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Accumulation of misfolded proteins in the endoplasmic reticulum (ER) and their 
aggregation impair normal cellular function and can be toxic, leading to cell death. 
Prolonged expression of misfolded proteins triggers ER stress, which initiates a 
cascade of reactions called the unfolded protein response (UPR). Protein misfolding 
is the basis for a variety of disorders known as ER storage or conformational diseases. 
There are an increasing number of eye disorders associated with misfolded proteins 
and pathologic ER responses, including retinitis pigmentosa (RP). Herein we review 
the basic cellular and molecular biology of UPR with focus on pathways that could 
be potential targets for treating retinal degenerative diseases.
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EnDoPlASMiC RETiCUlUM STRESS AnD 
PRoTEin folDing 

The endoplasmic reticulum (ER) is the principal 
site for synthesis and maturation of secretory 
and transmembrane proteins. More than 
30% of cellular proteins are synthesized in 
the ER.1 Folding is the most critical step in 
protein synthesis. Any delay in or impairment 
of protein folding and processing results in 
accumulation of misfolded protein triggering ER 
stress which is a response characterized by ER 
distension and perturbation in ER homeostasis.2 
Accumulation of misfolded proteins and/
or their aggregation are toxic to the cell and 
impair normal cellular function. To cope with 
any perturbation by unfolded or misfolded 

proteins, the ER induces a cascade of reactions 
called the unfolded protein response (UPR).3 ER 
stress is the precursor of UPR, however these 
terms have been used interchangeably and 
will be used as such throughout this review. 

Protein misfolding is the basis for a 
variety of disorders known as ER storage or 
conformational diseases.4,5 However, recent 
studies show that UPR is activated during normal 
cellular events such as B-cell differentiation,6 
muscle differentiation,7 or viral infections.8,9 The 
common theme in these events which trigger 
the UPR response is the build-up of unfolded 
proteins.10-15

Generally, cellular responses in UPR are 
composed of (1) translational attenuation 
to prevent further production of unfolded 
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proteins,16 (2) transcriptional induction of ER 
resident proteins (chaperones and foldases) to 
further assist protein folding,17 (3) induction of 
ER-associated degradation (ERAD) machinery 
to handle misfolded proteins and reduce 
the burden on ER folding capacity,18 and (4) 
enlargement of the ER to deal with the large load 
of unfolded proteins.19 The successful execution 
of compensatory responses to stress by these 
mechanisms restores normal cell function and 
survival. Alternatively, irreversibly stressed 
cells will undergo apoptosis in response to 
prolonged UPR (Fig. 1).

The ER stress response is mediated by 
three receptors located in the ER membrane. 
Translational attenuation in the UPR is mediated 
by the double-stranded RNA-activated protein 

kinase (PKR)-like endoplasmic reticulum kinase 
(PERK) signalling pathway. PERK receptors sense 
the presence of unfolded proteins20 and reduce 
the activity of the ribosomal initiating factor 
(eIF2α) by phosphorylation of its α-subunit.16 
Transcriptional activation of ER-resident 
proteins is mediated by activating transcription 
factor 6 (ATF6)21 and inositol requiring kinase 1 
(IRE1) receptors. In a similar mechanism to PERK 
receptors, ATF6 and IRE1 receptors sense the 
accumulation of misfolded proteins and induce 
the transcription of ER-resident proteins to assist 
folding and to degrade misfolded proteins. 
ATF6 activates the transcription of molecular 
chaperones such as BiP, GRP9417 and PDI22. IRE1 
induces the synthesis of a potent X-box-binding 
protein 1 (XBP1) and consequently activates 

figure 1. Major unfolded protein response (UPR) pathways. The influx of unfolded proteins in the endoplasmic 
reticulum (ER) induces UPR. UPR is relayed to the cell by activation of three receptors: IRE1, PERK and ATF6. Induction 
of these pathways starts processes to (1) decrease the load of protein by translational attenuation, (2) to increase the 
folding capacity of the ER, and (3) to decrease the protein load in the ER by degradation of unfolded proteins. Cells 
which fail to restore their normal cellular function experience prolonged activation of UPR resulting in apoptosis.
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the transcription of ER associated degradation 
(ERAD) proteins such as EDEM.23,24 IRE1 also 
activates the transcription of other UPR target 
genes, such as BiP, through XBP1 activation25 
(Fig. 2). 

To assist protein folding in the UPR, BiP 
is the first target for upregulation. BiP is a 
molecular chaperone with high affinity for 
short hydrophobic peptides on the surface of 
unfolded proteins. The binding and releasing 
of these peptides from BiP assist the folding 
of the substrate protein.26,27 BiP is also a sensor 
for unfolded proteins in the ER. An overload of 
unfolded proteins in the ER titrates BiP away 
from the luminal domains of IRE1, PERK and 
ATF6 receptors, which results in their further 
homodimerization, autophosphorylation and 
activation16,20,28. The dissociation of BiP from 
the ATF6 luminal domain leaves ATF6 free to 
be transported to the Golgi where it is cleaved 
to become an active transcription factor29 (Fig. 
2). Downstream UPR target genes are regulated 
by two distinct consensus response elements, the 
cis-acting ER stress response element (ERSE) and 
the unfolded protein response element (UPRE) 
both of which are located in the promoter of 
genes involved in UPR. Binding of ATF621 and 
XBP1 to these elements promotes transcription 
of downstream UPR genes30,31.

The IRE1, PERK and ATF6 receptors initiate 
pathways, which comprise the three arms of 
the UPR. Located in the ER membrane, these 
receptors have a transmembrane domain 
spanning the ER membrane, a cytosolic or 
nucleoplasmic domain, and a luminal domain 
that has a binding site for BiP. IRE1 receptor is 
a type I transmembrane protein kinase receptor 
which has site-specific endoribonuclease (RNase) 
activity in its cytosolic domain.32-35 IRE1 is highly 
conserved in eukaryotes.28,32,33,36-38 Two types of 
IRE1 receptors have been found in mammals. 
IRE1α is ubiquitously expressed in all tissues, 
but the expression of the second type, IRE1β, 
is limited to the gut.20,34,35,39 Deletion of IRE1α 
is lethal in mice; however, IRE1β−/− mice are 
viable.20,39 The luminal domain of the IRE1 
receptor binds to BiP. Accumulation of unfolded 
proteins in the ER, results in BiP release from 
the IRE1 luminal domain which in return causes 

dimerization and autophosphorylation of IRE1. 
Phosphorylation of the cytosolic domain of the 
IRE1 receptor activates its RNase activity.30,31,40-42 
In mammals, XBP1 mRNA is the substrate for 
IRE1 endoribonuclease.30,31,40 XBP1, a bZIP 
(basic region and leucine zipper)-domain-
containing transcription factor of the ATF/
CREB (cyclic-AMP-responsive-element-binding 
protein) family, binds to ERSE.21,43 During ER 
stress, IRE1 endoribonuclease splices out a 
26-nucleotide intron from XBP1 mRNA and 
creates a translational frameshift. This spliced 
form of XBP1 becomes an active transcription 
factor.15,30,31,40 XBP1 then translocates to the 
nucleus and induces the transcription of genes 
involved in protein folding and degradation 24,40 

44-48 (Fig. 2).
The PERK receptor is a type I 

transmembrane protein kinase receptor which 
is activated by ER stress with the release of 
BiP from its luminal domain. Release of BiP 
from PERK, results in its oligomerization 
with subsequent autophosphorylation of its 
cytosolic domain.16,20,21,49 Activated PERK 
receptors phosphorylate the α-subunit (S51) 
of eIF2 (eIF2α), which inhibits 80S ribosome 
assembly and consequently attenuates protein 
synthesis/translation.16,50,51 The inhibition of 
ribosomal assembly reduces the influx of newly 
synthesized proteins to an already saturated ER. 
In contrast, phosphorylation of eIF2α promotes 
the translation of ATF4 upon ER stress.11,52,53 
ATF4 is a transcription factor which activates the 
transcription of chaperones, ERAD machinery 
and other genes involved in the oxidative stress 
response and ER stress-induced apoptosis20,54-56, 
such as C/EBP homologous transcription factor 
(CHOP), growth arrest and DNA damage gene 
34 (GADD34)20,57-59 and ATF358. 

The ATF6 receptor is a type II transmembrane 
protein with a cytosolic/nucleoplasmic and an 
ER luminal domain.60 Mammals have two ATF6 
homologs, ATF6α and ATF6β.61 There are two 
distinct ER stress-regulated Golgi localization 
sequences (GLS1 and GLS2) in the luminal 
domain of ATF6α and one GLS2 in that of ATF6β. 
BiP binds to GLS1 and retains the ATF6 receptor 
within the ER. Release of BiP from GLS1 upon 
ER stress results in ATF6 translocation to the 
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figure 2. Unfolded protein response (UPR). The ER stress response is mediated by three receptors located in the ER 
membrane. The IRE1 pathway is activated by the release of BiP from IRE1 which is followed by dimerization and 
autophosphorylation of its cytoplasmic domain. The activated IRE1 receptor triggers its intrinsic RNase activity, which 
splices out a 26-nucleotide intron from XBP1 mRNA and creates a translational frameshift leading to production of 
an active transcription factor, XBP1. XBP1 activates the transcription of ERAD-related proteins (red-dotted area). 
Chronic activation of IRE1 leads to recruitment of TRAF2 followed by activation of ASK1, p38 and JNK. Activated 
JNK translocates to the mitochondrial membrane and promotes phosphorylation of Bim, which is associated with 
Bax-dependent release of cytochrome c and activation of the caspase cascade. The PERK pathway is activated by 
the release of BiP generating a dimerized-phosphorylated PERK enzyme which reduces the activity of the eIF2α by 
phosphorylation of its α-subunit. Although the phosphorylation of eIF2α generally attenuates protein synthesis/
translation, it promotes the translation of ATF4 upon ER stress. ATF4 activates the transcription of chaperones, ERAD 
machinery and ER-stress-induced pro-apoptotic factors, such as CHOP and GADD34 and ATF3 (green-dotted area). 
In the ATF6 pathway, the release of BiP from the ATF6 receptor frees the receptor to be transported to the Golgi. 
Once in the Golgi, the cytosolic domain is cleaved by S1P and S2P, releasing a bZIP transcription factor, ATF6. ATF6 
translocates to the nucleus where it activates the transcription of BiP, XBP1, CHOP and P58IPK (blue-dotted area).
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Golgi.62 The cytosolic domain of ATF6 in the 
Golgi is cleaved by site-1 proteases (S1P and S2P) 
releasing a bZIP transcription factor, ATF6.18,29,63-

65 ATF6 translocates to the nucleus where it 
interacts with nuclear factor-Y and XBP1, binds 
to ERSE and UPRE elements and activates the 
transcription of BiP, XBP1, CHOP and P58IPK 
18,21,66-69 (Fig. 2). Activated ATF6 also induces the 
expression of genes involved in protein folding 
and degradation.63, 64 

PRo-APoPToTiC PATHwAyS in 
EnDoPlASMiC RETiCUlUM STRESS

Prolonged ER stress seems to activate IRE1α, 
ATF6 and PERK pathways sequentially and 
deactivates them in the same order.70 If the UPR 
response fails to restore cellular homeostasis, the 
cell initiates apoptosis.53,71,72 Prolonged ER stress-
induced apoptosis is an important pathologic 
element of  neurodegenerative diseases, 
diabetes, renal diseases and atherosclerosis.73 
Generally, apoptosis is known as the nuclear 
form of programmed cell death (PCD). Other 
types of PCDs are autophagic (type II)74-76 
and cytoplasmic (type III) PCD75-78. The PCD 
associated with UPR is probably the nuclear 
form. Four known pro-apoptotic pathways 
have been implicated in ER-stress mediated 
apoptosis; 1) IRE1α-mediated activation of 
ASK1 (apoptosis signal-regulating kinase 1), 
2) caspase-1279, 3) PERK/eIF2α induction of 
CHOP, and 4) BAK/BAX-induced Ca2+ release 
from the ER 35,80.

Apoptosis signalling is mediated by two 
major pathways. The extrinsic pathway is 
triggered by self-association of membrane 
receptors and recruitment of caspase-9 which 
results in initiation of a caspase cascade and 
finally apoptosis. The intrinsic pathway is 
triggered by dominance of pro-apoptotic over 
anti-apoptotic members of the Bcl-2 family. 
Anti-apoptotic members of the Bcl-2 family are 
Bcl-2 and Bcl-XL, and pro-apoptotic members 
are BH3-only classes including Bid and Bim as 
well as multidomain groups, such as Bax and 
Bak. A variety of apoptotic stimuli promote 
translocation of Bax and Bak from the cytosol 
into the mitochondria resulting in release of 

cytochrome c and activation of caspases.81

The IRE1/TRAF2/ASK1/JNK pathway is 
considered the dominant pro-apoptotic pathway 
in ER stress. It has been shown that IRE1α is able to 
recruit TNF receptor-associated factor 2 (TRAF2) 
to its cytosolic domain. TRAF2 can subsequently 
activate apoptosis signal-regulating kinase 
(ASK) 1, p38 and finally c-Jun amino-terminal 
kinase (JNK).20,28,82 Co-expression of ASK1 and 
JNK results in phosphorylation and inactivation 
of Bcl-2.83 Activated JNK has been shown to 
translocate to the mitochondrial membrane84 
and promote phosphorylation of Bim, which 
is associated with Bax-dependent release of 
cytochrome c85,86. ASK1 can also be activated 
by reactive oxygen species (ROS) initiating 
apoptosis. ASK1 is inhibited by thioredoxin 
(TDX), a protein which inactivates ROS, until 
accumulation of ROS causes oxidation of TDX, 
thereby disinhibition of ASK1.28,87 IRE1α can also 
induce apoptosis through 1) interaction of the 
TNF receptor 1 (TNFR1) with TRAF2/ASK1 and 
subsequent activation of JNK and through 2) 
interaction of TRAF2 and the inhibitor of κB-
kinase (IKK) which leads to activation of nuclear 
factor κB88,89.

The PERK/ATF4/CHOP pathway is the 
second pro-apoptotic mechanism triggered by 
prolonged ER stress35,90,91. CHOP is minimally 
expressed under non-stress conditions; however, 
its expression is moderately increased upon ER 
stress. CHOP expression has been shown to 
induce cell cycle arrest and/or apoptosis.35,80,90-94 
Transcriptional activation of CHOP is mediated 
by the IRE1, PERK or ATF618,20,35,80,95 pathways. 
CHOP is also activated post-translationally via 
p38 MAP kinase phosphorylation.90 It has been 
shown that CHOP expression sensitizes the 
cell to apoptosis by downregulation of BCL-
2 and/or depletion of glutathione leading to 
accumulation of ROS in the cell93 (Fig. 2). CHOP 
expression promotes pro-apoptotic factors 
such as DR5, TRB3, BIM and GADD34 96-99. 
Association of CHOP with ER stress-induced 
apoptosis has been reported in diabetes,80,99 
renal dysfunction,35 atherosclerosis,100 cardiac 
overload,101 colitis,102 and Parkinson’s disease103. 
CHOP is a major pro-apoptotic factor in ER stress 
and its deletion promotes cell survival. Several 
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therapeutic approaches have targeted the PERK-
CHOP pathway in a mouse model of ER stress to 
inhibit apoptosis. Blocking the phosphorylation 
of eIF2α by Salubrinal promoted cell survival 
in these mouse models implicated with  
ER stress.104

The PERK pathway is also induced by 
accumulation of ROS105,106. ROS are small 
molecules or free radicals (atoms, molecules 
or ions with unpaired electrons or open 
shelf configuration) formed by molecular 
oxygen.107 ROS have been linked to mediators 
of inflammation.108 Protein folding is an energy 
consuming process through which the formation 
of disulfide bonds is required for correct folding 
of some proteins.105, 106 To deal with ROS 
formed during protein folding in ER stress, 
the PERK pathway induces the transcription 
of glutathione S-transferase, NAD(P)H:quinone 
oxidoreductase-1, γ-glutamate cysteine ligase, 
and hemeoxygenase-1 to protect the cell from 
oxidative stress.44,54,109-124 Oxidative stress is 
believed to play an important role in age-
related macular degeneration (AMD), retinitis 
pigmentosa (RP) and other ocular diseases.125

Some evidence suggests a role for caspase-12 
as another pro-apoptotic pathway in ER stress.126 
Caspase-12 is a member of the group I family of 
caspases (also known as ICE-like caspases and 
consists of caspase-1, 4, 5, 11, and 13). Caspase-12 
is localized on the cytoplasmic side of the ER 
membrane127 and is associated with ER stress-
mediated apoptosis79. It has been shown that 
activated caspase-12 translocates to the cytosol 
and subsequently activates caspase-9 and 
caspase-3.128 Caspase-12 activation by amyloid 
β (Aβ) peptide through calpain has been shown 
in primary neurons.79 In humans, the functional 
caspase-12 homologue is not expressed due to a 
mutation129; therefore, other caspases may play 
a role in apoptosis.130 

nEURoDEgEnERATivE DiSEASES AnD UPR

Retinal degeneration is one of the leading causes 
of blindness in humans. The current hypothesis 
proposed for retinal degeneration elicited by ER 
stress is the activation of UPR pathways. Some 
types of retinal degenerations share similar 

pathological origins to neurodegenerative 
diseases. These include protein misfolding, 
aggregate  format ion  and ac t ivat ion  of 
protein degradation machinery. Furthermore, 
involvement of UPR has been suggested by cell 
culture studies and animal models.11,131 There 
are a few similarities found in the origins of 
neurodegenerative diseases and those found in 
retinal degenerations. A better understanding of 
the pathogenesis of neurodegenerative diseases 
could shed light on the molecular pathology of 
eye diseases. Neurodegenerative diseases are 
chronic conditions originating from mutations 
in genes that lead to neural cell death. In many 
neurodegenerative diseases, such as Alzheimer’s 
disease (AD), amyotrophic lateral sclerosis 
(ALS), Parkinson’s disease (PD), multiple 
sclerosis (MS) and polyglutamine diseases 
(which result from expansion of a polyglutamine 
repeat), the major molecular pathology is the 
formation of protein aggregates.132 Aggregate 
formation can limit or inhibit the capacity of 
the cell for ER-associated protein degradation 
(ERAD) by proteasomes. Failure of the cell to 
degrade misfolded aggregates induces UPR 
and eventually neural cell death.133, 134

Alzheimer’s disease is among the well 
known neurodegenerative diseases in which 
the PERK-EIF2α pathway is activated.14,135-138 
Juvenile-onset Parkinson’s disease is another 
example of UPR-driven cell death in which 
mutations in Parkin, an E3 ubiquitin ligase 
causes ER stress.139,140 The expression of wild type 
Parkin is induced by ER stress to clear misfolded 
proteins through ERAD.141 The overexpression 
of wild type Parkin promotes survival in cells 
expressing mutant α-synuclein or those treated 
with ER stress-inducing agents.140-142 Evidence 
of ER stress has been reported in other forms 
of neurodegenerative diseases such as ALS 
134, Huntington’s disease143-147 and diseases 
associated with Prions such as transmissible 
spongiform encephalopathies of Creutzfeldt-
Jakob disease and Kuru148.

RolE of UPR in EyE DiSEASES

UPR i s  a  response  to  ER s t ress  and  i s 
implemented differently depending on cell 
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type, nature of ER stress, its magnitude and 
duration.89, 149, 150 UPR can serve to protect the 
cell by re-establishing ER homeostasis or it can 
trigger apoptosis under severe or chronic ER 
stress.151,152 The presence of misfolded protein 
is the trigger for induction of UPR. A growing 
number of reports suggest that misfolded 
proteins play a role in the pathogenesis of 
several eye disorders.153 Several studies have 
demonstrated the association of misfolded 
protein and UPR in RP. UPR might also be 
involved in the conversion of dry AMD to the 
wet form through angiogenesis stimulated by 
the vascular endothelial growth factor (VEGF) 
released from retinal pigmented epithelium 
(RPE) cells.154 UPR has also been implicated 
in the early onset form of Fuchs endothelial 
corneal dystrophy (FECD) which is the leading 
indication for corneal transplantation.155 Among 
other diseases that might be linked to ER stress, 
investigators have reported the activation of 
UPR by cataract-associated αA-crystallin156 
and collagen IV157 mutations in animal models. 
Moreover, possible involvement of ER stress 
has been proposed in adult-onset primary 
open angle glaucoma (POAG).158 Mutations in 
carbonic anhydrase (CA) IV, a highly expressed 
enzyme in the choriocapillaris of the human eye, 
are associated with the RP17 form of autosomal 
dominant RP due to accumulation of unfolded 
proteins in the ER.159-161 Besides the retina, 
other neuronal cells are subject to induction 
of UPR as shown in several neurodegenerative 
diseases. ALS,162 Parkinson’s, Huntington’s 
and Alzheimer’s disease, and prion-related 
disorders are among degenerative diseases 
associated with UPR.163

The association of UPR and visual impairment 
has been well described in animal models of 
RP. Among the over 40 genes causing RP, the 
most common forms of autosomal dominant RP 
are due to mutations in rhodopsin. Mutations 
in rhodopsin cause the formation of misfolded 
proteins which induce ER stress. Enormous 
amounts of rhodopsin are made every day and 
the overload of photoreceptors with misfolded 
rhodopsin triggers UPR. The induction of UPR 
has been observed in several animal models of 
RP.70, 164-166

UPR in RETinAl DEgEnERATion: 
PoTEnTiAl THERAPEUTiC APPRoACHES 

Photoreceptors synthesize a large amount 
of protein every day indicating the critical 
role for ER function in these cells. Altered 
expression of some molecular chaperones, the 
major component of protein folding and quality 
control in the ER, was found in proteomics of 
a murine model of retinal degeneration.11,167-169 
Some mutations in rhodopsin, which result in 
the production of misfolded proteins, lead to 
retinitis pigmentosa (RP). These types of RPs 
have been classified as ER storage diseases.3 
The expression level of ATF6, phosphorylated 
eIF2α, and CHOP in a rat model of RP expressing 
rhodopsin-P23H mutation were higher as 
compared to control animals. Overexpression 
of BiP in the P23H rat model led to a decrease 
in CHOP levels and apoptosis, and an increase 
in the amplitude of the electroretinogram164 
which indicates that increased folding capacity 
in cells may inhibit apoptosis. The expression 
of ER stress markers, XBP1 and Hrd1, was 
increased in a fly model of RP expressing 
mutant Rh1, the equivalent of rhodopsin in 
vertebrates. It was demonstrated that reduced 
function of ERAD led to an increase in mutant 
Rh1 which suggest its role in degradation of 
mutant opsin. On the other hand, overexpression 
of the ERAD machinery reduced the levels of 
mutant Rh1 and markers of ER stress.165 These 
reports demonstrated induction of UPR in 
animal models of retinal degeneration. They 
also exhibited a reduction in apoptosis by 
overexpression of chaperones, such as BiP. 

Several therapeutical approaches to 
alleviate retinal degeneration targeted protein 
folding by using chemical chaperones.170-172 
Chemical chaperones are small molecules 
which assist protein folding by non-covalent 
interactions with partially folded or misfolded 
proteins.64,172-176 Protein synthesis is an energy 
consuming process which is assisted and 
monitored by several proteins mostly residing 
in the ER. Among assistant proteins, chaperones 
stabilize partially folded proteins and bind 
to exposed hydrophobic surfaces to direct a 
forming protein to its native state. Failure to 
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adopt the native conformation will target the 
misfolded protein to ER-associated degradation 
machinery to prevent aggregate formation.170 
However, this folding assistance and quality 
control might become overwhelmed due to 
other cellular insults such as oxidative stress, 
hypoxia, altered calcium homeostasis or vastly 
expressed inherently misfolded protein. To cope 
with this stress, the ER initiates a compensatory 
cascade of responses, i.e. the UPR,177 which is 
initially a survival response that reduces the 
general translation of proteins to alleviate the 
burden of protein folding on the ER, upregulates 
chaperones to facilitate protein folding and 
induces ER-associated degradation machinery. 
Failure of adopted strategies to recover from 
stress leads to induction of apoptosis to eliminate 
injured cell.137,167,178 Several neurodegenerative 
diseases are associated with misfolded proteins 
and consequently ER stress.11,131,137, 178 

Recent studies have demonstrated facilitated 
protein folding by pharmacological chaperones 
in models of RP. Some forms of RP are associated 
with misfolding of mutant rhodopsin, aggregate 
formation and targeted degradation by the 
ubiquitin proteasome system. Investigators 
studying P23H, the most common mutation 
found in rhodopsin, reported that 11-cis-7-ring 
retinal can promote proper folding, glycosylation 
and localization of P23H to the cell surface.179-181 
Rescue of misfolded P23H was achieved in 
another study by cotransfection of P23H with 
Hsp70, β-synuclein, or γ-synuclein chaperones 
in P661W photoreceptor cells and resulted in the 
formation of fewer inclusion bodies.182

Compounds known as chemical 
chaperones183,184 such as tauroursodeoxy-cholic 
acid (TUDCA) and 4-phenyl butyric acid, have 
origins in traditional Chinese medicine and have 
been used in humans for a variety of diseases 
including RP. Although some beneficial effects 
have been demonstrated, the definitive effect 
of chemical chaperones to inhibit ER stress-
induced apoptosis has not been proven.185-187

Several investigators have shown the 
effectiveness of a high-throughput screen for 
chemical chaperones to find a potent protein 
aggregate inhibitor. Accordingly, yeast cells 
expressing Htt-103Q-EGFP (Huntington gene 

with extended polyglutamine fused to EGFP) 
were generated and demonstrated poor growth 
and low expression of the fusion protein. 
These cells were then treated with a library 
consisting of 16,000 different compounds and 
screened for restoration of cell growth and 
expression of fusion protein (Htt-103Q-EGFP). 
After finding effective compounds from the 
library, investigators examined the effect of 
hit compounds in the mouse and Drosophila 
model of Huntington’s disease.11 Future studies 
need to uncover the extent to which the UPR 
is induced in retinal degenerative diseases. A 
better understanding of the role of timing in the 
induction of UPR elements is crucial to target 
pro-apoptotic factors. High-throughput studies 
will play a major role in finding mechanisms of 
retinal degeneration and potential therapeutic 
compounds.

Acknowledgments

We thank Dr. S. Reks for helpful comments 
and suggestions on the manuscript. 

Conflicts of interest

None.

REFERENCES

1. Ghaemmaghami S, Huh WK, Bower K, Howson 
RW, Belle A, Dephoure N, et al. Global analysis of 
protein expression in yeast. Nature 2003;425:737-741.

2. Tabas I, Ron D. Integrating the mechanisms of 
apoptosis induced by endoplasmic reticulum stress. 
Nat Cell Biol 2011;13:184-190.

3. Schroder M, Kaufman RJ. The mammalian unfolded 
protein response. Annu Rev Biochem 2005;74:739-789.

4. Fewell SW, Travers KJ, Weissman JS, Brodsky JL. 
The action of molecular chaperones in the early 
secretory pathway. Annu Rev Genet 2001;35:149-191.

5. Ellgaard L, Molinari M, Helenius A. Setting the 
standards: quality control in the secretory pathway. 
Science 1999;286:1882-1888.

6. Reimold AM, Iwakoshi NN, Manis J, 
Vallabhajosyula P, Szomolanyi-Tsuda E, Gravallese 
EM, et al. Plasma cell differentiation requires the 
transcription factor XBP-1. Nature 2001;412:300-307.



Endoplasmic Reticulum Stress; Haeri and Knox

53JOURNAL OF OPHTHALMIC AND VISION RESEARCH 2012; Vol. 7, No. 1

7. Nakanishi K, Sudo T, Morishima N. Endoplasmic 
reticulum stress signaling transmitted by ATF6 
mediates apoptosis during muscle development. J 
Cell Biol 2005;169:555-560.

8. Benali-Furet NL, Chami M, Houel L, De Giorgi F, 
Vernejoul F, Lagorce D, et al. Hepatitis C virus core 
triggers apoptosis in liver cells by inducing ER stress 
and ER calcium depletion. Oncogene 2005;24:4921-4933.

9. Yamazaki H, Nakata T, Okada Y, Hirokawa N. 
KIF3A/B: a heterodimeric kinesin superfamily 
protein that works as a microtubule plus end-
directed motor for membrane organelle transport. J 
Cell Biol 1995;130:1387-1399.

10. Shen X, Zhang K, Kaufman RJ. The unfolded protein  
response-a stress signaling pathway of the endoplasmic  
reticulum. J Chem Neuroanat 2004;28:79-92.

11. Zhang X, Smith DL, Meriin AB, Engemann S, Russel 
DE, Roark M, et al. A potent small molecule inhibits 
polyglutamine aggregation in Huntington’s disease 
neurons and suppresses neurodegeneration in vivo. 
Proc Natl Acad Sci U S A 2005;102:892-897.

12. Patil C, Walter P. Intracellular signaling from the 
endoplasmic reticulum to the nucleus: the unfolded 
protein response in yeast and mammals. Curr Opin 
Cell Biol 2001;13:349-355.

13. Forman MS, Lee VM, Trojanowski JQ. ‘Unfolding’ 
pathways in neurodegenerative disease. Trends 
Neurosci 2003;26:407-410.

14. Niwa M, Sidrauski C, Kaufman RJ, Walter P. A 
role for presenilin-1 in nuclear accumulation of 
Ire1 fragments and induction of the mammalian 
unfolded protein response. Cell 1999;99:691-702.

15. Harding HP, Calfon M, Urano F, Novoa I, Ron D. 
Transcriptional and translational control in the 
Mammalian unfolded protein response. Annu Rev 
Cell Dev Biol 2002;18:575-599.

16. Harding HP, Zhang Y, Ron D. Protein translation 
and folding are coupled by an endoplasmic- 
reticulum-resident kinase. Nature 1999;397:271-274.

17. Gething MJ, Sambrook J. Protein folding in the cell. 
Nature 1992;355:33-45.

18. Yoshida H, Okada T, Haze K, Yanagi H, Yura T, 
Mori K. ATF6 activated by proteolysis directly 
binds in the presence of NF-Y (CBF) to the cis-acting 
element responsible for the mammalian unfolded 
protein response. Mol Cell Biol 2000;20:6755-6767.

19. Selye H. The nature of stress. Basal Facts 1985;7:3-11.

20. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, 
Harding HP, et al. Coupling of stress in the ER to 
activation of JNK protein kinases by transmembrane 
protein kinase IRE1. Science 2000;287:664-666.

21. Yoshida H, Haze K, Yanagi H, Yura T, Mori, 
K. Identification of the cis-acting endoplasmic 

reticulum stress response element responsible 
for transcriptional induction of mammalian 
glucose- regulated proteins: Involvement of basic 
leucine zipper transcription factors. J Biol Chem 
1998;273:33741-33749.

22. Dorner AJ, Wasley LC, Raney P, Haugejorden 
S, Green M, Kaufman RJ. The stress response in 
Chinese hamster ovary cells. Regulation of ERp72 
and protein disulfide isomerase expression and 
secretion. J Biol Chem 1990;265:22029-22034.

23. Hosokawa N, Wada I, Hasegawa K, Yorihuzi T, 
Tremblay LO, Herscovics A, et al. A novel ER alpha-
mannosidase-like protein accelerates ER-associated 
degradation. EMBO Rep 2001;2:415-422.

24. Yoshida H, Matsui T, Hosokawa N, Kaufman RJ, 
Nagata K, Mori K. A time-dependent phase shift in 
the mammalian unfolded protein response. Dev Cell 
2003;4:265-271.

25. Travers KJ, Patil CK, Wodicka L, Lockhart DJ, 
Weissman JS, Walter P. Functional and genomic 
analyses reveal an essential coordination between 
the unfolded protein response and ER-associated 
degradation. Cell 2000;101:249-258.

26. Blond-Elguindi S, Cwirla SE, Dower WJ, Lipshutz 
RJ, Sprang SR, Sambrook JF, et al. Affinity panning 
of a library of peptides displayed on bacteriophages 
reveals the binding specificity of BiP. Cell 
1993;75:717-728.

27. Flynn GC, Pohl J, Flocco MT, Rothman JE. Peptide-
binding specificity of the molecular chaperone BiP. 
Nature 1991;353:726-730.

28. Wolfrum U, Schmitt A. Rhodopsin transport in the 
membrane of the connecting cilium of mammalian 
photoreceptor cells. Cell Motil Cytoskeleton 
2000;46:95-107.

29. Young JE, Albert AD. Transducin binding in bovine 
rod outer segment disk membranes of different age/
spatial location. Exp Eye Res 2000;70:809-812.

30. Shen X, Ellis RE, Lee K, Liu CY, Yang K, Solomon A, 
et al. Complementary signaling pathways regulate 
the unfolded protein response and are required for 
C. elegans development. Cell 2001;107:893-903.

31. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori 
K. XBP1 mRNA is induced by ATF6 and spliced by 
IRE1 in response to ER stress to produce a highly 
active transcription factor. Cell 2001;107:881-891.

32. Mori K, Ma W, Gething MJ, Sambrook J. A 
transmembrane protein with a cdc2+/CDC28-
related kinase activity is required for signaling from 
the ER to the nucleus. Cell 1993;74:743-756.

33. Nikawa J, Yamashita S. IRE1 encodes a putative protein  
kinase containing a membrane-spanning domain and 
is required for inositol phototrophy in Saccharomyces 
cerevisiae. Mol Microbiol 1992;6:1441-1446.



Endoplasmic Reticulum Stress; Haeri and Knox

54 JOURNAL OF OPHTHALMIC AND VISION RESEARCH 2012; Vol. 7, No. 1

34. Tirasophon W, Welihinda AA, Kaufman RJ. A stress 
response pathway from the endoplasmic reticulum 
to the nucleus requires a novel bifunctional protein 
kinase/endoribonuclease (Ire1p) in mammalian 
cells. Genes Dev 1998;12:1812-1824.

35. Zinszner H, Kuroda M, Wang X, Batchvarova N, 
Lightfoot RT, Remotti H, et al. CHOP is implicated 
in programmed cell death in response to impaired 
function of the endoplasmic reticulum. Genes Dev 
1998;12:982-995.

36. Cox JS, Shamu CE, Walter P. Transcriptional 
induction of genes encoding endoplasmic reticulum 
resident proteins requires a transmembrane protein 
kinase. Cell 1993;73:1197-1206.

37. Okushima Y, Koizumi N, Yamaguchi Y, Kimata Y, 
Kohno K, Sano H. Isolation and characterization of a 
putative transducer of endoplasmic reticulum stress 
in Oryza sativa. Plant Cell Physiol 2002;43:532-539.

38. Koizumi N, Martinez IM, Kimata Y, Kohno K, Sano 
H, Chrispeels MJ. Molecular characterization of two 
Arabidopsis Ire1 homologs, endoplasmic reticulum-
located transmembrane protein kinases. Plant 
Physiol 2001;127:949-962.

39. Bertolotti A, Wang X, Novoa I, Jungreis R, 
Schlessinger K, Cho JH, et al. Increased sensitivity to 
dextran sodium sulfate colitis in IRE1beta-deficient 
mice. J Clin Invest 2001;107:585-593.

40. Mikami A, Tynan SH, Hama T, Luby-Phelps K, 
Saito T, Crandall JE, et al. Molecular structure of 
cytoplasmic dynein 2 and its distribution in neuronal 
and ciliated cells. J Cell Sci 2002;115:4801-4808.

41. Rosenbaum JL, Witman GB. Intraflagellar transport. 
Nat Rev Mol Cell Biol 2002;3:813-825.

42. Shamu CE, Walter P. Oligomerization and 
phosphorylation of the Ire1p kinase during 
intracellular signaling from the endoplasmic 
reticulum to the nucleus. EMBO J 1996;15:3028-3039.

43. Clauss IM, Chu M, Zhao JL, Glimcher LH. The 
basic domain/leucine zipper protein hXBP-1 
preferentially binds to and transactivates CRE-like 
sequences containing an ACGT core. Nucleic Acids Res 
1996;24:1855-1864.

44. Lee JM, Calkins MJ, Chan K, Kan YW, Johnson, 
JA. Identification of the NF-E2-related factor-2-
dependent genes conferring protection against 
oxidative stress in primary cortical astrocytes using 
oligonucleotide microarray analysis. J Biol Chem 
2003;278:12029-12038.

45. Oda Y, Okada T, Yoshida H, Kaufman RJ, Nagata 
K, Mori K. Derlin-2 and Derlin-3 are regulated by 
the mammalian unfolded protein response and are 
required for ER-associated degradation. J Cell Biol 
2006;172:383-393.

46. Hollien J, Weissman JS. Decay of endoplasmic 

reticulum-localized mRNAs during the unfolded 
protein response. Science 2006;313:104-107.

47. Pirot P, Naamane N, Libert F, Magnusson NE, 
Ørntoft TF, Cardozo AK, et al. Global profiling of 
genes modified by endoplasmic reticulum stress in 
pancreatic beta cells reveals the early degradation of 
insulin mRNAs. Diabetologia 2007;50:1006-1014.

48. Molinari M, Sitia R. The secretory capacity of a cell 
depends on the efficiency of endoplasmic reticulum-
associated degradation. Curr Top Microbiol Immunol 
2005;300:1-15.

49. Watanabe N, Miyake Y, Wakabayashi T, Usukura J. 
Periciliary structure of developing rat photoreceptor 
cells. A deep etch replica and freeze substitution 
study. J Electron Microsc (Tokyo) 1999;48:929-935.

50. Kimball SR. Eukaryotic initiation factor eIF2. Int J 
Biochem Cell Biol 1999;31:25-29.

51. Wek RC, Cavener DR. Translational control and the 
unfolded protein response. Antioxid Redox Signal 
2007;9:2357-2371.

52. Hinnebusch AG. Translational regulation of 
yeast GCN4. A window on factors that control 
initiator-tRNA binding to the ribosome. J Biol Chem 
1997;272:21661-21664.

53. Yaman I, Fernandez J, Liu H, Caprara M, Komar AA, 
Koromilas AE, et al. The zipper model of translational 
control: A small upstream ORF is the switch that 
controls structural remodeling of an mRNA leader. 
Cell 2003;113:519-531.

54. Jousse C, Oyadomari S, Novoa I, Lu P, Zhang 
Y, Harding HP, et al. Inhibition of a constitutive 
translation initiation factor 2alpha phosphatase, 
CReP, promotes survival of stressed cells. J Cell Biol 
2003;163:767-775.

55. Scheuner D, Song B, McEwen E, Liu C, Laybutt R, 
Gillespie P, et al. Translational control is required for 
the unfolded protein response and in vivo glucose 
homeostasis. Mol Cell 2001;7:1165-1176.

56. Vattem KM, Wek RC. Reinitiation involving 
upstream ORFs regulates ATF4 mRNA translation 
in mammalian cells. Proc Natl Acad Sci U S A 
2004;101:11269-11274.

57. Zou Q, Bennion BJ, Daggett V, Murphy KP. The 
molecular mechanism of stabilization of proteins by 
TMAO and its ability to counteract the effects of urea. 
J Am Chem Soc 2002;124:1192-1202.

58. Jiang HY, Wek SA, McGrath BC, Lu D, Hai T, 
Harding HP, et al. Activating transcription factor 3 
is integral to the eukaryotic initiation factor 2 kinase 
stress response. Mol Cell Biol 2004;24:1365-1377.

59. Okada T, Yoshida H, Akazawa R, Negishi M, Mori 
K. Distinct roles of activating transcription factor 6 
(ATF6) and double-stranded RNA-activated protein 



Endoplasmic Reticulum Stress; Haeri and Knox

55JOURNAL OF OPHTHALMIC AND VISION RESEARCH 2012; Vol. 7, No. 1

kinase-like endoplasmic reticulum kinase (PERK) 
in transcription during the mammalian unfolded 
protein response. Biochem J 2002;366:585-594.

60. Pahl HL, Baeuerle PA. A novel signal transduction 
pathway from the endoplasmic reticulum to the 
nucleus is mediated by transcription factor NF-kappa 
B. EMBO J 1995;14:2580-2588.

61. Haze K, Okada T, Yoshida H, Yanagi H, Yura T, 
Negishi M, et al. Identification of the G13 (cAMP-
response-element-binding protein-related protein) 
gene product related to activating transcription factor 
6 as a transcriptional activator of the mammalian 
unfolded protein response. Biochem J 2001;355:19-28.

62. Shen J, Chen X, Hendershot L, Prywes R. ER stress 
regulation of ATF6 localization by dissociation 
of BiP/GRP78 binding and unmasking of Golgi 
localization signals. Dev Cell 2002;3:99-111.

63. Yamamoto K, Sato T, Matsui T, Sato M, Okada 
T, Yoshida H, et al. Transcriptional induction of 
mammalian ER quality control proteins is mediated 
by single or combined action of ATF6 alpha and 
XBP1. Dev Cell 2007;13:365-376.

64. Wu J, Rutkowski DT, Dubois M, Swathirajan J, 
Saunders T, Wang J, et al. ATF6 alpha optimizes 
long-term endoplasmic reticulum function to protect 
cells from chronic stress. Dev Cell 2007;13:351-364.

65. Nadanaka S, Okada T, Yoshida H, Mori K. Role of 
disulfide bridges formed in the luminal domain of 
ATF6 in sensing endoplasmic reticulum stress. Mol 
Cell Biol 2007;27:1027-1043.

66. Kokame K, Kato H, Miyata T. Identification of ERSE-
II, a new cis-acting element responsible for the ATF6-
dependent mammalian unfolded protein response. J 
Biol Chem 2001;276:9199-9205.

67. Wang Y, Shen J, Arenzana N, Tirasophon W, Kaufman  
RJ, Prywes R. Activation of ATF6 and an ATF6 DNA 
binding site by the endoplasmic reticulum stress 
response. J Biol Chem 2000;275:27013-27020.

68. Yamamoto K, Yoshida H, Kokame K, Kaufman RJ, 
Mori K. Differential contributions of ATF6 and XBP1 
to the activation of endoplasmic reticulum stress-
responsive cis-acting elements ERSE, UPRE and 
ERSE-II. J Biochem 2004;136:343-350.

69. van Huizen R, Martindale JL, Gorospe M, Holbrook 
NJ. P58IPK, a novel endoplasmic reticulum stress-
inducible protein and potential negative regulator of 
eIF2alpha signaling. J Biol Chem 2003;278:15558-15564.

70. Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, 
Panning B, et al. IRE1 signaling affects cell fate during 
the unfolded protein response. Science 2007;318:944-949.

71. Kadowaki H, Nishitoh H, Ichijo H. Survival and 
apoptosis signals in ER stress: the role of protein 
kinases. J Chem Neuroanat 2004;28:93-100.

72. Breckenridge DG, Germain M, Mathai JP, Nguyen M, 
Shore GC. Regulation of apoptosis by endoplasmic 
reticulum pathways. Oncogene 2003;22:8608-8618.

73. Kaufman RJ. Orchestrating the unfolded protein 
response in health and disease. J Clin Invest 
2002;110:1389-1398.

74. Lockshin RA, Williams CM. Programmed cell death. 
II. Endocrine potentiation of the breakdown of the 
intersegmental muscles of silkmoths. J Insect Physiol 
1964;10:643-649.

75. Clarke PGH. Developmental cell death: 
morphological diversity and multiple mechanisms. 
Anat Embryol (Berl) 1990;181:195-213.

76. Cunningham TJ. Naturally occurring neuron death 
and its regulation by developing neural pathways. Int 
Rev Cytol 1982;74:163-186.

77. Schweichel JU, Merker HJ. The morphology of 
various types of cell death in prenatal tissues. 
Teratology 1973;7:253-266.

78. Oppenheim RW. Naturally-occurring cell death 
during neural development. Trends Neurosci 
1985;8:487-493.

79. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, 
Yanker BA, et al. Caspase-12 mediates endoplasmic-
reticulum-specific apoptosis and cytotoxicity by 
amyloid-beta. Nature 2000;403:98-103.

80. Oyadomari S, Koizumi A, Takeda K, Gotoh T, Akira 
S, Araki E, et al. Targeted disruption of the Chop 
gene delays endoplasmic reticulum stress-mediated 
diabetes. J Clin Invest 2002;109:525-532.

81. Wei MC, Zong WX, Cheng EH, Lindsten T, 
Panoutsakopoulou V, Ross AJ, et al. Proapoptotic 
BAX and BAK: a requisite gateway to mitochondrial 
dysfunction and death. Science 2001;292:727-730.

82. Nishitoh H, Matsuzawa A, Tobiume K, Saegusa 
K, Takeda K, Inoue K, et al. ASK1 is essential for 
endoplasmic reticulum stress-induced neuronal cell 
death triggered by expanded polyglutamine repeats. 
Genes Dev 2002;16:1345-1355.

83. Yamamoto K, Ichijo H, Korsmeyer SJ. BCL-2 is 
phosphorylated and inactivated by an ASK1/
Jun N-terminal protein kinase pathway normally 
activated at G2/M. Mol Cell Biol 1999;19:8469-8478.

84. Aoki H, Kang PM, Hampe J, Yoshimura K, Noma T, 
Matsuzaki M, et al. Direct activation of mitochondrial 
apoptosis machinery by c-Jun N-terminal kinase in 
adult cardiac myocytes. J Biol Chem 2002;277:10244-10250.

85. Lei K, Davis RJ. JNK phosphorylation of Bim-related 
members of the Bcl2 family induces Bax-dependent 
apoptosis. Proc Natl Acad Sci U S A 2003;100:2432-2437.

86. Putcha GV, Le S, Frank S, Besirli CG, Clark K, Chu B, 
et al. JNK-mediated BIM phosphorylation potentiates 
BAX-dependent apoptosis. Neuron 2003;38:899-914.



Endoplasmic Reticulum Stress; Haeri and Knox

56 JOURNAL OF OPHTHALMIC AND VISION RESEARCH 2012; Vol. 7, No. 1

87. Tobiume K, Saitoh M, Ichijo H. Activation of 
apoptosis signal-regulating Kinase 1 by the stress-
induced activating phosphorylation of pre-formed 
oligomer. J Cell Physiol 2002;191:95-104.

88. Yang Q, Kim YS, Lin Y, Lewis J, Neckers L, Liu 
ZG. Tumour necrosis factor receptor 1 mediates 
endoplasmic reticulum stress-induced activation of 
the MAP kinase JNK. EMBO Rep 2006;7:622-627.

89. Zhao C, Lu S, Zhou X, Zhang X, Zhao K, Larsson 
C. A novel locus (RP33) for autosomal dominant 
retinitis pigmentosa mapping to chromosomal region 
2cen-q12.1. Hum Genet 2006;119:617-623.

90. Wang XZ, Lawson B, Brewer JW, Zinszner H, Sanjay 
A, Mi LJ, et al. Signals from the stressed endoplasmic 
reticulum induce C/EBP-homologous protein 
(CHOP/GADD153). Mol Cell Biol 1996;16:4273-4280.

91. Nishiguchi KM, Friedman JS, Sandberg MA, 
Swaroop A, Berson EL, Dryja TP. Recessive NRL 
mutations in patients with clumped pigmentary 
retinal degeneration and relative preservation 
of blue cone function. Proc Natl Acad Sci U S A 
2004;101:17819-17824.

92. Barone MV, Crozat A, Tabaee A, Philipson L, Ron 
D. CHOP (GADD153) and its oncogenic variant, 
TLS-CHOP, have opposing effects on the induction of 
G1/S arrest. Genes Dev 1994;8:453-464.

93. McCullough KD, Martindale JL, Klotz LO, Aw TY, 
Holbrook NJ. Gadd153 sensitizes cells to endoplasmic 
reticulum stress by down-regulating Bcl2 and 
perturbing the cellular redox state. Mol Cell Biol 
2001;21:1249-1259.

94. Southwood CM, Garbern J, Jiang W, Gow A. The 
unfolded protein response modulates disease 
severity in pelizaeus-merzbacher disease. Neuron 
2002;36:585-596.

95. Yan W, Frank CL, Korth MJ, Sopher BL, Novoa 
I, Ron D, et al. Control of PERK eIF2alpha kinase 
activity by the endoplasmic reticulum stress-induced 
molecular chaperone P58IPK. Proc Natl Acad Sci U S 
A 2002;99:15920-15925.

96. Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H. 
TRB3, a novel ER stress-inducible gene, is induced 
via ATF4-CHOP pathway and is involved in cell 
death. EMBO J 2005;24:1243-1255.

97. Yamaguchi H, Wang HG. CHOP is involved in 
endoplasmic reticulum stress-induced apoptosis by 
enhancing DR5 expression in human carcinoma cells. 
J Biol Chem 2004;279:45495-45502.

98. Puthalakath H, O’Reilly LA, Gunn P, Lee L, Kelly 
PN, Huntington ND, et al. ER stress triggers 
apoptosis by activating BH3-only protein bim. Cell 
2007;129:1337-1349.

99. Song B, Scheuner D, Ron D, Pennathur S, Kaufman 
RJ. Chop deletion reduces oxidative stress, improves 

beta cell function, and promotes cell survival in 
multiple mouse models of diabetes. J Clin Invest 
2008;118:3378-3389.

100. Tsukano H, Gotoh T, Endo M, Miyata K, Tazume 
H, Kadomatsu T, et al. The endoplasmic reticulum 
stress-C/EBP homologous protein pathway-
mediated apoptosis in macrophages contributes to 
the instability of atherosclerotic plaques. Arterioscler 
Thromb Vasc Biol 2010;30:1925-1932.

101. Fu HY, Okada K, Liao Y, Tsukamoto O, Isomura 
T, Asai M, et al. Ablation of C/EBP homologous 
protein attenuates endoplasmic reticulum-mediated 
apoptosis and cardiac dysfunction induced by 
pressure overload. Circulation 2010;122:361-369.

102. Namba T, Tanaka K, Ito Y, Ishihara T, Hoshino T, 
Gotoh T, et al. Positive role of CCAAT/enhancer-
binding protein homologous protein, a transcription 
factor involved in the endoplasmic reticulum stress 
response in the development of colitis. Am J Pathol 
2009;174:1786-1798.

103. Silva RM, Ries V, Oo TF, Yarygina O, Jackson-Lewis 
V, Ryu EJ, et al. CHOP/GADD153 is a mediator 
of apoptotic death in substantia nigra dopamine 
neurons in an in vivo neurotoxin model of 
parkinsonism. J Neurochem 2005;95:974-986.

104. Saxena S, Cabuy E, Caroni P. A role for motoneuron 
subtype-selective ER stress in disease manifestations 
of FALS mice. Nat Neurosci 2009;12:627-636.

105. Zhang K, Kaufman RJ. Signaling the unfolded 
protein response from the endoplasmic reticulum. J 
Biol Chem 2004;279:25935-25938.

106. Zhou Z, Licklider LJ, Gygi SP, Reed R. 
Comprehensive proteomic analysis of the human 
spliceosome. Nature 2002;419:182-185.

107. Liochev SI, Fridovich I. Superoxide and iron: 
partners in crime. IUBMB Life 1999;48:157-161.

108. Raha S, Robinson BH. Mitochondria, oxygen free 
radicals, disease and ageing. Trends Biochem Sci 
2000;25:502-508.

109. Benson AM, Batzinger RP, Ou SY, Bueding E, Cha 
YN, Talalay P. Elevation of hepatic glutathione 
S-transferase activities and protection against 
mutagenic metabolites of benzo(a)pyrene by dietary 
antioxidants. Cancer Res 1978;38:4486-4495.

110. Benson AM, Hunkeler MJ, Talalay P. Increase 
of NAD(P)H:quinone reductase by dietary 
antioxidants: possible role in protection against 
carcinogenesis and toxicity. Proc Natl Acad Sci U S A 
1980;77:5216-5220.

111. O’Brien PJ. Glycosylation of rhodopsin. Methods 
Enzymol 1982;81:783-788.

112. Benson AM, Cha YN, Bueding E, Heine HS, Talalay 
P. Elevation of extrahepatic glutathione S-transferase 



Endoplasmic Reticulum Stress; Haeri and Knox

57JOURNAL OF OPHTHALMIC AND VISION RESEARCH 2012; Vol. 7, No. 1

and epoxide hydratase activities by 2(3)-tert-butyl-4-
hydroxyanisole. Cancer Res 1979;39:2971-2977.

113. Meister A. New aspects of glutathione biochemistry 
and transport-selective alteration of glutathione 
metabolism. Nutr Rev 1984;42:397-410.

114. Alam J, Camhi S, Choi AM. Identification of 
a second region upstream of the mouse heme 
oxygenase-1 gene that functions as a basal level and 
inducer-dependent transcription enhancer. J Biol 
Chem 1995;270:11977-11984.

115. Primiano T, Kensler TW, Kuppusamy P, Zweier JL, 
Sutter TR. Induction of hepatic heme oxygenase-1 
and ferritin in rats by cancer chemopreventive 
dithiolethiones. Carcinogenesis 1996;17:2291-2296.

116. Primiano T, Li Y, Kensler TW, Trush MA, Sutter 
TR. Identification of dithiolethione-inducible gene-1 
as a leukotriene B4 12-hydroxydehydrogenase: 
implications for chemoprevention. Carcinogenesis 
1998;19:999-1005.

117. Rushmore TH, Morton MR, Pickett CB. The 
antioxidant responsive element. Activation by 
oxidative stress and identification of the DNA 
consensus sequence required for functional activity. 
J Biol Chem 1991;266:11632-11639.

118. Rushmore TH, King RG, Paulson KE, Pickett 
CB. Regulation of glutathione S-transferase Ya 
subunit gene expression: identification of a unique 
xenobiotic-responsive element controlling inducible 
expression by planar aromatic compounds. Proc Natl 
Acad Sci U S A 1990;87:3826-3830.

119. Chanas SA, Jiang Q, McMahon M, McWalter GK, 
McLellan LI, Elcombe CR, et al. Loss of the Nrf2 
transcription factor causes a marked reduction 
in constitutive and inducible expression of the 
glutathione S-transferase Gsta1, Gsta2, Gstm1, 
Gstm2, Gstm3 and Gstm4 genes in the livers of male 
and female mice. Biochem J 2002;365:405-416.

120. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, 
Katoh Y, et al. An Nrf2/small Maf heterodimer 
mediates the induction of phase II detoxifying 
enzyme genes through antioxidant response 
elements. Biochem Biophys Res Commun 
1997;236:313-322.

121. Ramos-Gomez M, Kwak MK, Dolan PM, Itoh 
K, Yamamoto M, Talalay P, et al. Sensitivity to 
carcinogenesis is increased and chemoprotective 
efficacy of enzyme inducers is lost in nrf2 
transcription factor-deficient mice. Proc Natl Acad 
Sci U S A 2001;98:3410-3415.

122. Morimitsu Y, Nakagawa Y, Hayashi K, Fujii H, 
Kumagai T, Nakamura Y, et al. A sulforaphane 
analogue that potently activates the Nrf2-
dependent detoxification pathway. J Biol Chem 
2002;277:3456-3463.

123. Thimmulappa RK, Mai KH, Srisuma S, Kensler 
TW, Yamamoto M, Biswal S. Identification of Nrf2-
regulated genes induced by the chemopreventive 
agent sulforaphane by oligonucleotide microarray. 
Cancer Res 2002;62:5196-5203.

124. Cullinan SB, Diehl JA. PERK-dependent activation 
of Nrf2 contributes to redox homeostasis and cell 
survival following endoplasmic reticulum stress. J 
Biol Chem 2004;279:20108-20117.

125. Punzo C, Xiong W, Cepko CL. Loss of daylight 
vision in retinal degeneration: are oxidative stress 
and metabolic dysregulation to blame? J Biol Chem 
2012;287:1642-1648.

126. Szegezdi E, Fitzgerald U, Samali A. Caspase-12 and 
ER-stress-mediated apoptosis: the story so far. Ann 
N Y Acad Sci 2003;1010:186-194.

127. Van de Craen M, Vandenabeele P, Declercq W, 
Van den Brande I, Van Loo G, Molemans F, et al. 
Characterization of seven murine caspase family 
members. FEBS Lett 1997;403:61-69.

128. Morishima N, Nakanishi K, Takenouchi H, Shibata 
T, Yasuhiko Y. An endoplasmic reticulum stress-
specific caspase cascade in apoptosis. Cytochrome 
c-independent activation of caspase-9 by 
caspase-12. J Biol Chem 2002;277:34287-34294.

129. Fischer H, Koenig U, Eckhart L, Tschachler E. 
Human caspase 12 has acquired deleterious 
mutations. Biochem Biophys Res Commun 
2002;293:722-726.

130. Momoi T. Caspases involved in ER stress-mediated 
cell death. J Chem Neuroanat 2004;28:101-105.

131. Macario AJ, Conway De Macario E. Sick 
chaperones, cellular stress, and disease. N Engl J 
Med 2005;353:1489-1501.

132. Lindholm D, Wootz H, Korhonen L. ER stress 
and neurodegenerative diseases. Cell Death Differ 
2006;13:385-392.

133. Bence NF, Sampat RM, Kopito RR. Impairment 
of the ubiquitin-proteasome system by protein 
aggregation. Science 2001;292:1552-1555.

134. Nishitoh H, Kadowaki H, Nagai A, Maruyama T, 
Yokota T, Fukutomi H, et al. ALS-linked mutant 
SOD1 induces ER stress- and ASK1-dependent 
motor neuron death by targeting Derlin-1. Genes 
Dev 2008;22:1451-1464.

135. Unterberger U, Höftberger R, Gelpi E, Flicker H, 
Budka H, Voigtländer T. Endoplasmic reticulum 
stress features are prominent in Alzheimer disease 
but not in prion diseases in vivo. J Neuropathol Exp 
Neurol 2006;65:348-357.

136. Katayama T, Imaizumi K, Sato N, Miyoshi K, 
Kudo T, Hitomi J, et al. Presenilin-1 mutations 
downregulate the signalling pathway of the 



Endoplasmic Reticulum Stress; Haeri and Knox

58 JOURNAL OF OPHTHALMIC AND VISION RESEARCH 2012; Vol. 7, No. 1

unfolded-protein response. Nat Cell Biol 1999;1:479-
485.

137. Terro F, Czech C, Esclaire F, Elyaman W, Yardin 
C, Baclet MC, et al. Neurons overexpressing 
mutant presenilin-1 are more sensitive to apoptosis 
induced by endoplasmic reticulum-Golgi stress. J 
Neurosci Res 2002;69:530-539.

138. Milhavet O, Martindale JL, Camandola S, Chan SL, 
Gary DS, Cheng A, et al. Involvement of Gadd153 
in the pathogenic action of presenilin-1 mutations. J 
Neurochem 2002;83:673-681.

139. Dawson TM, Dawson VL. Rare genetic mutations 
shed light on the pathogenesis of Parkinson 
disease. J Clin Invest 2003;111:145-151.

140. Takahashi R, Imai Y, Hattori N, Mizuno Y. Parkin 
and endoplasmic reticulum stress. Ann N Y Acad 
Sci 2003;991:101-106.

141. Imai Y, Soda M, Takahashi R. Parkin suppresses 
unfolded protein stress-induced cell death through 
its E3 ubiquitin-protein ligase activity. J Biol Chem 
2000;275:35661-35664.

142. Petrucelli L, O’Farrell C, Lockhart PJ, Baptista M, 
Kehoe K, Vink L, et al. Parkin protects against the 
toxicity associated with mutant alpha-synuclein: 
proteasome dysfunction selectively affects 
catecholaminergic neurons. Neuron 2002;36:1007-
1019.

143. Paulson HL, Bonini NM, Roth KA. Polyglutamine 
disease and neuronal cell death. Proc Natl Acad Sci 
U S A 2000;97:12957-12958.

144. Kouroku Y, Fujita E, Jimbo A, Kikuchi T, Yamagata 
T, Momoi MY, et al. Polyglutamine aggregates 
stimulate ER stress signals and caspase-12 
activation. Hum Mol Genet 2002;11:1505-1515.

145. Harjes P, Wanker EE. The hunt for huntingtin 
function: interaction partners tell many different 
stories. Trends Biochem Sci 2003;28:425-433.

146. Gervais FG, Singaraja R, Xanthoudakis S, 
Gutekunst CA, Leavitt BR, Metzler M, et al. 
Recruitment and activation of caspase-8 by the 
Huntingtin-interacting protein Hip-1 and a novel 
partner Hippi. Nat Cell Biol 2002;4:95-105.

147. Ybe JA, Mishra S, Helms S, Nix J. Crystal Structure 
at 2.8 A of the DLLRKN-containing coiled-coil 
domain of huntingtin-interacting protein 1 (HIP1) 
reveals a surface suitable for clathrin light chain 
binding. J Mol Biol 2007;367:8-15.

148. Kovacs GG, Budka H. Prion diseases: from protein 
to cell pathology. Am J Pathol 2008;172:555-565.

149. Kondo S, Saito A, Hino SI, Murakami T, Ogata M, 
Kanemoto S, et al. BBF2H7, a novel transmembrane 
bZIP transcription factor, is a new type of 
endoplasmic reticulum stress transducer. Mol Cell 

Biol 2007;27:1716-1729.

150. DuRose JB, Tam AB, Niwa M. Intrinsic capacities of 
molecular sensors of the unfolded protein response 
to sense alternate forms of endoplasmic reticulum 
stress. Mol Biol Cell 2006;17:3095-3107.

151. Xu C, Bailly-Maitre B, Reed JC. Endoplasmic 
reticulum stress: cell life and death decisions. J Clin 
Invest 2005;115:2656-2664.

152. Rutkowski DT, Arnold SM, Miller CN, Wu J, Li 
J, Gunnison KM, et al. Adaptation to ER stress is 
mediated by differential stabilities of pro-survival 
and pro-apoptotic mRNAs and proteins. PLoS Biol 
2006;4:e374.

153. Surguchev A, Surguchov A. Conformational 
diseases: looking into the eyes. Brain Res Bull 
2010;81:12-24.

154. Salminen A, Kauppinen A, Hyttinen JM, Toropainen 
E, Kaarniranta K. Endoplasmic reticulum stress 
in age-related macular degeneration: trigger for 
neovascularization. Mol Med 2010;16:535-542.

155. Jun AS, Meng H, Ramanan N, Matthaei M, 
Chakravarti S, Bonshek R, et al. An alpha 2 
collagen VIII transgenic knock-in mouse model of 
Fuchs endothelial corneal dystrophy shows early 
endothelial cell unfolded protein response and 
apoptosis. Hum Mol Genet 2012;21:384-393.

156. Watson GW, Andley UP. Activation of the 
unfolded protein response by a cataract-associated 
αA-crystallin mutation. Biochem Biophys Res 
Commun 2010;401:192-196.

157. Firtina Z, Danysh BP, Bai X, Gould DB, Kobayashi T, 
Duncan MK. Abnormal expression of collagen IV in 
lens activates unfolded protein response resulting in 
cataract. J Biol Chem 2009;284:35872-35884.

158. Carbone MA, Chen Y, Hughes GA, Weinreb RN, 
Zabriskie NA, Zhang K, et al. Genes of the unfolded 
protein response pathway harbor risk alleles for 
primary open angle glaucoma. PLoS 2011;6:e20649.

159. Bonapace G, Waheed A, Shah GN, Sly WS. 
Chemical chaperones protect from effects of 
apoptosis-inducing mutation in carbonic anhydrase 
IV identified in retinitis pigmentosa 17. Proc Natl 
Acad Sci U S A 2004;101:12300-12305.

160. Datta R, Waheed A, Bonapace G, Shah GN, Sly WS. 
Pathogenesis of retinitis pigmentosa associated with 
apoptosis-inducing mutations in carbonic anhydrase 
IV. Proc Natl Acad Sci U S A 2009;106:3437-3442.

161. Rebello G, Ramesar R, Vorster A, Roberts L, 
Ehrenreich L, Oppon E, et al. Apoptosis-inducing 
signal sequence mutation in carbonic anhydrase IV 
identified in patients with the RP17 form of retinitis 
pigmentosa. Proc Natl Acad Sci U S A 2004;101:6617-
6622.



Endoplasmic Reticulum Stress; Haeri and Knox

59JOURNAL OF OPHTHALMIC AND VISION RESEARCH 2012; Vol. 7, No. 1

162. Kanekura K, Suzuki H, Aiso S, Matsuoka M. 
ER stress and unfolded protein response in 
amyotrophic lateral sclerosis. Mol Neurobiol 
2009;39:81-89.

163. Matus S, Glimcher LH, Hetz C. Protein folding 
stress in neurodegenerative diseases: a glimpse into 
the ER. Curr Opin Cell Biol 2011;23:239-252.

164. Gorbatyuk MS, Knox T, LaVail MM, Gorbatyuk 
OS, Noorwez SM, Hauswirth WW, et al. 
Restoration of visual function in P23H rhodopsin 
transgenic rats by gene delivery of BiP/Grp78. Proc 
Natl Acad Sci U S A 2010;107:5961-5966.

165. Kang MJ, Ryoo HD. Suppression of retinal 
degeneration in Drosophila by stimulation of ER-
associated degradation. Proc Natl Acad Sci U S A 
2009;106:17043-17048.

166. Mendes CS, Levet C, Chatelain G, Dourlen P, 
Fouillet A, Dichtel-Danjoy ML, et al. ER stress 
protects from retinal degeneration. EMBO J 
2009;28:1296-1307.

167. Vogel M, Mayer MP, Bukau B. Allosteric regulation 
of Hsp70 chaperones involves a conserved 
interdomain linker. J Biol Chem 2006;281:38705-38711.

168. Ethen CM, Reilly C, Feng X, Olsen TW, 
Ferrington DA. The proteome of central and 
peripheral retina with progression of age-related 
macular degeneration. Invest Ophthalmol Vis Sci 
2006;47:2280-2290.

169. Tuo J, Bojanowski CM, Zhou M, Shen D, Ross RJ, 
Rosenberg KL, et al. Murine ccl2/cx3cr1 deficiency 
results in retinal lesions mimicking human age-
related macular degeneration. Invest Ophthalmol Vis 
Sci 2007;48:3827-3836.

170. Cohen FE, Kelly JW. Therapeutic approaches to 
protein-misfolding diseases. Nature 2003;426:905-
909.

171. Chaudhuri TK, Paul S. Protein-misfolding diseases 
and chaperone-based therapeutic approaches. 
FEBS J 2006;273:1331-1349.

172. Bernier V, Lagacé M, Bichet DG, Bouvier M. 
Pharmacological chaperones: potential treatment 
for conformational diseases. Trends Endocrinol 
Metab 2004;15:222-228.

173. Papp E, Csermely P. Chemical chaperones: 
mechanisms of action and potential use. Handb Exp 
Pharmacol 2006;172:405-416.

174. Shin SH, Murray GJ, Kluepfel-Stahl S, Cooney 
AM, Quirk JM, Schiffmann R, et al. Screening for 
pharmacological chaperones in Fabry disease. 
Biochem Biophys Res Commun 2007;359:168-173.

175. Figler RA, Omote H, Nakamoto RK, Al-
Shawi MK. Use of chemical chaperones in the 
yeast Saccharomyces cerevisiae to enhance 

heterologous membrane protein expression: 
high-yield expression and purification of human 
P-glycoprotein. Arch Biochem Biophys 2000;376:34-46.

176. Skach WR. Pharmacological chaperoning: two ‘hits’ 
are better than one. Biochem J 2007;406:e1-2.

177. Lai E, Teodoro T, Volchuk A. Endoplasmic 
reticulum stress: signaling the unfolded protein 
response. Physiology (Bethesda) 2007;22:193-201.

178. Liu CY, Wong HN, Schauerte JA, Kaufman RJ. The 
protein kinase/endoribonuclease IRE1alpha that 
signals the unfolded protein response has a luminal 
N-terminal ligand-independent dimerization 
domain. J Biol Chem 2002;277:18346-18356.

179. Illing ME, Rajan RS, Bence NF, Kopito RR. A 
rhodopsin mutant linked to autosomal dominant 
retinitis pigmentosa is prone to aggregate and 
interacts with the ubiquitin proteasome system. J 
Biol Chem 2002;277:34150-34160.

180. Noorwez SM, Kuksa V, Imanishi Y, Zhu L, Filipek 
S, Palczewski K, et al. Pharmacological chaperone-
mediated in vivo folding and stabilization of the 
P23H-opsin mutant associated with autosomal 
dominant retinitis pigmentosa. J Biol Chem 
2003;278:14442-14450.

181. Noorwez SM, Malhotra R, McDowell JH, Smith 
KA, Krebs MP, Kaushal S. Retinoids assist the 
cellular folding of the autosomal dominant retinitis 
pigmentosa opsin mutant P23H. J Biol Chem 
2004;279:16278-16284.

182. Surgucheva I, Ninkina N, Buchman VL, Grasing 
K, Surguchov A. Protein aggregation in retinal 
cells and approaches to cell protection. Cell Mol 
Neurobiol 2005;25:1051-1066.

183. Balch WE, Morimoto RI, Dillin A, Kelly JW. 
Adapting proteostasis for disease intervention. 
Science 2008;319:916-919.

184. Perlmutter DH. Chemical chaperones: a 
pharmacological strategy for disorders of protein 
folding and trafficking. Pediatr Res 2002;52:832-836.

185. Erbay E, Babaev VR, Mayers JR, Makowski 
L, Charles KN, Snitow ME, et al. Reducing 
endoplasmic reticulum stress through a 
macrophage lipid chaperone alleviates 
atherosclerosis. Nat Med 2009;15:1383-1391.

186. Ozcan L, Ergin AS, Lu A, Chung J, Sarkar S, Nie D, 
et al. Endoplasmic reticulum stress plays a central 
role in development of leptin resistance. Cell Metab 
2009;9:35-51.

187. Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, 
Vaillancourt E, Smith RO, et al. Chemical 
chaperones reduce ER stress and restore glucose 
homeostasis in a mouse model of type 2 diabetes. 
Science 2006;313:1137-1140.


