parameter is the length of

the temporal window during which interactions are aggregated. In our illustration, this parameter value is one week (note that weeks

begin on Monday and end on Sunday). For example, the network snapshot for week 1 (January 1st through January 7th) will

aggregate interactions between nodes A and B, B and C, and C and D. Another parameter is the minimum number of events that

must occur between the same nodes within the given time window in order to link these nodes in the corresponding snapshot of the

dynamic network. This parameter is set to one in this example.

https://doi.org/10.1371/journal.pone.0195993.g001
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the consensus partition. We hypothesize that capturing these relationships explicitly, i.e., ear-

lier in the process, prior to performing any clustering, will result in a higher-quality partition,

and we propose an approach for achieving this (see below).

To test both of the above hypotheses, we need to introduce a novel consensus clustering

approach that can both: 1) cluster nodes that are topologically similar in the evolving network,

and 2) capture inter-snapshot relationships (and thus as much temporal information as possi-

ble) very early in the process of constructing a consensus partition. With these two tasks in

mind, we explore the notion of graphlets [3]. Graphlets (in the static setting) are small con-

nected subgraphs of a network, such as a cycle (e.g., triangle or square), a path, a clique, or any

other small network structure (Fig 2(a)) [3]. Graphlets were used for a number of computa-

tional [22, 23] and applied [24–27] tasks in the static setting. But, they can be adjusted to the

dynamic setting as well, as follows.

Given the notion of static graphlets, for each snapshot of a dynamic network, we are able to

count how many times the given node participates in the given static graphlet. By doing this

for each graphlet, we can form the node’s graphlet degree vector (GDV), which quantifies

the information about the extended neighborhood of the node in the given snapshot of the

dynamic network [3]. To summarize the node’s position in the entire dynamic network, we

can gather its GDVs for all snapshots and concatenate these, which results in what we refer to

as the static-temporal GDV (ST-GDV) of the node in the dynamic network. Given ST-GDV

information for each node in the dynamic network, by comparing the nodes’ ST-GDVs, we

obtain a measure of similarity between the nodes’ evolving network neighborhoods. Then, we

can feed the resulting node similarities into any clustering algorithm to get a single (implicit

consensus) partition for the whole dynamic network. As a proof of concept, we mainly use the

k-medoids algorithm.

This approach that is based on static graphlets helps us address the first issue with the exist-

ing methods: clustering nodes based on topological similarity rather than denseness. However,

even this approach considers each network snapshot in isolation when computing snapshot-

level GDVs. Thus, it also ignores valuable inter-snapshot relationships, just like the existing

denseness-based methods do. To address this, we rely on a recent notion of dynamic graphlets,

which is an extension of static graphlets to the dynamic setting [5]. This extension is done by

assigning temporal information to the edges, which thus become events (see Fig 2(b) for an

illustration, and Section Definitions and S1 Section for a formal definition).

Given the notion of dynamic graphlets, for each node in a dynamic network, we are able to

count how many times the given node participates in each dynamic graphlet, which results in

the node’s dynamic GDV (D-GDV; Fig 3), which now quantifies the information about the

extended neighborhood of the node in the entire dynamic network (rather than in only one

Fig 2. Illustration of (a) static and (b) dynamic graphlets. (a) All nine static graphlets with up to four nodes. (b) All

dynamic graphlets with up to three events. Multiple events along the same edge are separated with commas. We note

that only smaller graphlets are shown for both static and dynamic graphlets for the purpose of illustration, but larger

graphlets are used. The figure originates from [5].

https://doi.org/10.1371/journal.pone.0195993.g002
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of its snapshots). Then, just as with ST-GDVs, we can compute pairwise node similarities by

comparing the nodes’ D-GDVs and feed these into any (e.g., k-medoids) clustering algorithm.

The advantage of dynamic graphlets (D-GDVs) over static ones (ST-GDVs) is that a

dynamic graphlet spans multiple snapshots and thus captures inter-snapshot relationships,

while a static graphlet captures intra-snapshot relationships. Hence, dynamic graphlets can

address both drawbacks of the existing methods, while static graphlets can address only the

first one. Therefore, we expect that using dynamic graphlets will result in higher-quality clus-

ters than using static graphlets. We evaluate in this study whether this expectation holds in

practice.

The entire pipeline for clustering a temporal network using graphlets as described above is

our new DNC approach, which we call ClueNet (C). We have three versions of ClueNet. One

version is based on static graphlets (C-ST), another one is based on dynamic graphlets (C-D),

and the remaining one is based on “constrained” dynamic graphlets (C-C). The latter intui-

tively is a more restrictive and thus faster version of dynamic graphlets [5]. We test constrained

dynamic graphlets because dynamic graphlets can be time-consuming on large networks. So,

we are interested to see whether we can obtain a speed-up over dynamic graphlets without

sacrificing accuracy. Note that as long as at least one of C-ST, C-D, or C-C is superior to the

Fig 3. Illustration of the existence of dynamic graphlets D1, D2, and D9 in a toy dynamic network with three

snapshots. Dashed lines denote instances of the same node in different snapshots. Colored lines denote what it means

for D1 (blue), D2 (green), and D9 (red) to exist in a network. The figure originates from [5].

https://doi.org/10.1371/journal.pone.0195993.g003
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existing methods, this would justify the need for our ClueNet approach. The steps of the

approach and our study are summarized in Fig 4 (using C-D as a representative version of

ClueNet).

We evaluate our three versions of ClueNet against the six existing DNC methods men-

tioned above and described in Section Existing methods, S3 and S4 Sections. We do so on both

social networks capturing evolving interactions between individuals (such as interactions

between students in a high school) and biological networks capturing interactions between

biomolecules in the cell at different ages. All dynamic network data used in this study have

labeled nodes, i.e., metadata (this is exactly why we have chosen these networks—they are

among very few publically available datasets that are both dynamic and have metadata). For

example, for the social data, a node can be labeled as a student or a teacher, while for the bio-

logical data, a node can be labeled as aging-related or non-aging-related. By having the label

for each node, we know the ground truth partition, meaning that nodes with the same label

should be in the same cluster. Thus, we evaluate how well the partition generated by each

method corresponds to the ground truth partition. For this evaluation, we use the following

established partition quality measures: precision, recall, F-score, and adjusted for chance

mutual information [8, 28]. We evaluate the statistical significance of each partition quality

score.

We find that across all partition quality measures and all considered social datasets, when

compared to the existing methods, C-ST is the best method 55.5% of the time, C-D is the best

method 77.7% of the time, and C-C is the best method 89% of the time. Across all partition

quality measures and all considered biological datasets, when compared to the existing meth-

ods, C-ST is the best method 83% of the time, C-D is the best method 75% of the time, and

C-C is the best method 41.6% of the time. Importantly, on both the social and biological data-

sets, no matter which of C-ST, C-D, and C-C is used, ClueNet is overall superior to the existing

approaches. Of the three ClueNet versions, C-D is more accurate than C-ST on the social data-

sets, as expected, but C-ST is surprisingly better than C-D on the biological datasets. In terms

of C-D versus C-C, C-C is faster than C-D on all datasets, as expected. Yet, in terms of accu-

racy, C-C is surprisingly also better than C-D on the social datasets, while C-D is superior on

the biological datasets, as expected.

Our results validate our two hypotheses that considering topological similarity as a notion

of topological relatedness of nodes instead of interconnectivity denseness, as well as that

explicitly capturing inter-snapshot information before performing any clustering rather than

Fig 4. Summary of ClueNet.

https://doi.org/10.1371/journal.pone.0195993.g004
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doing so implicitly after the initial clustering is done, can yield better partitions. Regarding the

former, we show an example where combining topological similarity of ClueNet and intercon-

nectivity denseness of an existing method improves the output of each of the two individual

methods. Exploring whether this observation holds systematically is certainly of future interest,

but it is out of the scope of the current study.

Methods

First, we introduce definitions that will be used throughout the paper. Second, we describe our

new ClueNet approach. Third, we give an overview of the existing methods that we compare

against, and we also describe how dynamic graphlets can be applied on top of some of the

existing methods. Fourth, we describe the temporal data that we evaluate the methods on.

Fifth, we discuss parameter values that we use to construct dynamic networks from the tempo-

ral data. Sixth, we describe partition quality measures that we rely on. Seven, we discuss

parameter values that we use to cluster the dynamic networks.

Definitions

Dynamic network. As illustrated in Fig 1, we need to distinguish between: 1) a raw temporal

network dataset that contains the following information about each event: when the given

event occurs, between which elements (i.e., nodes) it occurs, and how long it lasts; and 2) the

snapshot-based representation of the raw dataset (defined below). Sometimes, we are explicitly

provided with the snapshot-based representation of a raw temporal dataset, in which case each

considered method can be directly run on such data. Other times, we are provided with a raw

temporal dataset, in which case the dataset needs to be converted into the snapshot-based

representation prior to running the given method. This is typically done as follows. The entire

time interval of the raw temporal data is split into time windows of size tw. For each window, a

static network snapshot is generated such that an edge between nodes u and v will exist if and

only if there are at least w events between u and v during the given window (Fig 1). The series

of snapshots generated from this process form the snapshot-based representation of the

dynamic network. More formally, a raw temporal network dataset D(V, E), where V is the set

of nodes and E is the set of events, can be represented as a sequence of m network snapshots

{G0, G1,. . ., Gm}, where each snapshot Gi = (Vi, Ei) is a static graph capturing network structure

during time interval i (as described above), and Vi� V and Ei� E (where Ei is restricted to

nodes in V0).
Static and dynamic graphlets. Static graphlets are small connected non-isomorphic

induced subgraphs of a static network that can be used to capture the extended neighborhood

of a node. In other words, a static graphlet is an equivalence class of isomorphic connected

subgraphs. Dynamic graphlets [5], which are an extension of static graphlets [3] for dynamic

networks, are dynamic subgraphs that can be used to capture how the extended neighborhood

of a node evolves across snapshots of a dynamic network. Intuitively, dynamic graphlets add

relative temporal order of events on top of static graphlets (for a formal definition, see S1

Section).

For the purpose of this study, we analyze all static graphlets with up to four nodes and thus

up to six edges, and we analyze dynamic graphlets with up to four nodes and up to six events,

as this dynamic graphlet size was suggested as “optimal” in the original paper [5].

Static-temporal graphlet degree vector (ST-GDV) of a node. Given all static graphlets

on up to n nodes, in each snapshot, we can count how many times a node touches each of the

static graphlets, and in particular how many times a node touches each of the graphlets at each

of their automorphism orbits (or node symmetry groups) [3]. Our considered static graphlets

ClueNet: Clustering a temporal network based on topological similarity rather than denseness
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on up to four nodes have 15 orbits. So, for each node in a given snapshot of the dynamic net-

work, we count the number of times the given node touches each of the 15 orbits. We do this

for each of the m snapshots. Then, for a given node, we concatenate its m 15-dimensional

counts. The resulting m × 15-dimensional vector is ST-GDV of the node, which captures the

extended neighborhood of the node in the dynamic network in a static-temporal fashion (i.e.,

by counting static graphlets in individual snapshots and then integrating the counts over the

different snapshots).

Dynamic graphlet degree vector (D-GDV) of a node. Given all dynamic graphlets on up

to n nodes and up to j events, we can count how many times a node touches each of the

dynamic graphlets at each of its orbits [5]. Our considered dynamic graphlets on up to four

nodes and up to six events have 3,727 orbits. So, for each node in a dynamic network, we

count the number of times the given node touches each of the 3,727 orbits. The resulting

3,727-dimensional vector is D-GDV of the node, which captures the evolutionary behavior of

the extended neighborhood of the node in the dynamic network.

Constrained dynamic graphlet degree vector (C-GDV) of a node. Counting of dynamic

graphlets in a network can be computationally expensive when there is a large number of

occurrences of a given dynamic graphlet. Since multiple occurrences of a given dynamic

graphlet can often be artifacts of consecutive snapshots sharing the same network structure,

the notion of constrained counting of dynamic graphlets in a network was introduced. This is

a modification of the counting process that does not count “redundant” dynamic graphlets,

i.e., dynamic graphlets that result from consecutive snapshots sharing the same network struc-

ture. That is, this modification, which we denote by C-GDV, still counts the number of times

the given node touches each of the 3,727 orbits, but its counts will be typically smaller than

those of the node’s D-GDV. Subsequently, it takes less time to compute the node’s C-GDV

than it takes to compute its D-GDV. More details about this modified counting procedure can

be found in [5].

Partition. A partition P is the division of nodes in a network into clusters that satisfies the

following three conditions: each cluster is non-empty, no two clusters overlap, and the union

of all clusters is the set of all nodes in the network.

ClueNet

ClueNet produces a single partition of the nodes of a dynamic network. When generating a

partition, ClueNet aims to group together (i.e., cluster) nodes that have similar evolving

(extended) network neighborhoods, as reflected by the similarity of the nodes’ ST-GDVs,

D-GDVs, or C-GDVs. Below, we explain ClueNet on the example of using D-GDVs, but the

process is identical if ST-GDVs or C-GDVs are used instead.

In order to generate a partition, ClueNet must first compute the D-GDV of each node.

However, it might be undesirable for ClueNet to simply use the raw D-GDV counts, due to the

high dimensionality of each D-GDV. The dimensionality of a given D-GDV could be an issue

because there will most likely be many orbits with the value of 0. Thus, comparing D-GDVs of

two nodes that both have many orbits with the value of 0 could artificially make the nodes

appear more similar then they actually are, because the total similarity could be dominated by

the 0-value orbits. In order to reduce the impact of this issue as well as to select the most

important (discriminative) of all non-0 orbits, we apply principal component analysis (PCA)

to the D-GDVs, which reduces the dimensionality of the vectors. For this study, we use as few

PCA components that contain at least 90% of the variance. We note that while ST-GDVs do

not have as high dimensionality as D-GDVs or C-GDVs, we still apply the above process to

ST-GDVs as well, for a fair comparison of the three ClueNet versions.

ClueNet: Clustering a temporal network based on topological similarity rather than denseness
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Given the selected PCA components for each node in the dynamic network, ClueNet com-

putes distances (or equivalently, similarities) between each pair of nodes in the network. Intui-

tively, the more similar the dynamic network neighborhoods (i.e., PCA-reduced D-GDVs) of

two nodes, the lower the distance between the nodes should be. As a proof of concept, we eval-

uate two distance/similarity measures: Euclidean distance and cosine similarity. We use these

measures due to their popularity, and due to their different approaches to measuring distance

between vectors (i.e., linear distance versus difference in orientation). For each dataset, we

report results for the measure that generates the highest partition quality (Section Measuring

partition quality). The pairwise node distances are stored into the D-GDV similarity matrix.

Finally, ClueNet plugs the D-GDV similarity matrix into the k-medoids algorithm (see S2

Section for details). The number of clusters k is a parameter of this algorithm. Later on in the

paper, we describe our procedure of choosing this parameter value. The output of the k-

medoids clustering algorithm is a single partition of the network, which we treat as the output

of ClueNet.

Given that we utilize three different methods of graphlet counting, namely ST-GDVs,

D-GDVs, and C-GDVs, we have three versions of ClueNet, namely C-ST, C-D, and C-C,

respectively.

The code for ClueNet is available at http://www.nd.edu/~cone/cluenet.

Existing methods

Five of the existing DNC methods that we consider were originally proposed in the static net-

work clustering setting and were then extended to the dynamic setting. For the description of

how each method clusters a static network, see S3 Section. All of the (static versions of the)

methods work on a weighted static network, which allows them to be adapted to solve the

DNC problem, as follows. Given a dynamic network with p snapshots, each with the same n
nodes, the given clustering algorithm A (out of the above static methods) is used to generate p
partitions, one partition per snapshot. Then, an n × n consensus matrix D is generated, where

each matrix element Dij indicates the number of partitions (out of the p partitions) in which

nodes i and j are clustered together. Matrix D is essentially a weighted matrix that can be trans-

formed into a weighted static network, in which nodes are the same nodes as in the original

dynamic network, and edges are weighted according to matrix D. That is, a Dij value of 0 in

matrix D indicates that nodes i and j are not connected in the weighted static network, and a

Dij value greater than 0 indicates that nodes i and j are connected in the static network with the

weight Dij. Algorithm A is then applied on the resulting weighted static network p times. If all

resulting p partitions are equal, the algorithm halts and outputs any one of the p partitions as

the consensus partition. Otherwise, matrix D is regenerated using the newly-generated p parti-

tions and the process is repeated until all p partitions are equal. For full details of how the static

clustering methods were transformed to solve the DNC problem, see the original paper [10].

The sixth of the existing DNC methods that we consider was proposed directly in the

dynamic setting (S4 Section).

Integrating dynamic graphlets into existing DNC methods

The existing DNC methods define a cluster as a densely interconnected network region. As

such, they typically cannot cluster together nodes that are far apart in the network, despite

the fact that nodes with the same metadata (i.e., with the same labels), which should thus be

clustered together, can be spread throughout the network, without necessarily being close to

each other [4]. Instead, our ClueNet approach clusters nodes with similar extended network

neighborhoods. Nodes that are densely interconnected with each other may have similar

ClueNet: Clustering a temporal network based on topological similarity rather than denseness

PLOS ONE | https://doi.org/10.1371/journal.pone.0195993 May 8, 2018 9 / 25

http://www.nd.edu/~cone/cluenet
https://doi.org/10.1371/journal.pone.0195993


neighborhoods simply because they are in the same neighborhood. Thus, our approach could

capture the same “signal” as the existing denseness-based approaches. At the same time, it can

capture nodes that have similar neighborhoods but are not close in the network. Yet, our

approach does not guarantee to be able to capture densely interconnected nodes. So, to benefit

from both worlds, i.e., topological similarity and dense interconnectedness, we perform a case

study (for a network whose metadata supports the idea of dense interconnectedness) of

whether combining topological similarity of ClueNet and interconnectivity denseness of an

existing method improves the output of each of the two individual methods. To achieve this,

instead of using the n × n consensus matrix within an existing method (Section Existing meth-

ods and S3 Section), we use ClueNet’s topological (D-GDV) similarity matrix. Then, all steps

of the existing method are performed on the D-GDV similarity matrix.

Data

We evaluate all methods on four dynamic networks: three social networks and one biological

network.

The three temporal raw social datasets that are used to construct the three corresponding

dynamic networks are as follows. The Enron dataset [29] is based on email communications of

182 employees between the years 2000 and 2002, with each employee having one of seven

labels representing roles at the company (for the list of labels and the number of employees

having the given label, see S1 Table). In the corresponding dynamic network, nodes are

employees and events are email communications between the employees. The hospital dataset

[30] corresponds to contacts between 75 patients and healthcare workers over four days at a

hospital in Lyon, France, with each person having one of four labels representing positions at

the hospital (for the list of labels and the number of people having the given label, see S2

Table). In the corresponding dynamic network, nodes are patients and events are contacts

between the patients. The high school dataset [31] corresponds to contacts between 327 stu-

dents in a high school in Marseilles, France over five days, with each student having one of

nine labels representing classes (for the list of labels and the number of students having the

given label, see S3 Table). In the corresponding dynamic network, nodes are students and

events are contacts between the students. The Enron dataset is available for download at

http://cis.jhu.edu/~parky/Enron/enron.html and the remaining two social network datasets

are available for download at http://www.sociopatterns.org/datasets/. Network construction

parameters that we use to transform each of the raw temporal social datasets into the corre-

sponding dynamic network are discussed below.

The biological dataset that we use is already provided in the form of a snapshot-based

dynamic network. The dynamic network captures age-specific protein-protein interaction

(PPI) network snapshots for 37 ages between 20 and 99 [32]. That is, in the network, nodes are

proteins, and events are PPIs between them. There are 6,465 nodes in the network. Each age-

specific snapshot was constructed by taking an induced subgraph of the currently static

human PPI network on proteins that are significantly expressed (i.e., active) at the given age

according to an aging-related gene expression dataset [33]; for details, see the original study

[32]. In each snapshot, we consider a node to be either aging-related or currently not impli-

cated in aging, based on each of the following four ground truth aging-related datasets: two

brain aging-related datasets that were obtained via gene expression analyses (denoted as

BE2004 and BE2008 [32]), a dataset related to Alzheimer’s disease that was obtained via gene

expression analyses (denoted as AD) [34], and a dataset consisting of human genes that have

aging-related orthologs in model species, which was obtained via sequence-based analyses

(denoted as SequenceAge) [35]. BE2004, BE2008, AD, and SequenceAge contain 310, 3,859,
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1,349, and 189 genes, respectively, that are also found within our biological network dataset

[33]. If a gene is in the given ground truth aging-related dataset, then it is considered to be

aging-related. Otherwise, the gene is considered as currently not implicated in aging, which

for simplicity we refer to as non-aging-related (keeping in mind that some of these genes

might be implicated in aging in the future).

Dynamic network construction parameters

While the biological dataset is already given to us as a snapshot-based dynamic network, the

three social datasets are not. For each of these three datasets, recall from Section Definitions

that constructing a snapshot-based dynamic network requires choosing values of two parame-

ters: time window size tw and number of events w. For each of the three datasets, we evaluate

each DNC method on multiple combinations of tw and w parameters. Then, we use the param-

eter combination that yields the highest-quality partition, i.e., that results in the highest geo-

metric mean of precision, recall, and AMI partition quality measures (these measures are

described below). This way, we give the best-case advantage to each method on each dataset.

For the Enron dataset, we explore the established parameter values [5]. Namely, we test all pos-

sible combinations of the following tw and w values:

tw = {1 week, 2 weeks, 1 month, 2 months, 3 months} and w = {1, 2, 4, 8, 16}. For the hospital

dataset, we test all possible combinations of the following tw and w values:

tw = {50, 100, 200, 300, 500} minutes and w = {1, 2, 4, 8, 16, 32}. For the high school dataset, we

test all possible combinations of the following tw and w values:

tw = {25, 50, 100, 200, 300, 500} minutes and w = {1, 2, 4, 8, 16, 32, 64}. Note that the tw and w
values that we evaluate differ between the three datasets. This is because the datasets have

different time scales.

The best parameter values for each DNC method on each dataset, which are used when

reporting the methods’ results, can be found in S4 Table.

Measuring partition quality

Given a partition of a dynamic network obtained by a given DNC method, and given the

ground truth partition obtained with respect to node labels (so that nodes with the same label

are in the same cluster), we evaluate the quality of the given method’s partition by measuring

precision, recall, F-score, and the adjusted for chance mutual information (AMI).

Precision is computed as
# of true positives

# of true positives þ # of false positives, where a true positive is a pair of

nodes that have the same label and are also in the same cluster, and a false positive is a

pair of nodes that have different labels but are in the same cluster. Recall is computed as
# of true positives

# of true positives þ # of false negatives, where a true positive is defined above, and a false negative is a pair

of nodes that have the same label but are in different clusters. F-score is the harmonic mean of

precision of recall. AMI [28] determines how similar a given method’s partition and a ground

truth partition are from an information-theoretic perspective. Given the two partitions, AMI

quantifies how much knowing one partition reduces the uncertainty about knowing the other.

For all measures, the higher the score, the better the partition.

A method must be able to generate a partition of statistically significantly high quality. That

is, a high partition quality score is not necessarily sufficient. For example, by producing a parti-

tion with a single cluster containing all nodes in the network, the given method’s partition

quality score in terms of recall would have the maximum possible value of 1. However, such a

high score is meaningless, since any random partition with the same number of clusters (in
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our illustration, one cluster) and with clusters of the same size (in our illustration, all the

nodes) would also have the maximum possible recall value of 1. So, we evaluate the statistical

significance of each partition quality score, and we do so by relying on as strict null model as

possible, to ensure that it is not the number of clusters or the cluster sizes that yield the given

partition quality score. Specifically, for each partition generated by a DNC method, we gener-

ate a random partition that has the same number of clusters as well as clusters of the same

sizes as the given method’s partition, but node memberships in the clusters are randomized

compared to the given method’s partition. For each considered partition, we perform this ran-

domization process 5,000 times. Then, we compute the p-value of the given partition quality

score observed in the actual method’s partition as the percentage of the 5,000 random runs

that have the same or higher partition quality score. We say that one method is superior to

another method if the former has a lower p-value than the latter. Otherwise, if the compared

methods have the same p-value, we compare the methods’ raw partition quality scores. We use

the p-value of 0.05 (5%) to determine whether the given partition quality score is significant or

not.

Choosing the number of clusters for the k-medoids algorithm with ClueNet

The k-medoids algorithm allows the user to select the desired number of clusters k. We deter-

mine empirically in a systematic way the “optimal” value of k for each network. For the given

network, we look at all possible values of k (between 1 and the number of nodes in the net-

work) for which the k-medoids algorithm takes no longer than one hour to run on a Linux

machine with 64 cores (AMD Opteron™ Processor 6378) and 512 GB of RAM. We limit the

running time intentionally, because otherwise, it is possible that the algorithm may be looping

through the same centroids. For each of the resulting values of k, due to the k-medoids algo-

rithm being heavily reliant on the initial centroids selected, we run the algorithm 10 times, and

we choose the partition that occurs the most frequently among the 10 partitions. Given one

resulting partition for each value of k, we choose the value of k that maximizes the geometric

mean of the corresponding partition’s precision, recall, and AMI scores (we leave out its F-

score, since F-score is somewhat redundant to precision and recall).

Results and discussion

First, we look at three dynamic social networks (Enron, high school, and hospital; Section

Data) and one dynamic biological network (related to aging; Section Data) and their corre-

sponding node metadata-based ground truth partitions (one partition for each of the three

social networks and four partitions for the biological network; Section Data), and we examine

properties of the seven ground truth partitions with respect to topological similarity (as cap-

tured by our D-GDV-based node similarity measure; Section Definitions) versus dense inter-

connectedness (as captured by the existing modularity measure). If the ground truth partitions

reflect high topological similarity, this would motivate the need for our proposed topological

similarity-based ClueNet approach. Also, if the partitions reflect low modularity, this would

question the typical assumption of the existing approaches. Second, we apply ClueNet (each of

its three versions: C-ST, C-D, and C-C; Section ClueNet) and the existing DNC methods (Lou-

vain, Infomap, Hierarchical Infomap, label propagation, simulated annealing, and Multistep;

Section Existing methods and S3 Section) to each of the four networks, and we contrast the dif-

ferent methods with respect to four measures of partition quality (precision, recall, F-score,

and AMI; Section Measuring partition quality) that evaluate how well the methods capture the

ground truth partitions. Third, we mix-and-match the ideas of topological similarity-based

clustering and denseness-based clustering (Section Integrating dynamic graphlets into existing
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DNC methods) to see if this improves compared to each of the two ideas individually. Fourth,

we discuss running times of the methods.

What data tell us about the importance of topological similarity versus

dense interconnectedness

Here, we provide evidence that the real-world data that we study question the dense intercon-

nectedness assumption of the existing DNC methods and also motivate the need for our topo-

logical similarity assumption.

First, the existing DNC methods assume that nodes should be in the same cluster if they are

densely interconnected in many of the snapshots of the given dynamic network. However, if

there is very little edge overlap between the different snapshots, it could be difficult for same

nodes to be densely interconnected in many of the snapshots. Interestingly, low across-snap-

shot edge overlap is exactly what we see in all of our analyzed social networks (Fig 5(a) and S1

Fig), though not in the analyzed biological network (Fig 5(b)).

Second, if the dense interconnectedness assumption of the existing DNC methods is valid,

then the ground truth partitions of the analyzed networks should show high modularity. How-

ever, for two of the three social ground truth partitions (corresponding to the Enron and hos-

pital networks) as well as for all four of the biological ground truth partitions, modularity is

random-like (negative or close to 0) (see only the “GT” squares in Fig 6(a), 6(b) and 6(d)).

Only one of the social ground truth partitions (corresponding to the high school network) has

high modularity (see only the “GT” square in Fig 6(c)). Thus, the majority (6/7 = 86%) of the

analyzed ground truth partitions do not support the existing idea of dense interconnectedness.

On the other hand, all three social ground truth partitions and three out of the four biologi-

cal ground truth partitions show statistically significantly high D-GDV similarity (Fig 6). That

is, 6/7 = 86% of the analyzed ground truth partitions do support our proposed idea of topologi-

cal similarity. Here, by statistically significantly high D-GDV similarity, we mean that node

pairs that are in the same cluster of the given partition have statistically significantly higher

D-GDV similarity than node pairs that are in different clusters of the same partition, i.e., that

according to the Wilcoxon rank sum test, the raw score of the test is positive and the p-value of

the score is below 0.05).

Fig 5. Pairwise edge overlaps between the snapshots of (a) social Enron and (b) biological aging-related dynamic networks. The darker the color, the higher the

edge overlap between the given snapshots. For the Enron data, the following network construction parameter values are used: tw = 2 months and w = 2, but the results

are similar for the other tested parameter values. Equivalent results for the other two social networks (hospital and high school), which are similar to the Enron results,

are shown in S1 Fig.

https://doi.org/10.1371/journal.pone.0195993.g005
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Method comparison in terms of accuracy

In terms of accuracy, for each analyzed network and its corresponding ground truth partition

(s), we compare the three versions ClueNet to the existing methods in the following two ways,

by measuring: 1) how well each method’s partition fits the ground truth partition, in terms of

modularity as well as D-GDV similarity, and 2) which method yields the highest-quality parti-

tion in terms of precision, recall, F-score, and AMI.

For the latter, for each method, each network/ground truth partition(s), and each partition

quality measure, we evaluate whether the given partition quality score is statistically signifi-

cantly high (Section Measuring partition quality). Then, we consider method a to be superior

to method b if the p-value of method a is lower than the corresponding p-value of method b. If

multiple methods have the same p-value, we then compare the methods’ raw partition quality

scores. Finally, across all evaluation tests, i.e., all analyzed networks/ground truth partitions

(three partitions for the three social networks, and four partitions for the biological network)

and all partition quality measures (actually, across precision, recall and AMI, leaving out F-

score that incorporates precision and recall and is thus redundant to them), we compute for

Fig 6. The fit of each method’s partition to the ground truth partition(s). The fit of each method’s partition (the methods are: ClueNet (its

three versions: C-ST, C-D, and C-C), Louvain (L), Infomap (I), Hierarchical Infomap (HI), label propagation (LP), simulated annealing (SA),

and Multistep (M)) to the ground truth (GT) partition(s), for (a) social Enron, (b) social hospital, (c) social high school, and (d) biological

aging-related dynamic networks, with respect to topological (D-GDV) similarity versus interaction denseness (modularity). In the given panel, a

method is good if its partition is in the same quadrant as the ground truth partition and if the two partitions both show high or low D-GDV

similarity and modularity scores. In panel (a), only the three ClueNet versions match both high D-GDV similarity and low (close to 0 but

positive) modularity scores of the ground truth partition. In panel (b), all three versions of ClueNet are closer to the ground truth partition than

the existing methods. Note that in panel (b), the Louvain method is missing, because it did not produce any output for this network. In panel

(c), all methods mimic well both high D-GDV similarity and high (positive) modularity scores, but the three ClueNet versions are the closest to

the ground truth partition, along with simulated annealing and Multistep. Note that all five of these methods produce the exact same partition.

So, their visualizations have been slightly manipulated by moving some of the methods’ results just a bit up/down or left/right, in order to make

all five methods visible. In panel (d), there are four ground truth partitions, depending on which aging-related ground truth data is considered

(BE2004, BE2008, AD, or SequenceAge; Section Data). For three of the four ground truth partitions, only the three versions of ClueNet match

both high (positive) D-GDV similarity and low (close to 0 but positive) modularity scores.

https://doi.org/10.1371/journal.pone.0195993.g006
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each method the percentage of all evaluation tests in which the given method is the best of all

methods (rank 1), the second best of all methods (rank 2), the third best of all methods (rank

3), and so on. We deal with ties in ranks as follows: in the case that multiple methods both

have rank k, the next highest-ranking method(s) will be given rank k + 1.

Social datasets. With respect to the fit of each method’s partition to the corresponding

ground truth partition(s) in terms of modularity and D-GDV similarity, we observe that Clue-

Net’s partitions overall match the ground truth partitions the best (Fig 6(a)–6(c)). While some

of the existing DNC methods’ partitions also match well the ground truth partitions of the hos-

pital and high school networks (but not the ground truth partition of the Enron network),

each of the three ClueNet versions fits these ground truth partitions better than the existing

methods.

With respect to the ranking of the different methods, across all three social network datasets

(i.e., the three networks and their three ground truth partitions) and the three partition quality

measures (precision, recall, and AMI), each version of ClueNet (C-ST, C-D, and C-C) is better

than all existing methods (Fig 7). When compared to the existing methods only, C-ST is the

best of all methods 55.5% of the time, C-D is the best of all methods 77.7% of the time, and C-C

is the best of all methods 89% of the time. Importantly, all three versions of ClueNet always

result in statistically significant partitions. Only two of the existing methods (simulated anneal-

ing and MultiStep) also show this trend.

When comparing the performance of the three versions of ClueNet, C-C is the best, as it is

dominant to the existing methods in more cases than C-D and C-ST (Fig 7 and S2 Fig). Of the

remaining two versions, C-D is superior to C-ST. Note that whenever C-ST has rank 1, it is

not actually superior to C-D and C-ST. Instead, it is tied to them. Hence, (constrained)

dynamic graphlets outperform static graphlets, as expected.

Note that for the high school and hospital datasets, five out of the six ClueNet’s results (cor-

responding to the two datasets times the three ClueNet versions) come from applying dynamic

graphlets on top of one of the existing dense interconnectedness-based DNC methods (namely

simulated annealing, see Section Integrating dynamic graphlets into existing DNC methods

for details). For the remaining ClueNet’s result on these datasets, as well as for all three results

(corresponding to the three ClueNet versions) for the Enron dataset, the default k-medoids

version of ClueNet is used, as described in Section ClueNet and S2 Section. See S4 Table for

more details.

Detailed versions of the above results that show all raw partition quality scores as well as

their p-values, which support the above finding that ClueNet is overall superior, are shown in

Fig 8, S3, S4, S5 and S6 Figs.

Biological datasets. With respect to the fit of each method’s partition to the correspond-

ing ground truth partition(s) in terms of modularity and D-GDV similarity, all versions of

ClueNet again overall match the best three of the four aging-related ground truth partitions

(Fig 6(d)). While Hierarchical Infomap and label propagation also fit one of the four partitions,

the remaining DNC methods show no fit whatsoever to any of the partitions.

With respect to the ranking of the different methods, across all four ground truth datasets

(i.e., four ground truth partitions for the biological network) and the three partition quality

measures (precision, recall, and AMI), again, each version of ClueNet (C-ST, C-D, and C-C) is

better than all existing methods (Fig 7). When compared to the existing methods only, C-ST is

the best of all methods 83% of the time, C-D is the best of all methods 75% of the time, and

C-C is the best of all methods 41.6% of the time. All three versions of ClueNet always result in

most of statistically significant partitions. Interestingly, some of the existing methods

completely fail on the biological datasets, as they never produce a statistically significant

partition.
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When comparing the performance of the three versions of ClueNet, C-ST is surprisingly

superior, followed by C-D and C-C, respectively (Fig 7 and S2 Fig). Hence, for the biological

datasets, static graphlets are superior to (constrained) dynamic graphlets. This is the opposite

from what we have seen for the social datasets. We hypothesize that this might be due to the

properties of the considered social and biological networks: while for each social network, its

snapshots are quite dissimilar, with low edge overlaps, for the biological network, its snap-

shots are very similar (i.e., stable), with high edge overlaps (Fig 5). Thus, it could be that

Fig 7. The ranking of all DNC methods used in this study. The ranking of the methods (ClueNet (its three versions: C-ST, C-D, and C-C), Louvain (L), Infomap (I),

Hierarchical Infomap (HI), label propagation (LP), simulated annealing (SA), and Multistep (M)) over all considered social datasets (i.e., the three ground truth partitions

corresponding to the three social dynamic networks; the first column) and (b) biological datasets (i.e., the four ground truth partitions corresponding to the biological

aging-related dynamic network; the second column) with respect to all of precision, recall, and AMI (F-score is excluded here because it is redundant to precision and

recall). Each row corresponds to one of the three versions of ClueNet that is compared to the existing methods: C-ST (top), C-D (middle), and C-C (bottom). The ranking

is expressed as a percentage of all cases (across all ground truth partitions and all three partition quality measures) in which the given method yields the kth best score

across all methods. We rank the methods based on their p-values (i.e., the smaller the p-value, the better the method); in case of ties, we compare the methods based on

their raw partition quality scores. The ‘N/A’ rank signifies that the given method did not produce a statistically significant partition under the given partition quality

score.

https://doi.org/10.1371/journal.pone.0195993.g007
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dynamic graphlets are not as successful in capturing stability in dynamic networks as static

graphlets are, but they could be extended in the future to account for snapshot stability. This

is just a potential explanation, which would need to be examined systematically in carefully

controlled experiments. This is out of the scope of this study and is the subject of our future

work.

Detailed versions of the above results that show all raw partition quality scores as well as

their p-values, which support the above finding that ClueNet is overall superior, are shown in

are shown in Fig 8, S3, S4, S5 and S6 Figs.

Fig 8. Detailed method comparison. Detailed method comparison results for the social Enron (left) and biological aging-related

(right) dynamic networks, quantifying the fit of each method (ClueNet (C-ST,C-D,C-C), Louvain (L), Infomap (I), Hierarchical

Infomap (HI), label propagation (LP), simulated annealing (SA), and Multistep (M)) to the corresponding ground truth partition in

terms of precision. There is one ground truth partition for the Enron network (results shown in the figure). There are four ground

truth partitions for the aging-related networks, depending on which aging-related ground truth data is considered (BE2004, BE2008,

AD, or SequenceAge; Section Data). Results are shown in this figure for the SequenceAge-based ground truth partition. For each

dataset, for each method, we compare the precision score of the partition produced by the given method (red) to the average

precision score of its random counterparts (blue) and show the resulting p-value (see Section Measuring partition quality for details).

These are representative results for one network/ground truth partition from each of the social and biological domains and one

measure of partition quality. Equivalent results for the other three biological aging-related ground truth partitions, for the other two

social dynamic networks (hospital and high school), and for the other three partition quality measures (recall, F-score, and AMI) are

shown in, S3, S4, S5 and S6 Figs.

https://doi.org/10.1371/journal.pone.0195993.g008
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Combining ideas of topological similarity and dense interconnectedness

Recall from Section Integrating dynamic graphlets into existing DNC methods that we are able

to use the notion of dynamic graphlets, i.e., D-GDV similarity, as input into an existing DNC

method. Thus, we are able to evaluate whether using topological D-GDV similarity on top of

an existing DNC method can improve results of the existing DNC method in question. We

perform this analysis on all existing DNC methods used in this study that allow us to input a

custom (in our case, D-GDV-based similarity) similarity matrix. While for most of the meth-

ods, using D-GDV similarity results in more or less comparable results, there is a significant

improvement for one of the methods, namely simulated annealing, on the high school dataset.

That is, by using the D-GDV similarity matrix as input into simulated annealing, we are not

only able to improve upon both ClueNet and simulated annealing (Table 1), but this combina-

tion of D-GDV similarity and simulated annealing becomes one of the best performing meth-

ods (S3, S4, S5 and S6 Figs). For example, this combination is one of the methods that overlaps

the most with the ground truth high school partition with respect to AMI (S7 Fig). The results

illustrate the potential of combining the notions of topological similarity and dense intercon-

nectedness, especially for networks that do incorporate the dense interconnectedness assump-

tion, such as the high school dataset. Similar results hold for C-ST and C-C instead of C-D (S5

Table) on this dataset.

Note that low accuracy in Table 1 of C-D, i.e., of dynamic graphlets alone, for the high

school dataset could be explained as follows. Recall from Fig 6 that this is the only considered

dataset whose ground truth partition has high modularity (see the “GT” squares in Fig 6).

Dynamic graphlets that C-D is based on capture information about the (extended) network

neighborhood of a node and thus about topological similarity between nodes, independent of

whether the nodes are densely interconnected. Hence, dynamic graphlets do not necessarily

capture well the notion of dense interconnectedness (i.e. modularity). In other words, dynamic

graphlets may have difficulty in generating a high-quality partition with respect to modularity,

in which case they would not match well a ground truth partition that has high modularity,

such as that for the high school dataset.

Method comparison in terms of running time

Here, we compare ClueNet to the other DNC methods in terms of running time. All methods

are run on a Linux machine with 64 cores (AMD Opteron™ Processor 6378) and 512 GB of

RAM. Each method is run on a single core. We account for the entire running time of each

DNC method, which includes the computation of graphlets (if applicable), the computation of

node similarities, and the creation of the partition.

With respect to running times, Multistep is generally the fastest out of all methods, while

ClueNet typically has the highest running time (Fig 9 and S8 Fig). This is because ClueNet’s

running time is dominated by the process of graphlet counting. For example, for C-D, the

Table 1. Results when ClueNet’s dynamic graphlet-based topological similarities are used on top of the existing denseness-based simulated annealing method.

Precision Recall F-Score AMI

Original simulated annealing 96.68% 93.89% 89.83% 0.9372

ClueNet (C-D), i.e., dynamic graphlets 14.73% 37.27% 21.11% 0.1467

Simulated annealing with dynamic graphlets 99.44% 99.39% 99.41% 0.993

Partition quality results of the original denseness-based simulated annealing, ClueNet (C-D), and when combining ClueNet’s dynamic graphlet-based topological

similarities with simulated annealing, for the high school dataset.

https://doi.org/10.1371/journal.pone.0195993.t001
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percentage of the entire running time that is spent on counting the dynamic graphlets for the

Enron, hospital, high school, and biological networks is 97.3%, 18.3%, 51.5%, and 99.9%,

respectively. However, once dynamic graphlets are counted, they do not need to be counted

again. Also, C-C, the best version of ClueNet for the social networks, offers speed-up com-

pared to C-D. Similarly, C-ST, the best version of ClueNet for the biological network (the larg-

est of all analyzed networks, with *6, 500 nodes), is faster than C-D, and its running time is

actually comparable to running times of most of the existing methods.

Note that for our considered social data, Multistep can be considered as a viable alternative

to our ClueNet approach because Multistep is faster than ClueNet as well as the second best

method overall and the best method in some evaluation tests. However, for our considered

biological data, Multistep is only the fourth best method overall and it is not the best method

in any evaluation test. So, Multistep’s performance is data-dependent. On the other hand,

ClueNet performs consistently well on both the social and biological data. Further, on the bio-

logical data, none of the existing methods that are faster than ClueNet can compare to ClueNet

when it comes to accuracy. Thus, even with the current (computationally intensive) imple-

mentation of C-ST, C-D and C-C, their higher running times compared to the existing

approaches are justified by their higher accuracy, at least in networks where graphlet counting

is feasible.

Further, there exist methods that speed up static graphlet counting in even larger networks

[36, 37], even with millions of nodes [38]. So, these methods can be used to count graphlets

within the C-ST version of our ClueNet approach. Similar speed-up extensions could be pur-

sued in the future for dynamic graphlet counting as well, to improve scalability of the C-D ver-

sion of our ClueNet approach. While this is certainly of our interest, such an extension is out

of the scope of this study.

Conclusion

We introduce ClueNet, a new DNC approach that overcomes the two key advantages of the

existing approaches: ClueNet clusters nodes based on regular equivalence (i.e., topological

similarity), while the existing approaches cluster based on structural equivalence (i.e., dense

interconnectedness), and also, ClueNet (its C-D and C-C versions) captures inter-snapshot

relationships explicitly and early in the clustering process, while the existing approaches do so

implicitly and late in the process. We provide evidence that some dynamic networks need to

Fig 9. Running time comparison. Running time comparison of the different methods (ClueNet (its three versions: C-ST, C-D, and C-C), Louvain (L),

Infomap (I), Hierarchical Infomap (HI), label propagation (LP), simulated annealing (SA), and Multistep (M)) for the (a) social Enron and (b)

biological aging-related dynamic networks. On the y-axis, log base 10 is used. Equivalent results for the other two social networks (hospital and high

school), which are similar to the Enron results, are shown in S8 Fig.

https://doi.org/10.1371/journal.pone.0195993.g009

ClueNet: Clustering a temporal network based on topological similarity rather than denseness

PLOS ONE | https://doi.org/10.1371/journal.pone.0195993 May 8, 2018 19 / 25

https://doi.org/10.1371/journal.pone.0195993.g009
https://doi.org/10.1371/journal.pone.0195993


be partitioned based on topological similarity, and others based on denseness combined with

topological similarity, which confirms the need for our approach.

In a comprehensive evaluation, we confirm that ClueNet is able to outperform the existing

DNC methods in terms of accuracy on both social and biological datasets a vast majority of the

time, either on its own or when combined with the existing methods.

As the availability of temporal network data increases, computational improvements for

analyzing (including clustering) such data will only continue to gain importance. This includes

further improvements of our ClueNet approach that could potentially allow for even more

accurate or faster topological similarity-based clustering of temporal network data. For exam-

ple, in this study, we have assumed the traditional mathematical definition of a partition of a

network, which requires a given node to belong to exactly one cluster. Our work could be

extended to allow for overlapping clusters as well, which would be beneficial whenever nodes

in a real-world network can belong to multiple functional modules, i.e., can have multiple

labels. As another example, our study has dealt with approaches that use only network topol-

ogy to produce clusters and then use metadata to evaluate the clusters. Clustering approaches

exist that integrate network topological information with metadata prior to producing clusters

[39–41]. Our work could be extended in this direction as well.
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results in terms of precision, quantifying how well each method (ClueNet (its three versions:

C-ST, C-D, and C-C), Louvain (L), Infomap (I), Hierarchical Infomap (HI), label propagation

(LP), simulated annealing (SA), and Multistep (M)) captures each of the three ground truth

partitions from the social network domain (top) and each of the four ground truth partitions

from the biological network domain (bottom) when clustering the corresponding networks.

For each dataset, for each method, we compare the score of the partition produced by the

given method (red) to the average score of its random counterparts (blue) and show the result-

ing p-value (see Section Measuring partition quality for details). Then, it is the methods’ p-val-

ues that should be compared rather than just the raw scores. See S4 Table to see which

clustering algorithm the given version of ClueNet uses for the given social dataset.
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biological network domain (bottom) when clustering the corresponding networks. For each

dataset, for each method, we compare the score of the partition produced by the given method

(red) to the average score of its random counterparts (blue) and show the resulting p-value

(see Section Measuring partition quality for details). Then, it is the methods’ p-values that
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networks. For each dataset, for each method, we compare the score of the partition pro-

duced by the given method (red) to the average score of its random counterparts (blue) and

show the resulting p-value (see Section Measuring partition quality for details). Then, it is

the methods’ p-values that should be compared rather than just the raw scores. See S4 Table

to see which clustering algorithm the given version of ClueNet uses for the given social data-

set.
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in terms of AMI, quantifying how well each method (ClueNet (its three versions: C-ST, C-D,

and C-C), Louvain (L), Infomap (I), Hierarchical Infomap (HI), label propagation (LP), simu-

lated annealing (SA), and Multistep (M)) captures each of the three ground truth partitions

from the social network domain (top) and each of the four ground truth partitions from the

biological network domain (bottom) when clustering the corresponding networks. For each

dataset, for each method, we compare the score of the partition produced by the given method

(red) to the average score of its random counterparts (blue) and show the resulting p-value

(see Section Measuring partition quality for details). Then, it is the methods’ p-values that

should be compared rather than just the raw scores. See S4 Table to see which clustering algo-

rithm the given version of ClueNet uses for the given social dataset.
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S7 Fig. Pairwise partition similarities in terms of AMI. Pairwise similarities in terms of AMI

between different partitions (ground truth (GT), ClueNet (its three versions: C-ST, C-D, and

C-C), Louvain (L), Infomap (I), Hierarchical Infomap (HI), label propagation (LP), simulated

annealing (SA), and Multistep (M)), for (a) social Enron, (b) social hospital, (c) social high

school, and (d) biological aging-related dynamic networks. Note that in panel (d), there are

four ground truth partitions, depending on which aging-related ground truth data is consid-

ered (BE2004, BE2008, AD, or SequenceAge, which are labeled as GT1, GT2, GT3, and GT4

respectively; Section Data).
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S8 Fig. Running time comparison. Running time comparison of the different methods (Clue-

Net (its three versions: C-ST, C-D, C-C), Louvain (L), Infomap (I), Hierarchical Infomap (HI),

label propagation (LP), simulated annealing (SA), and Multistep (M)) for the social (a) hospital
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37. Hočevar T, Demšar J. A combinatorial approach to graphlet counting. Bioinformatics. 2014; 30(4):559–

565. https://doi.org/10.1093/bioinformatics/btt717 PMID: 24336411

38. Ahmed, NK, Neville J, Rossi RA, Duffield N. Efficient graphlet counting for large networks. Data Mining

(ICDM), 2015 IEEE International Conference on (pp. 1–10). IEEE.

39. Newman ME, Clauset A. Structure and inference in annotated networks. Nature Communications.

2016; 7. https://doi.org/10.1038/ncomms11863

40. Yang J, McAuley J, Leskovec J. Community detection in networks with node attributes. Data Mining

(ICDM), 2013 IEEE 13th international conference on (pp. 1151–1156). IEEE.

41. Peel L, Larremore DB, Clauset A. The ground truth about metadata and community detection in net-

works. Science Advances. 2017; 3(5):e1602548. https://doi.org/10.1126/sciadv.1602548 PMID:

28508065

ClueNet: Clustering a temporal network based on topological similarity rather than denseness

PLOS ONE | https://doi.org/10.1371/journal.pone.0195993 May 8, 2018 25 / 25

https://doi.org/10.1093/bioinformatics/btt717
http://www.ncbi.nlm.nih.gov/pubmed/24336411
https://doi.org/10.1038/ncomms11863
https://doi.org/10.1126/sciadv.1602548
http://www.ncbi.nlm.nih.gov/pubmed/28508065
https://doi.org/10.1371/journal.pone.0195993

