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Abstract
Background: The successful interaction of bacterial pathogens with host tissues requires the sensing of specific
chemical and physical cues. The human gut contains a huge number of neurons involved in the secretion and
sensing of a class of neuroendocrine hormones called catecholamines. Recently, in Escherichia coli O157:H7, the
catecholamines adrenaline and noradrenaline were shown to act synergistically with a bacterial quorum sensing
molecule, autoinducer 3 (AI-3), to affect bacterial virulence and motility. We wished to investigate the impact of
adrenaline on the biology of Salmonella spp.

Results: We have determined the effect of adrenaline on the transcriptome of the gut pathogen Salmonella
enterica serovar Typhimurium. Addition of adrenaline led to an induction of key metal transport systems within
30 minutes of treatment. The oxidative stress responses employing manganese internalisation were also elicited.
Cells lacking the key oxidative stress regulator OxyR showed reduced survival in the presence of adrenaline and
complete restoration of growth upon addition of manganese. A significant reduction in the expression of the
pmrHFIJKLM antimicrobial peptide resistance operon reduced the ability of Salmonella to survive polymyxin B
following addition of adrenaline. Notably, both phenotypes were reversed by the addition of the β-adrenergic
blocker propranolol. Our data suggest that the BasSR two component signal transduction system is the likely
adrenaline sensor mediating the antimicrobial peptide response.

Conclusion: Salmonella are able to sense adrenaline and downregulate the antimicrobial peptide resistance pmr
locus through the BasSR two component signalling system. Through iron transport, adrenaline may affect the
oxidative stress balance of the cell requiring OxyR for normal growth. Both adrenaline effects can be inhibited by
the addition of the β-adrenergic blocker propranolol. Adrenaline sensing may provide an environmental cue for
the induction of the Salmonella stress response in anticipation of imminent host-derived oxidative stress.
However, adrenaline may also serve in favour of the host defences by lowering antimicrobial peptide resistance
and hence documenting for the first time such a function for a hormone.
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Background
Bacterial pathogens can sense a variety of physical and
chemical niche-specific cues enabling them to physiolog-
ically adapt and modulate virulence to survive and cause
disease. To enable successful host-pathogen interactions it
is increasingly recognised that bacteria must also respond
to a diverse range of host effector molecules. The term
"microbial endocrinology" was first used to describe the
interactions of microbes with the neuroendocrine envi-
ronment of their host [1]. Catecholamine hormones like
adrenaline and noradrenaline are released in the blood-
stream and are involved in the regulation of a wide variety
of host physiological processes. Current data suggests that
catecholamines can induce DNA damage via production
of hydroxyl radicals in the presence of iron [2]. More
recently, adrenaline was implicated in the production of
hydroxyl radicals in rat hepatocytes via an adrenorecep-
tor-mediated mechanism [3].

There is evidence that non-neural cells like peripheral
human T lymphocytes contain and are able to synthesize
catecholamines from normal precursors in physiologic
concentrations [4,5]. Recently, bacterial lipopolysaccha-
ride has been shown to induce production and release of
adrenaline and noradrenaline by macrophages and neu-
trophils [6]. It was therefore suggested that the phagocytic
system represents a diffusely expressed adrenergic organ
[6].

Both adrenaline and noradrenaline are present in the gas-
trointestinal system where they mediate normal gut phys-
iology [7]. During infection, plasma levels of
catecholamines rise in an increase previously associated
with the onset of infection [8]. There is evidence to suggest
that general stress can alter levels of these hormones in the
gut and could act as an environmental cue for pathogens
[8,9].

Indeed, catecholamines have been shown to induce both
Gram negative and Gram positive bacterial growth via the
provision of iron [10-15]. Noradrenaline affects produc-
tion of the K99 pilus adhesin of enterotoxigenic
Escherichia coli and also Shiga toxin in E. coli O157:H7
thus influencing the virulence fitness of these pathogens
[16,17].

Although catecholamines represent a eukaryotic cell sig-
nal to mediate a concerted organ function, bacteria utilise
a different form of communication mediated by small
molecules termed "autoinducers" in a process called
"quorum sensing" [18-20]. Briefly, bacteria produce and
sense autoinducers (AIs) in a concentration-dependent
fashion. Upon achievement of a critical concentration of
autoinducer, a signal is generated to regulate processes
such as bioluminescence, antibiotic biosynthesis, plasmid

conjugation, biofilm formation, DNA uptake compe-
tence, sporulation, and virulence [21-23]. Recently, a
novel autoinducer, AI-3, produced by E. coli and other
Gram negative bacteria was shown to act in synergy with
adrenaline and noradrenaline to regulate E. coli genes
involved in motility and virulence independently of
enterobactin-mediated iron transport [24]. Furthermore,
α adrenergic antagonists were able to block these interac-
tions suggesting sensory transduction through common
receptors [25].

In this report we dissect the global effects of adrenaline on
the Salmonella enterica serovar Typhimurium (S. Typhimu-
rium) transcriptome. Our data show that approximately
0.6% of the transcriptome of the pathogen is significantly
regulated by adrenaline. Most of the genes affected repre-
sent those involved in transport but we also see alterations
in genes encoding proteins of unknown functions. We
also notice changes in levels of regulators and signal trans-
duction genes.

The major feature of the S. Typhimurium adrenaline
response is the upregulation of genes involved in metal
homeostasis and oxidative stress. Prompted by the tran-
scriptomic data we investigated the expression of the
manganese superoxide dismutase (sodA), and the regula-
tors of iron homeostasis (fur) and oxidative stress (oxyR).
Our evidence suggests that adrenaline provides an envi-
ronmental cue to alert S. Typhimurium against impend-
ing macrophage-derived peroxide stress as shown by the
reduced ability of S. Typhimurium lacking OxyR to sur-
vive in the presence of adrenaline.

Furthermore we identified a downregulation of the pmrH-
FIJKLM operon which encodes a well characterised lipid
A-modification system that provides resistance to the cat-
ionic antimicrobial peptide polymyxin B. We investigated
the expression of the pmr locus and suggest adrenaline-
mediated reduction in antimicrobial peptide resistance is
mediated by the BasSR two component signal transduc-
tion system.

The fact that adrenaline provides an environmental cue
that alerts the bacterial defences against oxidative stress as
well as acting in favour of the host by inducing a reduction
in bacterial antimicrobial peptide resistance is a unique
combination. This finding represents a novel insight con-
cerning the role of hormones in pathogen-host interac-
tions.

Methods
Bacterial Strains, Plasmids, and Growth Conditions
S. enterica serovar Typhimurium strains and plasmids are
shown in Table 1. Strains were grown overnight in 5 ml LB
broth and 25 μl of the overnight culture were used to inoc-
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ulate 25 ml of LB in a 250 ml conical flask at 37°C, 200
rpm. After 3.5 h growth (OD600~1.0), adrenaline was
added at a final concentration of 50 μM from a fresh stock
(100 mM). Incubation was continued for an additional
30 minutes, cultures were harvested by centrifugation and

RNA extracted as described below. General physiological,
molecular biological and protein manipulations were per-
formed according to standard laboratory protocols
[26,27]. Antibiotics were added to cultures at designated
concentrations [27]. The gene content of strains used in

Table 1: Strains plasmids and primers used in this study

Strains

Name Genotype Reference

SL1344 Parent strain [73]
SL1344oxyR SL1344 ΔoxyR This work
SL1344fur SL1344 Δfur This work
SL1344sodA SL1344 ΔsodA This work
SL1344basS SL1344 ΔbasS This work
SL1344pA SL1344 (pMK1lux-PsodA) This work
SL1344pM SL1344 (pMK1lux-PpmrH) This work

Plasmids

Name Description Reference

pBR322 Cloning vector [74]
pSB377 luxCDABE reporter operon [75]
pMK1lux pBR322 with luxCDABE operon and MCS This work
pMK1lux-PsodA pMK1lux with PsodA cloned as 5'EcoRI-3'BamHI fragment This work
pMK1lux-PpmrH pMK1lux with PpmrH cloned as 5'EcoRI-3'BamHI fragment This work

Primers

Name Sequence Comment

sodA5 GCGGAATTCATCAACAGGCG cloning
sodA3 GCGGGATCCATTATTGTCGAGC cloning
pmr5 CGCGAATTCGCGAAATAGCGTTTG cloning
pmr3 CGCGGATCCATTGAAAGCCGCTTTTC cloning
pmr q5 ATGTCGGACTTTTTGCCTTTC qPCR
pmr q3 ATATTGATTGCCAGTTAGCC qPCR
sodA q5 ATGAGTTATACACTGCCATC qPCR
sodA q3 GCAAACTCAGGCAGGTTTTC qPCR
fhuA q5 ATGGCGCGTCTTAAAACTGC qPCR
fhuA q3 GCGGCAGGCGCTGCGGTTAC qPCR
invF q5 ATGTCATTTTCTGAAAGCCG qPCR
invF q3 AATGCCAGTAATTTGCTGAG qPCR
entE q5 ATGCGTATACCTTTCACCCG qPCR
entE q3 CTGAATGCGCGCTCGCCTTC qPCR
bas5 CGCACGGTTCGCGGGTTTGG λ-red
bas3 GTAGTGTGCTGATTGTCAGC λ-red
bas-P1 CTACATGCTGGTTGCCACTGAGGAAAGCTAAGTGAGCCTGGTGTAGGCTGGAGCTGCTTC λ-red
bas-P4 AGTTTTATCTATGTGTGGGTCACGACGTATTAAACGCCTGATTCCGGGGATCCGTCGACC λ-red
fur5 AGTGCAATTTCTGTCACTTC λ-red
fur3 CAGGAAAGAGGAGGATATAA λ-red
fur-P1 TCTAATGAAGTGAATCGTTTAGCAACAGGACAGATTCCGCGTGTAGGCTGGAGCTGCTTC λ-red
fur-P4 AAAAGCCAACCGGGCGGTTGGCTCTTCGAAAGATTTACACATTCCGGGGATCCGTCGACC λ-red
oxy5 TAATCGTTCATTGCTATGCT λ-red
oxy3 AACACCACCTTTAACTACCC λ-red
oxy-P1 ACCTATCGCCATGAACTATCGTGGCGACGGAGGATGAATAGTGTAGGCTGGAGCTGCTTC λ-red
oxy-P4 TCGGGTTGCGGCGTTGAACGGCTTAAACCGCCTGTTTTAAATTCCGGGGATCCGTCGACC λ-red

Restriction endonuclease sites are in bold.
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transcriptomic experiments was confirmed by genomic
indexing [28].

Transcriptomics experimental design and methodology
RNA was isolated from cultures according to protocols
described on the IFR microarray web site
http:www.ifr.ac.ufety/microarrays/protocolRNAextrac
tionandpurifica tion.pdf. Briefly, two OD units of culture was
fixed by incubation on ice with a 1/5 culture volume of 5%
phenol and 95% ethanol to immediately stop RNA transcrip-
tion or degradation. Cultures were centrifuged at 4,000 rpm
for 10 minutes, and the resulting pellets were frozen at -
80°C. RNA was subsequently isolated using an SV Total RNA
system (Promega) following the protocols provided by the
manufacturer. The quality of the RNA was verified using an
Agilent 2100 Bioanalyzer (Agilent), and the quantity was
determined with an ND-1000 spectrophotometer (Nano-
drop). Microarray hybridisation and scanning were per-
formed at the Institute of Food Research, (IFR) Norwich as
described previously [28,29] and according to protocols
described on the IFR microarray web site http://
www.ifr.ac.uk/safety/microarrays/#protocols. Briefly, RNA
samples (16 μg) from three biological replicates and two
technical replicates were labelled with Cy5-dCTP and hybrid-
ized to the IFR SALSA microarrays. Cy3-dCTP-labeled S.
Typhimurium genomic DNA was used as a common refer-
ence in an indirect comparison type experimental design
[30]. The IFR SALSA microarrays comprise 5080 genes from
5 different serovars of Salmonella http://www.ifr.ac.uk/safety/
microarrays/#microarrays.

Transcriptomics data analysis validation and in silico 
informatics
Microarrays were scanned and fluorescence intensities
quantified using GenePix Pro software, version 6.0 (Axon
Instruments, Inc.). Microarray features showing a refer-
ence signal lower than background plus 2 standard devia-
tions were discarded. Unequal dye incorporation was
compensated by median centering (see http://
www.ifr.ac.uk/safety/microarrays/#analysis). Transcrip-
tomic data from adrenaline containing LB cultures was
normalised to data from LB cultures without adrenaline
and significant differences at P ≤ 0.05 were determined
using a parametric-based statistical test by adjusting the
individual P-value with the Benjamini and Hochberg false
discovery rate multiple test correction [31]. All expression
data for genes discussed in the text have passed this filter
and are therefore statistically significant. These tests are
features of the GeneSpring™ 7.2 (Silicon Genetics) micro-
array analysis software package which was used for both
data visualisation and analysis. The analysis was based on
statistically significant differences displaying greater than
1.5 fold changes between LB cultures with and without
adrenaline. In general transcriptomic data are filtered to
only include equal to or greater than 2-fold differences,

however less than 2-fold changes can also be biologically
significant [32,33].

Validation of microarray transcriptomic data was performed
by quantitative RT-PCR (qPCR) analysis using the Qiagen
QuantiTect SYBR Green system and a Roche Lightcycler 480.
Primers used for validation analysis are listed in Table 1.
Motif searches on protein sequences were carried out using
"SMART" [34] and "PFAM" [35]. For protein homologies we
used BLAST http://www.ncbi.nlm.nih.gov/blast/Blast.cgi.

Construction of expression vectors
The luxCDABE operon was amplified by PCR from
pSB377 using primers lux5 and lux3 (Table 1). The PCR
product containing an engineered multiple cloning site
(MCS; EcoRI, SacI, KpnI, BamHI, XbaI, SnaBI) upstream of
the lux operon was then EcoRI/EagI digested and ligated to
EcoRI/EagI-cut pBR322 giving rise to pMK1lux. Promoters
were cloned using the EcoRI and BamHI restriction sites of
the MCS of pMK1lux. For a list of promoter primers and
plasmid constructs see Table 1.

Expression from promoter-lux transcriptional expression
vectors was evaluated by growing S. Typhimurium con-
taining the specific expression vector in 25 ml of LB in a
250 ml conical flask at 37°C, 200 rpm. After 3.5 h of
growth adrenaline (50 μM), propranolol (500 μM), or
water were added and incubation was continued for a fur-
ther 30 minutes. Samples (200 μl) were harvested, and the
optical density and luminescence were determined with a
Tecan Infinite200 spectrophotometer. Experiments were
repeated at least three times.

Adrenaline stress assay
For determination of stress resistance during exposure to
different adrenaline concentrations, bacteria were grown
overnight in 5 ml LB broth and 25 μl of the overnight cul-
ture was used to inoculate 25 ml of LB in a 250 ml conical
flask at 37°C, 200 rpm. After 3.5 hours growth
(OD600~1.0), the following, or combinations were added;
adrenaline (50 μM), propranolol (500 μM), manganese
(5 mM) or water. Incubation was continued for an addi-
tional 3 h, and serial dilutions were plated out on LB
plates. Experiments were repeated at least three times and
data are presented as survival numbers with standard error
bars.

Measurement of total Fe
This was done as described by Velayudhan et al., (2007),
with some modifications [36]. Bacteria were grown over-
night in LB (5 ml), then subcultured in 25 ml fresh LB and
grown at 37°C, 200 rpm for 2 h. Adrenaline (50 μM), pro-
pranolol (500 μM) or H2O was added and incubation was
continued for an additional 4 h. Cells were harvested,
washed twice in 25 ml of 10 mM EDTA, pH 8.0 and twice
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in 25 ml of analytical grade water (< 0.01p.p.m., Sigma).
The OD600 and the volume of the cell suspension in the
last wash were recorded. The final cell pellet was weighed
and then solubilised by resuspending in 0.75 ml of 30%
ultra-pure nitric acid at 80°C for 16 h. The volume was
increased to 7 ml with water before analysis by inductively
coupled plasma atomic emission spectroscopy (ICP-AES)
using a UNICAM 701 Series Emission Spectrometer
(Chemical and Materials Analysis, Newcastle University).
Five replicas per condition were carried out. Standard
error bars are shown.

Antimicrobial peptide assay
Cells were evaluated for their ability to resist killing by the
antimicrobial peptide polymyxin B. This was done as
described by Fields et al. (1989), with some modifications
[37]. Bacteria exposed to adrenaline (50 μM), propranolol
(500 μM) or water were aliquoted in a 96-well plate at a
concentration of 2 × 104 to 5 × 104 bacteria per well, in 50
μl of a solution containing 0.5% tryptone and 0.5%
sodium chloride. A 100 μl volume of antimicrobial pep-
tide was added (polymyxin B, 0.15 μg ml-1; Sigma) and
the plate was incubated at 37°C, 150 rpm for 1 h. Samples
were collected and viable counts performed by plating out
different dilutions on LB plates. Data are presented as col-
ony forming units and represent the average of three inde-
pendent experiments.

Array Express; Accession Number E-MEXP-1738.

Results and discussion
Microarray Analysis of Salmonella Adrenaline 
Transcriptome
During infection bacteria come into contact with a wide
range of host-derived molecules ranging from very small
molecular weight compounds to peptides and proteins.
Adrenaline is produced by the host in specialised organ
tissues [38]. Recently it was shown that phagocytes and
polymorphonuclear cells are capable of de novo produc-
tion of catecholamines, and when exposed to lipopolysac-
charide in vitro they release noradrenaline and adrenaline
[6]. These findings stimulated our interest in investigating
the effects of adrenaline on S. enterica serovar Typhimu-
rium. We used adrenaline at the concentration of 50 μM
to reflect experiments previously performed by others [24]
and sampled at 30 minutes post-addition.

The transcriptomic data showed that the addition of
adrenaline leads to a significant regulation (P ≤ 0.05) of
25 genes with alterations ranging from 0.4 to 2.3 fold
(Table 2). Interestingly, more that 52% of the adrenaline-
regulated genes were involved in transport and metabo-
lism and approximately a third encoded proteins of
unknown function (Fig 1).

The majority of the upregulated genes encoded compo-
nents involved in iron transport, microcin, and oxidative
stress resistance. Most of the genes displaying decreased
expression levels belonged to the BasSR-regulated pmrHF-
IJKLM operon which encodes a lipid A modification sys-
tem [39,40].

Among the downregulated genes was flgD, encoding a
flagellar basal body rod modification protein, and invF,
involved in Salmonella Pathogenicity Island 1 (SPI-1)
mediated Type 3 secretion (T3S). We did not observe a sig-
nificant difference in S. Typhimurium motility or the SPI-
1 mediated T3S secreted protein profile during exposure
to adrenaline (data not shown). However in E. coli, stud-
ies performed to assess the role of catecholamines on the
transcriptome have revealed significant changes in both
motility and T3S genes [41,42]. This may reflect impor-
tant biological differences between the two organisms
under the conditions tested. In agreement with our obser-
vations these studies also identified upregulation of iron
transport genes.

The transcriptomic results were validated by qPCR (Table
2) and also by the use of luminescent transcriptional
reporters and a range of phenotypic screens. We con-
structed promoter transcriptional fusions to investigate
the oxidative stress response using sodA (upregulated) and
the antimicrobial peptide resistance pmr operon (down-
regulated) as described below.

Transport systems affected by adrenaline in Salmonella
The majority of adrenaline-regulated genes are involved in
metal transport, uptake of siderophores and microcins
(Table 2 and Fig. 2). fhuA and fhuC encode components
of the hydroxamate-dependent iron transport system in
Salmonella spp. and are also the receptors for microcin J25
[43]. Microcin J25 stimulates the production of reactive
oxygen species such as superoxide ion (O2

-) in bacterial
cells, leading to damage via perturbation of the mem-
brane respiratory chain [44]. In E. coli the ferric hydroxa-
mate uptake receptor FhuA transports siderophores in a
TonB-dependent manner [45,46]. The exbBD system, par-
ticipating in the TonB-dependent uptake of microcin J25
in E. coli and responsible for enterochelin and B colicin
uptake [47] is also significantly upregulated. Induction of
such systems may provide a valuable insight into the way
adrenaline affects bacterial physiology to modulate host-
pathogen interactions during infection.

Two additional systems involved in manganese, sitAB and
iron transport, feoAB, [48] are also upregulated by adren-
aline. The sitABCD locus encodes an important trans-
porter of manganese and iron which is required for
resistance to H2O2 and for full virulence of S. Typhimu-
rium in animals [49-51]. SitA is also required for Salmo-
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Table 2: Adrenaline regulated genes of S. Typhimurium

A

Adrenaline Upregulated genes

KEGG annotation Product Fold change

Transport and metabolism

STM0192, fhuC ATP-binding component of hydroxymate-dependent iron transport 2.3
STM3159, exbB uptake of enterochelin; tonB-dependent uptake of B colicins 2.2
STM0191, fhuA outer membrane protein receptor for ferrichrome 2.0
STM3158, exbD uptake of enterochelin; tonB-dependent uptake of B colicins 2.0
STM0596,entE 2,3-dihydroxybenzoate-AMP ligase 1.8
STM3506, feoB ferrous iron transport protein B 1.8
STM3505,feoA ferrous iron transport protein A 1.8
STM2861, sitA fur regulated Salmonella Mn transporter 1.6
STM2862, sitB fur regulated Salmonella Mn transporter 1.5
Oxidative Stress

STM4055, sodA superoxide dismutase 1.9
Function unknown

STM1728, yciG putative cytoplasmic protein 1.8
STM2263, yojI putative ABC-type multidrug/protein/lipid transport system 1.7
STM1586 putative periplasmic protein, similar to E. coli putative receptor 1.7
STM1729,yciF putative cytoplasmic protein 1.7

B

Adrenaline Downregulated genes

KEGG annotation Product Fold change

Transport and metabolism

STM2299,yfbG (pmrI) transformylase 0.4
STM1935, ftn cytoplasmic ferritin 0.4
STM2297, yfbE (pmrH) 4-amino-4-deoxy-L-arabinose LPS-modifying enzyme 0.5
STM2298, pmrF glycosyl transferase 0.5
Surface structure

STM1176, flgD flagellar hook capping protein 0.7
SPI1-5

STM2899, invF invasion protein 0.6
Regulators, Signal Transduction

STM2301, pqaB (pmrK) polymyxin B resistance 0.6
STM3216 putative methyl-accepting chemotaxis protein II, aspartate sensor 

receptor
0.7

Function unknown

STM1936, yecH putative cytoplasmic protein 0.5
STM4293, yjdB putative integral membrane protein 0.6
STM2300, pmrJ cytoplasmic protein 0.6

C

Microarray Validation
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nella spp. virulence in macrophages by facilitating
manganese transport [52]. Bacterial accumulation of
manganese forms the basis for an alternative catalytic
detoxification of reactive oxygen species, the exact mecha-
nism of which is not yet completely understood [53]. We
hypothesise that intracellular manganese accumulation
reflected an adrenaline-induced mechanism to aid patho-
gen survival. The downregulation of the S. Typhimurium
ftn gene encoding a ferritin involved in iron storage [54],
may mirror the perturbation in the general metal pool
during exposure to adrenaline.

The superoxide dismutase, sodA, gene is also significantly
upregulated by adrenaline (Table 2). The S. Typhimurium
manganese-cofactored superoxide dismutase (SodA) is
involved in resistance to the early oxygen-dependent
microbicidal mechanisms of phagocytes [55]. Using a

luminescent sodA transcriptional reporter we observed a
slight (10%) but significant (P ≤ 0.05) increase in sodA
expression supporting the transcriptomic results and also
highlighting the presence of increased oxidative stress by
exposure to adrenaline (Fig. 3). The effect was not blocked
by addition of β-adrenergic blocker propranolol (Fig. 3).
We used a S. Typhimurium strain lacking sodA
(SL1344sodA) to further characterise the importance of
the superoxide dismutase in the response to adrenaline.
We did not observe a significant change in the numbers of
bacteria surviving exposure to 50 μM adrenaline when
compared to the wild type SL1344, suggesting that sodA is
not essential for survival during exposure to adrenaline
(data not shown).

The above S. Typhimurium transcriptional signature sug-
gests a dual role for adrenaline. On the one hand, by

Fold change

KEGG annotation Product Microarrays qPCR

STM0191, fhuA outer membrane protein receptor for ferrichrome 2.03 2.46
STM0596, entE 2,3-dihydroxybenzoate-AMP ligase 1.80 1.29
STM4055, sodA superoxide dismutase 1.90 1.18
STM2297, yfbE (pmrH) 4-amino-4-deoxy-L-arabinose LPS-modifying enzyme 0.45 0.45
STM2899, invF invasion protein 0.64 0.57

Table 2: Adrenaline regulated genes of S. Typhimurium (Continued)

The S. Typhimurium adrenaline-regulated transcriptomeFigure 1
The S. Typhimurium adrenaline-regulated transcriptome. Pie chart displaying number of genes in selected categories 
significantly altered upon addition of adrenaline (50 μM). A detailed list of the genes can be found in Table 2.
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inducing iron uptake systems, it serves as a warning prob-
ing the bacteria to adjust their metal ion transport in such
a way as to resist looming oxidative stress but, on the
other hand, facilitating increased susceptibility to micro-
cin assault by increasing microcin J25 receptor content.

OxyR and not Fur is essential for survival during adrenaline 
exposure
Oxidative stress resistance in bacterial cells is mediated by
enzymatic as well as non-enzymatic methods involving
manganese [53,56]. OxyR is a positive regulator of a range
of genes implicated in resistance to hydrogen peroxide
[56,57]. Fur fine-tunes the regulation of iron homeostasis
by controlling iron transport [56,58]. Having observed a
significant upregulation of iron and manganese trans-
porter genes by adrenaline, we examined the importance
of fur and oxyR during Salmonella exposure to adrenaline.
Exposure of SL1344 fur to 50 μM adrenaline had no effect
on its ability to grow in rich growth media suggesting fur-
mediated functions are not important in the adrenaline
response (data not shown). However, SL1344oxyR sur-
vived significantly less in the presence of adrenaline when
compared to wild type SL1344 with the phenotype being
blockable by the addition of the β-adrenergic blocker pro-
pranolol (Fig. 4A). To test if the effect was due to the abil-
ity of adrenaline to bind iron we treated SL1344oxyR with
metanephrine, a natural methylated metabolite of adren-
aline which is unable to bind iron [59]. Addition of 50 μM
metanephrine had no significant effect on the survival of

SL1344oxyR supporting the role of adrenaline-bound iron
in reducing the viability of the strain (Fig. 4A).

Manganese rescues oxyR in the presence of adrenaline
We tested the ability of manganese to improve survival of
SL1344oxyR treated with adrenaline by supplementing
the growth medium with the metal. Addition of 5 mM
manganese fully restored bacterial survival back to wild
type levels in SL1344oxyR treated with 50 μM adrenaline
(Fig. 4A). The importance of manganese in alleviating the
oxidative stress effect in cells is related to its ability to
reduce the effects of the Fenton reaction involving intrac-
ellular iron [53]. By a mechanism not fully elucidated yet,
manganese acts as a natural free radical detoxifying agent
reacting with superoxide and also hydrogen peroxide.

Measurement of the total metal ion concentration in cells
treated with 50 μM adrenaline as well as in the oxyR strain
supports the hypothesis that adrenaline induces oxidative
stress by promoting an increase in the intracellular iron
concentration (Fig. 4B). We observe a 4-fold increase in
the total iron concentration of cells treated with 50 μM
adrenaline when compared to the water-treated control
(Fig. 4B). Furthermore, addition of β-adrenergic blocker
propranolol blocks the adrenaline-mediated increase in
the total iron concentration (Fig. 4B). SL1344oxyR has sig-
nificantly increased total iron and reduced total manga-
nese concentration when compared to SL1344 (Fig. 4B,
C). This fact in conjunction with the adrenaline-induced
increase in intracellular iron may explain the reduced via-

Diagrammatic representation of major operons affected by adrenalineFigure 2
Diagrammatic representation of major operons affected by adrenaline. Chromosomal organisation of genes show-
ing a significant transcriptional change upon addition of adrenaline (50 μM). Respective fold change values in relation to the 
untreated control are displayed within the individual gene. Unaffected genes within an operon are represented by skewed lines.
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bility of SL1344oxyR upon adrenaline treatment and sub-
sequent rescuing of viability with manganese (Fig. 4A).
However, the role of propranolol in rescuing SL1344oxyR
during exposure to adrenaline may be independent of
manganese. This is highlighted by the reduction (~2 fold)
in total manganese levels upon exposure to propranolol.

Adrenaline may therefore induce oxidative stress via an
OxyR-dependent pathway in a manner reversible by the β-
adrenergic blocker propranolol and also by the non-enzy-
matic manganese-based oxidative stress detoxification
system.

Adrenaline reduces expression of the pmr locus and 
increases sensitivity to polymyxin B
Lipid A is a structural component of the lipopolysaccha-
ride (LPS) in the outer membrane of Gram-negative bac-
teria and plays an important role in bacterial pathogenesis
[60]. Polymyxin B, is a cationic antimicrobial peptide
which binds to lipid A and damages the cell envelope
[61]. Resistance to antimicrobial peptides has been shown
to contribute to persistence of S. Typhimurium in a variety
of niches ranging from the phagosomes within macro-

phages to the C. elegans intestine [62,63]. The pmrHFI-
JKLM operon encodes a set of proteins involved in
lipopolysaccharide modification and resistance to the cat-
ionic antimicrobial polypeptide polymyxin B [64,65]. The
resistance mechanism involves attachment of phos-
phoethanolamine and 4-amino-4-deoxy-L-arabinose
moieties on lipid A reducing its net negative charge and
limiting its interaction with polymyxin [39,66]. In S.
Typhimurium, the pmr locus is under the control of the
BasSR two component system [39,67].

To further elucidate the effect of adrenaline on the pmr
operon we constructed a transcriptional reporter fusion
driving expression of the luxCDABE operon under the
control of the pmr promoter. Addition of adrenaline sig-
nificantly (P ≤ 0.05) reduced expression from the pmr pro-
moter mirroring the array results (Fig. 5). The
transcriptional downregulation of the pmr locus by adren-
aline was fully reversible by the β-adrenergic blocker pro-
pranolol (Fig. 5).

We hypothesised that a reduction in expression of the pmr
locus would lead to increased sensitivity to the antimicro-
bial peptide polymyxin B. We tested the effect of adrena-
line on the ability of Salmonella to resist polymyxin B by
incubating Salmonella exposed to water or adrenaline to
the antimicrobial peptide as detailed in "Methods and
Materials". Pre-treatment of Salmonella with 50 μM adren-
aline resulted in a significant reduction in bacterial sur-
vival during exposure to polymyxin B when compared to
the water treated control (Fig. 6). The adrenaline-induced
reduction in the ability of Salmonella to resist polymyxin B
was also fully reversible by the β-adrenergic blocker pro-
pranolol (Fig. 5).

The above data show a direct and reversible reduction of
bacterial antimicrobial peptide resistance by a mamma-
lian hormone and hence a novel "antibacterial" role for
adrenaline. However, we note that Salmonella may have
adapted to this negative effect of adrenaline within mam-
malian hosts by increasing Lipid A deacylation and palmi-
toylation, thus favouring survival via reduced TLR-4
receptor-based bacterial signalling [68,69].

Adrenaline-induced sensitivity to polymyxin B may be 
mediated via the BasSR two component system
In enterohemorrhagic E. coli O157:H7 the QseBC two
component system senses adrenaline and is required for
full virulence in a rabbit animal model [70]. The E. coli
response to adrenaline was shown to be blockable by an
α-adrenergic antagonist [70]. In S. Typhimurium the
BasSR two component system controls expression of the
pmr locus and is implicated in the regulation of various
other genes [39,40,71]. The identity at the amino acid
level between the BasS and QseC sensor kinases is 31%

Adrenaline affects expression of sodAFigure 3
Adrenaline affects expression of sodA. A luminescent 
reporter fusion system (pMK1lux-PsodA) was used to assess 
expression of the sodA gene during exposure to adrenaline. 
Exposure of SL1344pA to adrenaline (50 μM) for 30 minutes 
resulted in a significant (10%) increase in sodA expression (P 
≤ 0.05). Addition of β-adrenergic blocker propranolol (500 
μM) did not reverse the effect of adrenaline. Luminescence is 
expressed as a percentage of the water addition control in 
relative light units per culture optical density (RLU/OD600). 
Experiments were repeated at least three times. Asterisk 
indicates significant difference by the student t-test. Standard 
error bars are shown. Water, H2O; Adrenaline, ADR; Pro-
pranolol, PO.
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Figure 4 (see legend on next page)
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(over 270 amino acids; BLAST). Based on this similarity
and also on the observed effects of adrenaline on the pmr
operon, we chose to further investigate the role of the sen-
sory protein BasS in the mediation of the adrenaline
response.

We constructed a S. Typhimurium SL1344 strain lacking
the membrane sensor kinase BasS (SL1344basS) and
tested its ability to survive polymyxin B in the presence or
absence of adrenaline. Survival of SL1344basS was signif-

icantly reduced (P ≤ 0.05) in the presence of polymyxin B
due to downregulation of the pmr locus as previously pub-
lished [67] (Fig. 6). Levels of polymyxin B resistance in
water-treated SL1344basS were very similar to those
observed in adrenaline-treated wild type SL1344. Further-
more, although addition of the β-adrenergic blocker pro-
pranolol significantly improved the survival of SL1344 to

OxyR and manganese are necessary for survival upon exposure to adrenalineFigure 4 (see previous page)
OxyR and manganese are necessary for survival upon exposure to adrenaline. The role of the major oxidative 
stress regulator OxyR in the ability of Salmonella spp. to survive exposure to various adrenaline concentrations was assessed. 
(A) Deletion of oxyR in SL1344oxyR results in a dramatic loss of viability when exposed to adrenaline (50 μM) for 30 minutes. 
The effect of adrenaline is significantly lessened by addition of propranolol (PO) at 500 μM. Addition of the adrenaline deriva-
tive metanephrine (50 μM) which cannot bind iron has no significant effect on cell viability. Addition of manganese (5 mM) also 
fully counteracts the growth inhibition observed by adrenaline while the metal by itself (Mn) does not affect survival. SL1344 
viability is unaffected by adrenaline (data not shown). (B) Measurement of total cell iron indicating a significant 4-fold increase 
upon exposure of SL1344 to adrenaline, reduced levels upon simultaneous exposure to propranolol and adrenaline, and also 
significantly elevated levels in SL1344oxyR. (C) Measurement of total cell manganese indicating significantly reduced (3-fold) lev-
els in SL1344oxyR and slightly reduced levels in SL1344 upon addition of adrenaline or simultaneous exposure to propranolol 
and adrenaline. Experiments were repeated at least three times. Asterisk indicates significant difference by the student t-test. 
Standard error bars are shown. Adrenaline, ADR; Propranolol, PO; Metanephrine, MNPH; Manganese, Mn.

Expression of the pmr locus is reduced by adrenalineFigure 5
Expression of the pmr locus is reduced by adrenaline. 
Expression of the pmrHFIJKLM operon after a 30 minute 
exposure to adrenaline (50 μM) was assessed in SL1344pM 
by measuring luminescence per OD600 as described in "Meth-
ods". The significant transcriptional reduction (10%; P ≤ 0.05) 
in expression was fully reversed by addition of β-adrenergic 
blocker propranolol (500 μM). Luminescence is expressed as 
a percentage of the water addition control in relative light 
units per culture optical density (RLU/OD600). Experiments 
were repeated at least three times. Asterisk indicates signifi-
cant difference by the student t-test. Standard error bars are 
shown. Water, H2O; Adrenaline, ADR; Propranolol, PO.
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Adrenaline modulates the ability of Salmonella to resist anti-microbial peptidesFigure 6
Adrenaline modulates the ability of Salmonella to 
resist antimicrobial peptides. We tested the effect of 
pre-exposure to adrenaline on the ability of Salmonella to 
resist the antimicrobial peptide polymyxin B. Addition of 
adrenaline (50 μM) significantly reduced Salmonella survival 
during exposure to polymyxin B (0.15 μg ml-1). This was fully 
reversed by the β-adrenergic blocker propranolol (500 μM). 
Sensitivity levels of the basS mutant (SL1344basS) to poly-
myxin B were very similar to those of the adrenaline-treated 
SL1344. Reversal of polymyxin B sensitivity by propranolol is 
dependent on the presence of basS. Experiments were 
repeated at least three times. Asterisk indicates significant 
difference by the student t-test. Standard error bars are 
shown. Water, H2O; Adrenaline, ADR; Polymyxin B, PB; 
Propranolol, PO.
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polymyxin B during exposure to adrenaline, survival of
SL1344basS remained unaffected by the β-adrenergic
blocker (Fig. 6).

The above data support the hypothesis that adrenaline
exerts its effect on the pmr locus via the reversible interac-
tion of the β-adrenergic blocker with the BasS membrane
sensor in a manner similar to the interaction of adrenaline
with QseC in E. coli. The low (31%) amino acid sequence
identity between BasS and QseC may provide a clue as to
why we observe β-blockage in Salmonella as opposed to α-
blockage in E. coli.

Conclusion
Bacterial-host communication is increasingly being recog-
nised as important in determining the outcome of infec-
tion. It is clear that bacterial pathogens encounter a wide
range of host milieus, within which they must survive to
successfully colonise and cause disease. Salmonella can
replicate and survive within the harsh environment of the
macrophage [37,72]. Our transcriptomic approach has
revealed the response of Salmonella to adrenaline high-
lighting its dual role in mediating host-bacterial interac-
tions. Systemic or macrophage produced adrenaline may
therefore regulate the fine balance between the host and
Salmonella defence mechanisms, and impact upon the
development of disease.
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