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Abstract
Epigenetic changes, including CpG island hypermethylation, occur frequently in bladder cancer (BC) and may be
exploited for BC detection and distinction between high-grade (HG) and low-grade (LG) disease. Genome-wide
methylation analysiswas performed using Agilent HumanCpG IslandMicroarrays to determine epigenetic differences
between LG and HG cases. Pathway enrichment analysis and functional annotation determined that the most
frequently methylated pathways in HG BC were enriched for anterior/posterior pattern specification, embryonic
skeletal system development, neuron fate commitment, DNA binding, and transcription factor activity. We identified
990 probes comprising a 32-gene panel that completely distinguished LG from HG based on methylation. Selected
genes from this panel, EOMES, GP5, PAX6, TCF4, and ZSCAN12, were selected for quantitative polymerase chain
reaction–based validation byMethyLight in an independent series (n = 84) of normal bladder samples and LG and HG
cases.GP5 and ZSCAN12, two novel methylated genes in BC, were significantly hypermethylated in HG versus LG BC
(P ≤ .03). We validated our data in a second independent cohort of LG and HG BC cases (n = 42) from The Cancer
GenomeAtlas (TCGA). Probes representing our 32-gene panel were significantly differentially methylated in LG versus
HG tumors (P ≤ .04). These results indicate the ability to distinguish normal tissue fromcancer, aswell as LG fromHG,
based on methylation and reveal important pathways dysregulated in HG BC. Our findings were corroborated using
publicly available data sets from TCGA. Ultimately, the creation of a methylation panel, including GP5 and ZSCAN12,
able to distinguish between disease phenotypes will improve disease management and patient outcomes.
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Table 1. Clinicopathological Variables of LG and HG BC Patients of Cohort Used for MethyLight
Gene-Specific Methylation Analysis

Clinicopathological Variable LG, N (%) HG, N (%)

Gender
Male 27 (67.5) 27 (67.5)
Female 13 (32.5) 13 (32.5)

Age group
b 50 2 (5.0) 4 (10.0)
50-59 9 (22.5) 8 (20.0)
60-69 16 (40.0) 15 (37.5)
70-79 12 (30.0) 12 (30.0)
80-89 1 (2.5) 1 (2.5)

Grade
LG 40 (100.0) 0 (0.0)
HG 0 (0.0) 40 (100.0)

Pathological stage
Ta 21 (52.5) 0 (0.0)
T1 18 (45.0) 34 (85.0)
T2a 0 (0.0) 1 (2.5)
T2b 1 (2.5) 0 (0.0)
T3a 0 (0.0) 4 (10.0)
T3b 0 (0.0) 1 (2.5)

Surgery
Transurethral resection of bladder tumor 16 (40.0) 33 (82.5)
Radical cystectomy 7 (17.5) 7 (17.5)
No data 17 (42.5) 0 (0.0)

Recurrence
No recurrence 4 (10.0) 14 (35.0)
Recurrence 12 (30.0) 18 (45.0)
No data 24 (60.0) 8 (20.0)

FGFR3 mutation
Wild type 10 (25.0) 30 (75.0)
Mutation 13 (32.5) 9 (22.5)
No data 17 (42.5) 1 (2.5)

FGFR3 expression
Not expressed 6 (15.0) 18 (45.0)
Expressed 17 (42.5) 21 (52.5)
No data 17 (42.5) 1 (2.5)

P53 expression
Not expressed 22 (55.0) 18 (45.0)
Expressed 1 (2.5) 22 (55.0)
No data 17 (42.5) 0 (0.0)

P27 expression
Not expressed 13 (32.5) 21 (52.5)
Expressed 10 (25.0) 19 (47.5)
No data 17 (42.5) 0 (0.0)

EOMES median PMR (range) 30.2 (0.0-100.0) 41.8 (1.8-100.0)
GP5 median PMR (range) 0.0 (0.0-53.7) 1.6 (0.0-87.6)
PAX6 median PMR (range) 19.0 (0.0-69.4) 22.4 (0.0-100.0)
TCF4 median PMR (range) 0.0 (0.0-37.5) 0.2 (0.0-37.9)
ZSCAN12 median PMR (range) 0.0 (0.0-73.56) 10.9 (0.0-74.9)
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Introduction
Bladder cancer (BC), the fifth most common cancer in developed
countries, is comprised of two distinct pathological entities: low-grade
(LG) and high-grade (HG) BC [1,2]. LG BC tumors seldom progress
but often recur; thus, patients require long-term follow-up.
Meanwhile, HG tumors are aggressive and have poor prognosis
[3,4]. BC is further defined by the extent of muscle invasiveness,
presenting as either non–muscle invasive (NMI, comprising stages
Tis, Ta, and T1) in ~80% of cases or muscle invasive (MI, comprising
of stage T2 and above) in ~20% of cases [5]. NMIBC, also called
superficial or papillary bladder cancer, consists of both LG and HG
disease, whereas muscle invasiveness is found mostly in HG BC. The
5-year disease-specific survival rate of LG NMIBC is above 95%,
whereas at the other end of the spectrum, HG MIBC has a poor
prognosis, with a 5-year survival rate of 63% at stage T2 and with
even lower rates for more advanced disease [6].
Currently, cystoscopy and urine cytology are the gold standard for

BC diagnosis [7]. However, cystoscopy is costly, invasive in nature,
and limited in its accuracy to predict the behavior of BC [8,9]. Urine
cytology, although noninvasive, has low sensitivity for detecting LG
BC and is dependent on the pathologist's experience [10]. Therefore,
there is a need for more sensitive biomarkers to improve the
diagnostic accuracy of urine cytology and assist in distinguishing LG
from HG BC. A number of urinary biomarker tests such as
UroVysion and NMP22 BladderChek have been approved for use
alongside cystoscopy [11,12]. However, due to their inconsistent
performance in terms of specificity and/or sensitivity, the markers
proposed to date have not been widely adopted in routine clinical
practice.
BC arises from the accumulation of not only genetic but also

epigenetic changes. Among epigenetic mechanisms, DNA methyla-
tion is the best studied, and aberrant CpG island methylation has
been shown to contribute to the development and progression of
numerous cancer types including BC [13,14]. DNA
methylation-based biomarkers hold considerable promise to predict
the biological behavior of various cancers including biologically and
clinically distinct LG and HG BC [14,15]. Therefore, identifying
aberrant DNA methylation events that initiate and/or promote BC
development can highlight biological markers for distinguishing LG
from HG BC, improving diagnostic accuracy and treatment
stratification.
In this study, we used an array-based approach to uncover

genome-wide DNA methylation profiles of LG and HG BC, as well
as to identify novel differentially methylated genes (DMGs) between
the two types of tumors. We further evaluated the methylation
patterns of five selected candidate genes in two independent cohorts
of BC cases using two different strategies to assess their potential as
biomarkers for HG BC.
Material and Methods

Patients and Pathology
For genome-wide CpG island methylation analysis, six fresh frozen

urothelial carcinoma BC samples (three LG and three HG) obtained
from transurethral resection were collected from the tissue bank at the
University Health Network, Toronto, Ontario, Canada. Further
stage or other clinicopathological data for these cases are unavailable.
For gene-specific methylation analysis by a quantitative polymerase
chain reaction (qPCR)–based methylation detection assay, Methy-
Light [16], a series of 80 (40 LG and 40 HG) formalin-fixed,
paraffin-embedded (FFPE) urothelial carcinoma BC samples and 4
normal urothelial tissue samples were similarly collected. The
clinicopathological characteristics of the cohort are listed in Table 1.
All patients consented to the donation of removed tissue to the
University Health Network tissue bank, and samples were obtained
according to protocols approved by the Research Ethics Board from
University Health Network, Toronto. The complete set of
hematoxylin and eosin–stained slides from each transurethral
resection or radical cystectomy case was collected and reviewed by
an expert pathologist (T.H.V.D.K.) for stage and grade (WHO 2004
classification).

DNA Extraction and Bisulfite Modification
DNA was extracted from fresh frozen and FFPE tissues using

QIAamp DNA Mini Kit (Qiagen, Mississauga, ON, Canada)
according to the kit protocol for fresh frozen tissues and using a
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modified protocol which has previously been described for FFPE
tissue [17]. DNA extraction was performed in areas containing a
minimum of 70% tumor cells as assessed by histological examination.
One hundred to 400 ng of DNA extracted from primary tumors and
normal tissue was converted using the EZ DNA Methylation Gold
Kit (Zymo Research, Orange, CA) according to the manufacturer's
protocol and eluted to a final concentration of 10 ng/μl.

FGFR3 Mutation Analysis
Mutation analysis of fibroblast growth factor receptor 3 (FGFR3) was

performed using PCR-SNaPshot method as described previously
[18]. Three regions (exon 7, 10, and 15) representing at least 99% of
activating oncogenic FGFR3 mutations in BC were amplified by
PCR. Excess primer and deoxynucleotides were removed, specific
SNaPshot primers were annealed to the PCR products, and then the
products were separated by capillary electrophoresis and analyzed in
an automatic sequencer (Prism 3100 genetic analyzer).

Protein Expression Analysis
Protein expression of FGFR3, P53, and P27 was determined by

immunohistochemistry. Positive and negative controls were
included for each run and assessed by B.W.V.R. and T.H.V.D.K.
Monoclonal antibodies were used against FGFR3 (FGFR3 B9,
Santa Cruz, CA), P53 (clone DO-7), and P27 (clone 57) as
described previously [19].

Human CpG Island Microarrays
Methylated DNA was analyzed using the differential methylation

hybridization technique and was co-hybridized to Agilent Human
CpG Island Microarrays at the University Health Network
Microarray Centre according to the manufacturer's recommended
protocol. Genomic DNA (100-200 ng) from bladder tumors was first
digested with MseI. H-12/H-24 linker oligonucleotides were
annealed together, creating overhangs that bind MseI-digested
DNA. DNA was then ligated to the MseI cleaved ends using T4
DNA ligase and overnight ligation at 4°C. Ligated DNA was then
sequentially digested first with HpaII followed by BstUI, both of
which are methylation-sensitive enzymes. Amplification of intact
fragments was then performed with ThermoPol Taq polymerase
(New England Biolabs, Pickering, ON, Canada) with the following
conditions: 72°C for 5 minutes, 95°C for 1 minute, 24 cycles of 95°C
for 1 minute followed by 67°C for 2.5 minutes, and a final step of
72°C for 5 minutes. Following PCR, DNA was purified using the
QIAquick PCR purification kit (Qiagen, Mississauga, ON, Canada)
according to the manufacturer's instructions. Reference DNA, which
was co-hybridized with tumor DNA to microarrays, was prepared in a
similar fashion using lymphocyte DNA pooled from six healthy
age-matched men.

Data Analysis
To identify the differentially methylated loci most robustly

associated with HG disease, microarray data was analyzed using
two distinct, commonly applied statistical approaches, Linear Models
for Microarray Data (Limma) and local-pooled-error (LPE), suitable
for analyzing small sample sizes. Probes were filtered to only include
sequences with minimum two-fold methylation enrichment or
depletion and P value ≤ .05 in both Limma and LPE methods.
Only those gene loci that overlapped in significantly differentiating
LG from HG tumors based on analysis by both Limma and LPE
methods are reported.
Unsupervised hierarchical average linkage clustering with the most
variant methylated probes was performed with the use of GenePattern
Version 3.8.2 software (http://www.broad.mit.edu/cancer/software/
genepattern/) [20].

Pathway Analysis
Pathway enrichment analyses and functional annotation were

performed using the Genomic Regions Enrichment of Annotations
Tool (GREAT) version 2.0.2 using the whole human genome as
background [21]. Only significantly differentially methylated probes
between LG and HG cases by Limma and LPE analyses were used for
this analysis.

MethyLight
Methylation analysis was performed on tumor and normal tissue

using the semiquantitative MethyLight assay, a TaqMan-based qPCR
technique that assesses percent DNA methylation at a defined gene
locus [16]. In brief, 10 ng of bisulfite-converted genomic DNA was
amplified using locus-specific PCR primers flanking an oligonucle-
otide probe with a 5′ fluorescent reporter dye and a 3′ quencher dye.
Primers and probe sequences used for eomesodermin (EOMES),
glycoprotein V platelet (GP5), paired box 6 (PAX6), transcription factor
4 (TCF4), zinc finger and SCAN domain containing 12 (ZSCAN12),
and the reference sequence ALU-C4 are shown in Supplementary
Table 1. A percent methylation ratio (PMR) score was calculated for
each gene locus by dividing the gene:ALU-C4 ratio of a sample by the
gene:ALU-C4 ratio of commercially available fully methylated DNA
(Millipore, Billerica, MA) and multiplying by 100. Samples were
analyzed in duplicate on 96-well plates on an ABI 7500 RT-PCR
thermocycler (Foster City, CA).

The Cancer Genome Atlas (TCGA) Data Set
Clinical data were downloaded from TCGA Data Portal for 412

bladder urothelial carcinoma cases in March 2016. All cases were
muscle-invasive cancers. Of the 412 cases, 21 were LG. The LG cases
consisted of 18 pathological stage T2 and 3 T3 cases. The HG cases
consisted of eight T2, six T3, and seven T4 cases. All available LG
cases were selected for analysis, of which 20 were male and 1 was
female, with an average age of 58.7. From the remaining HG cases,
21 were randomly selected after matching based on age and sex to the
LG cases with an average age of 60.3. For these 42 total selected cases,
level 3 methylation data from Illumina Infinium HumanMethyla-
tion450 BeadChip arrays were downloaded from TCGA in March
2016. Methylation data were also downloaded for all 21 benign
bladder tissue samples available. The benign tissue came from 11
males and 10 females with an average age of 69.2, all of which were
from patients with HG BC.

Statistical Analysis
For each sample, following MethyLight analysis of EOMES, GP5,

TCF4, PAX6, and ZSCAN12 genes, PMR values were obtained from
averaging duplicate runs. Ten HG and two LG cases had both
superficial and invasive tumor tissue available. No significant
differences in methylation were observed between invasive and
superficial tissue using the Wilcoxon test for related samples. Thus,
the PMR values for both tissue types were averaged in subsequent
statistical analysis. Comparison of median PMR values between LG,
HG, and normal samples and other clinicopathological variables was
performed using the Mann-Whitney U test or Kruskal-Wallis test,
where appropriate. Receiver operating characteristic (ROC) curves
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Figure 1. DNA methylation hierarchical clustering dendrogram and
heat map of the top 50 hypermethylated probes and all 16
hypomethylated probes showing the greatest differential methyl-
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were generated to obtain area under the curve (AUC) values.
Mann-Whitney U test or Kruskal-Wallis test was utilized to compare
benign tissue, LG, HG, and stage for select CpG probes from TCGA
data. Multivariate analysis was not undertaken in order to prevent
overfitting of data. For all described methods, two-sided P values ≤ .05
were considered significant. Statistics were performed using IBM SPSS
Statistics 21 (Armonk, NY).

Results

Genome-Wide Methylation in LG and HG BC
We profiled the genome-wide DNA methylation status of three

LG and three HG BCs using Human CpG Island Microarrays
comprising 237,220 probes encompassing 27,800 CpG islands.
Following genome-wide screening, we separated the analysis of our
microarray data into LG versus HG BC tumors. Overall, there was a
general increase in methylation in HG compared to LG tumors. Of
584 significantly differentially methylated probes, 568 had signifi-
cantly increased methylation in HG compared to LG tumors
(representing 232 genes, 139 unassigned intergenomic regions, and
2 microRNAs), whereas only 16 probes (representing 13 genes) had
significantly decreased methylation. A clustering dendrogram and
heat map of the top 50 hypermethylated and all of the
hypomethylated probes are shown in Figure 1. Of the annotated
significantly differentially methylated regions, 42% were located
within gene promoters, 46% were intragenic, and 12% were
intergenic. The top 32 genes, ranked by fold change, that were
identified as significantly hyper- and hypomethylated in HG versus
LG cancers are listed in Table 2.
To distinguish potentially important patterns between LG and HG

BC, DNA methylation profiles of the tumors were analyzed by
unsupervised hierarchical clustering. Two robust DNA methylation
clusters were identified: one encompassing all of the HG tumors and
another containing all of the LG tumors, consisting of 32 genes
(represented by 990 probes) with significant differential methylation.
Thus, the 32 DMGs could separate LG from HG BC. Of the 32
DMGs, 19 showed hypermethylation and 13 hypomethylation in
HG BC. As expected, some of the 32 DMGs were previously
reported to be differentially methylated in BC including EOMES
and PAX6 [22–26]. In addition, our analysis identified novel DMGs
that have not been implicated in BC previously, such as GP5 and
ZSCAN12.
ation across LG and HG samples, listed on the top. Gene probes
and names are listed on the right. DNA methylation values are
represented as colors, with red representing DNA hypermethyla-
tion and blue representing DNA hypomethylation.
Pathway Analysis of DMGs
To generate further insight into pathways targeted by the changes

in DNA methylation between LG and HG BC, we used GREAT to
determine if significantly differentially methylated regions were
enriched for any functional processes [20]. The most frequently
enriched biological processes as determined by gene ontology (GO)
term analysis were anterior/posterior pattern specification
(GO:0009952, GREAT Binom Raw P value = 5.8e-39), embryonic
skeletal system development (GO:0048706, P value = 2.2e-28), and
neuron fate commitment (GO:0048663, P value = 7.0e-24).
Additionally, within the molecular function category, the most
enriched GO terms were associated with transcriptional regulation
including transcription regulatory region sequence-specific DNA
binding (GO:0000976, GREAT Binom Raw P value = 6.4e-33),
RNA polymerase II core promoter proximal region sequence-specific
DNA binding transcription factor activity involved in positive
regulation of transcription (GO:0001077, P value = 2.7e-20), and
RNA polymerase II core promoter proximal region sequence-specific
DNA binding transcription factor activity (GO:0000982, P value =
5.0e-20). Among these enriched DMG sets, we found numerous
genes whose function in tumorigenesis is well documented in the
literature, such as SMAD4, IHH, GLI3, WNT1, and WNT5a
[27–31].

Selection of Candidate Biomarker Genes
We next selected 5 promising genes from the 32 DMGs for further

analysis based on statistical significance from microarray results,
number of significant probes, biological function of the gene,
involvement in BC, and novelty. EOMES and PAX6 were found to



Table 2. List of the 19 Most Significantly Hypermethylated and 13 Hypomethylated Genes between LG and HG BC, Comprising a 32-Gene Panel

Gene Name (Abbreviation) Number
of Probes

Fold
Change

P Value

LPE Limma

Von Willebrand factor C domain containing 2 (UNQ739) 1 66.7 3.51 × 10−6 2.16 × 10−5

Uncharacterized LOC389064 (FLJ46347) 2 41.3 .0006 .0332
Eomesodermin (EOMES) 3 36.5 .0104 .0016
Glycoprotein V (platelet) (GP5) 4 36.3 .0108 .0006
Solute carrier family 2 (facilitated glucose transporter), member 2 (SLC2A2) 2 36.1 .0116 .0002
Glial cell–derived neurotrophic factor (GDNF) 4 33.6 .0033 .0136
Short stature homeobox (SHOX) 3 32.6 .0156 .0238
Olfactory receptor, family 10, subfamily AD, member 1 (OR10AD1) 4 31.8 .0013 .0005
Glutamate receptor, ionotropic, kainate 1 (GRIK1) 1 29.4 .0017 .0035
Zinc finger protein 418 (ZNF418) 1 28.8 1.13 × 10−5 .0006
Forkhead box E1 (thyroid transcription factor 2) (FOXE1) 1 28.3 .0005 .0001
Zinc finger and SCAN domain containing 12 (ZSCAN12/ZNF96) 6 26.8 .0096 .0062
Homeobox D9 (HOXD9) 1 24.4 7.63 × 10−6 .0017
Phosphatidylinositol-3,4,5-trisphosphate–dependent Rac exchange factor 1 (PREX1) 1 23.4 .0004 .0311
Engulfment adaptor PTB domain containing 1 (GULP1) 6 23.1 .0025 .0069
Myosin binding protein C, slow type (MYBPC1) 1 23.0 .0009 .0071
Motor neuron and pancreas homeobox 1 (HLXB9) 1 22.3 4.02 × 10−5 .0003
Glutamate receptor, ionotropic, AMPA 2 (GRIA2) 2 22.0 .0002 .0003
Paired box 6 (PAX6) 8 21.8 .0063 .004
small nucleolar RNA, H/ACA box 70 (U70) 1 −8.9 .033 .011
Protease, serine, 21 (PRSS21) 1 −7.8 .043 .008
Carbonic anhydrase XIII (CA13) 1 −7.7 .021 .019
Translocase of outer mitochondrial membrane 40 homolog (TOMM40) 1 −6.9 .029 .002
Phosphorylase kinase, alpha 1 (PHKA1) 1 −6.9 .047 .004
DOK2-XPO7 1 −6.4 .043 .012
Kruppel-like factor 11 (KLF11) 1 −6.3 .018 .018
BCL2-associated transcription factor 1 (BCLAF1) 1 −6.2 .027 .024
Single-minded homolog 1 (Drosophila) (SIM1) 2 −5.0 .045 .006
FLJ43870 1 −4.7 .043 .028
BMP and activin membrane-bound inhibitor homolog (Xenopus laevis) (BAMBI) 1 −4.4 .044 .039
Ribosomal protein L31 (RPL31) 1 −4.3 .045 .011
Homeobox A9 (HOXA9) 1 −3.8 .043 .002
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be significantly hypermethylated by our microarray profiling,
with fold change values of 36.5 and 21.8 in HG versus LG,
respectively. GP5 and ZSCAN12 are novel methylated genes
identified in our study whose methylation has not previously
been established in BC. GP5 exhibited hypermethylation
36.3-fold higher in HG versus LG in our array profiling, and
ZSCAN12 methylation was 26.8-fold higher in HG versus LG.
TCF4, although not in the 32-gene panel, showed 21.3-fold
hypermethylation in HG versus LG tumors and was in the top
100 significantly DMGs.

Gene-Specific Methylation Analysis
To verify the quantitative promoter methylation patterns of five

DMGs identified from our microarray findings, we extended our
analysis to an independent cohort of normal urothelial tissue samples
(n = 4) plus 80 LG and HG BCs (n = 40 for each group) using
MethyLight assay. Median PMR values for all tumor cases were
31.8% for EOMES, 0% for GP5, 20.2% for PAX6, 0.1% for TCF4,
and 3.1% for ZSCAN12. We next compared median PMR values of
each gene of interest between normal tissue, LG, andHGcases (Table 3).
Figure 2 shows the distribution of relative methylation values for
each gene of interest. None of the normal cases were highly
methylated for any of the five genes, and median PMR values
increased with grade. This association was statistically significant
for the methylation of EOMES, GP5, and ZSCAN12 (P = .001, .008,
and .04, respectively). Comparing LG and HG, median tumor DNA
methylation was significantly higher in HG for ZSCAN12 (0% vs
10.9%, P = .03) and GP5 (0% vs 1.6%, P = .006), whereas
EOMES methylation trended towards significance (30.2% vs
41.8%, P = .05). TCF4 and PAX6 did not show significant
differences between normal and tumor DNA or LG versus HG.

Comparisons among different pathological tumor stages were
performed for each DMG. Methylation differed significantly among
stages for four of the five candidate genes: EOMES, PAX6, TCF4, and
ZSCAN12 (P = .047, 4.6 × 10−4, .03, and .001, respectively). There
were no significant differences among patients that recurred versus
those that did not recur.

Next, we examined associations between several key prognostic
molecular alterations in BC (FGFR3 mutations; expression of
FGFR3, P53, and P27) and methylation patterns of the five
DMGs. FGFR3 mutation and expression are associated with LG BC
and NMIBC, P53 expression is associated with LG BC, and P27
expression is associated with recurrence and progression [19]. Of the
five genes assessed, GP5 methylation was significantly differentially
methylated between tumors with or without P53 expression (P =
.02), P27 expression (P = .001), and FGFR3 expression (P = .002).
Higher ZSCAN12 methylation was significantly associated with
wild-type FGFR3 (P = .005) and inversely associated with its
expression (P = .005). The methylation of the remaining DMGs
was not significantly different when stratified according to FGFR3
mutations or FGFR3, P53, and P27 expression. Similar results were
seen for the above gene-specific methylation analysis when MIBC
cases were removed and only NMIBC cases were analyzed
(Supplementary Table 2).

We also generated ROC curves to determine the ability of each
individual genemarker to discriminate between LG andHG (Figure 3).



Table 3. Associations between Methylation of Five Genes and Clinicopathological Variables in BC
Patients

Clinicopathological
Variable

EOMES
PMR

GP5
PMR

PAX6
PMR

TCF4
PMR

ZSCAN12
PMR

Normal vs cancer
Normal 0.0 0.0 3.9 0.0 0.9
Cancer 31.8 0.0 20.2 0.1 3.1

P value 1.2 × 10−4 .22 .06 .19 .29

Normal vs LG vs HG
Normal 0.0 0.0 3.9 0.0 0.9
LG 30.2 0.0 19.0 0.01 0.0
HG 41.8 1.6 22.4 0.2 10.9

P value .001 .008 .11 .32 .04

LG vs HG
LG 30.2 0.0 19.0 0.01 0.0
HG 41.8 1.6 22.4 0.2 10.9

P value .05 .006 .34 .53 .03

Normal vs LG
Normal 0.0 0.0 3.9 0.0 0.9
LG 30.2 0.0 19.0 0.01 0.0

P value .002 .43 .07 .23 .66

Normal vs HG
Normal 0.0 0.0 3.9 0.0 0.9
HG 41.8 1.6 22.4 0.2 10.9

P value 1.8 × 10−5 .11 .06 .19 .10

Stage
Ta 9.7 0.0 9.3 0.01 0.0
T1 46.1 0.0 26.7 0.2 10.9
T2a 31.0 16.4 16.0 0.0 0.0
T2b 15.8 5.8 7.4 4.6 0.8
T3a 18.4 1.7 3.4 0.6 3.4
T3b 55.7 62.7 1.0 0.0 12.4

P value .047 .51 4.6 × 10−4 .03 .001

Recurrence
No recurrence 43.5 0.0 22.8 0.04 0.3
Recurrence 46.1 2.5 30.7 0.7 11.7

P value .80 .17 .17 .64 .23

P53 expression
Not expressed 21.6 0.0 12.9 0.01 0.3
Expressed 41.4 0.0 26.3 0.01 1.1

P value .09 .02 .31 .35 .39

P27 expression
Not expressed 31.0 0.0 23.9 0.0 4.6
Expressed 22.8 0.0 12.9 0.02 0.0

P value .91 .001 .80 .88 .36

FGFR3 mutation
Wild-type 28.5 0.0 16.6 0.0 2.1
Mutated 36.4 0.0 23.9 0.2 0.0

P value .09 .11 .81 .37 .005

FGFR3 expression
Not expressed 30.0 0.0 14.6 0.02 0.5
Expressed 27.9 0.0 23.8 0.01 0.3

P value .30 .002 .29 .34 .005

Median PMR and Kruskal-Wallis or Mann-Whitney U test P values are shown.
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GP5 and ZSCAN12 had significant P values (P = .02 and P = .03,
respectively). The AUC for GP5 was 0.656 and for ZSCAN12 was
0.652. The combination of GP5 and ZSCAN12 methylation together
achieved the highest AUC of any single gene or other genes combined,
P = .006 and AUC = 0.679. EOMES was borderline significant, with
P = .051 and AUC = 0.630. PAX6 and TCF4 were not significant.

Gene-Specific Validation in TCGA Data Set
To further validate our findings in an independent cohort, we

utilized publicly available methylation data from TCGA bladder
urothelial carcinoma cases (TCGA Research Network: http://
cancergenome.nih.gov/). Methylation between 21 LG and 21 HG
BC cases was compared for each Illumina 450K probe located within
or in proximity to the 32 genes of our panel.
A total of 865 CpG probes on the Illumina 450K array,

incorporating associated upstream and downstream regulatory regions
including CpG islands, shores, and shelves, represented the genes of
our panel. The loci FLJ46347, FLJ43870, and SHOX from our
32-gene panel were not represented on the 450K arrays. One
hundred thirty-five of 865 (15.6%) probes were significantly
differentially methylated between LG and HG. Every gene from
our panel except four (SLCA2, ZNF418, GRIA2, CA13) had at least
one significant probe, including probes from all five selected
candidate genes we validated by MethyLight. The most significant
differentially methylated probe between LG and HG cases is listed in
Table 4 for EOMES, GP5, PAX6, TCF4, and ZSCAN12. Figure 4
shows the distribution of relative methylation values for each gene of
interest. All five genes were significantly hypermethylated in HG
compared to LG BC (P b .05). Methylation at the most significantly
differentially methylated probe between LG and HG was not
significantly different among different stages (comparison of stages
2-4).
Methylation from 21 benign bladder tissue samples from TCGA

BC patients was also assessed in comparison to cancer cases. Of 865
probes within 29 genes of our panel, 525 (60.7%) were significantly
differentially methylated between benign and LG, 593 (68.6%) were
significantly differentially methylated between benign and HG, and
652 (75.4%) were significantly differentially methylated between
benign and all cancer cases (LG + HG), P b .05. Every gene from
our panel represented by CpG probes on the 450K array had at least
three significant probes for each comparison. Comparison between
benign and LG, HG, or cancer of any grade is indicated in Table 4 at
the CpG probe that was most significant for the comparison of LG
versus HG as described earlier. EOMES, PAX6, and TCF4 were
significantly hypermethylated in cancer versus benign (P b .05).
When stratified by tumor grade, TCF4 was significantly hyper-
methylated in LG compared to benign tissue (P = .01), whereas all
five genes were significantly hypermethylated in HG (P b .05).

Discussion
In this study, we used a combination of different strategies to identify
and characterize methylation biomarkers that will discriminate
between LG versus HG tumors. We used human CpG island
microarrays to identify DMGs in LG versus HG BC. We have shown
that there are considerable methylation changes in BC with a
significant overall shift to increased localized methylation profile
within CpG islands in higher-grade tumors. Furthermore, we were
able to identify a DNA methylation signature of 32 genes that can
completely discriminate LG from HG BC. Of these, significant
tumor-specific DNA hypermethylation of EOMES, GP5, and
ZSCAN12 in HG BC was confirmed in our validation cohort and
TCGA cohort.

Using Agilent Human CpG Island Microarrays, we found 245
genes that significantly differed in methylation in HG compared to
LG tumors. Consistent with previous genome-wide studies of DNA
methylation, we observed an overall increase in DNA methylation in
HG BC. Many of the hypermethylated genes we identified in our
study have been previously reported in BC, including CDKN2A and

http://cancergenome.nih.gov
http://cancergenome.nih.gov


Figure 2.Methylation in normal urothelial tissue, LG BC, and HG BC
tissue in EOMES,GP5, PAX6, TCF4, and ZSCAN12 genesmeasured
by MethyLight. Mann-Whitney U test was used to compare
methylation between normal urothelial tissue (n = 4), LG (n =
40), and HG (n = 40). Kruskal-Wallis test was used to compare
methylation between LG and HG. *P b .05, **P b .01. + represents
outliers.
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TWIST1 [14]. Among our 32-gene panel, we selected PAX6 and
EOMES for independent validation because their methylation has
previously been investigated in tumor as well as urine samples of BC
patients, with EOMES methylation being associated with recurrence
and higher grade [22,23,25,26]. Our study also identified novel
hypermethylated loci for potential biomarkers such as GP5, TCF4,
and ZSCAN12.

A number of other studies have investigated DNA methylation
changes in BC with regards to grade, detection, prognosis,
progression, recurrence, survival, and stage [14,32]. Several methyl-
ation markers previously shown to be associated with grade in bladder
cancer are CD99, CDH13, RARB, RASSF1A, SFRP5, and TMEFF2
[33–36]. A number of other markers of BC grade have also been
shown specifically in NMIBC including ACTL5B, ATP5G2, BCL2,
BRCA1, CIDEA, DAPK, FRZB, HOXB2, ITPKB, IRX1, KRT13,
MGMT, MLL3, RASSF1A, RUNX3, TERT, TET2, TRPA1, VAX2,
and VHL [37–43]. Of these markers, several have been implicated
across multiple studies, including BRCA1, CDH13, RASSF1A, and
TMEFF2, whereas other novel markers have emerged from only
single studies thus far [24,33,35,37,39,44–46]. This is in line with
our own results, in which several of the DMGs from our panel had
previously been implicated in BC, such as EOMES and PAX6,
whereas others were unique, including GP5 and ZSCAN12.

In our study, we included several MIBC cases in our analysis, and
we were able to detect significant differences in methylation between
LG and HG at GP5 and ZSCAN12.We also showed these significant
differences in analysis excluding MIBC cases (Supplementary Table
2). Furthermore, methylation differences were apparent between LG
and HG cases from the TCGA cohort despite the fact that all cases
were MIBC. Thus, the methylation changes we observed are likely
specific to high-grade cancers. Discrepancies between our results
and previous findings may be due to a number of differences
between our approach and those previously utilized. These include
different positions of CpGs covered, methods of data analysis,
array platforms used, and populations, as well as contributions
from the tumor microenvironment and tumor heterogeneity.
Wherever possible, we designed our MethyLight primers and
probes to overlap some of the CpGs in the significant Agilent array
probes. A potential limitation of our study is that we interrogated a
limited number of LG and HG cases for genome-wide methylation
and therefore could not detect differential methylation of these
genes in BC.

Our analysis has shown that a signature of 32 DMGs represented
by 990 probes can completely discriminate LG from HG BC. Among
these, certain pathways of clear relevance to cancer, such as
transcription factors within development and differentiation path-
ways, were enriched to a larger extent in HG BC. This suggests a
functional role for DNA methylation in regulating the genes in these
pathways, as multiple DNAmethylation events at different levels may
occur to assure that essential cancer-preventing pathways are
downregulated or silenced in HG bladder tumors. DNA demethylat-
ing agents, currently approved for the treatment of lymphomas and
myelomas, may potentially reverse these methylation patterns in BC
or other solid tumors. Treatment of BC cell lines with demethylating
agents inhibits their proliferation, migration, and invasion and has
also been shown to sensitize cells resistant to cisplatin-based
chemotherapy [47,48].

The results of this study verify previous reports of EOMES
hypermethylation in BC tissue and its association with HG disease
[25,26]. Additionally, EOMES hypermethylation has been detected
in urine of BC patients and is associated with recurrence as well as
HG BC. GP5 and ZSCAN12 methylation has not previously been
reported in the literature. GP5 is part of the Ib-V-IX system of surface
glycoproteins that constitute the receptor for von Willebrand factor,
whereas ZSCAN12 is a transcription factor. The role of these two
novel genes identified in our study in BC tumorigenesis is currently
unknown and warrants further investigation. In addition, the role of
EOMES, a transcription factor required for development of
mesoderm and the central nervous system, in BC also requires
further research. Despite previous studies showing significant
methylation of the transcription factor PAX6 in BC, we did not
find there to be any association between PAX6 methylation and
tumor grade upon MethyLight analysis in 40 LG and 40 HG tumors.
We also did not find any association between transcription factor
TCF4 methylation and cancer, tumor grade, or other molecular
characteristics of our BC cases when measured in a larger population.
This may be due to differences in assay type as well as interpatient
tumor heterogeneity, as we started with a smaller cohort of six
samples. Whether methylation plays a role in the downregulation
of expression of these genes in BC or is solely a marker of tumor
grade remains to be determined. For our 40 LG and 40 HG BC
cases, we do not have progression or survival data and have
incomplete recurrence data; thus, these markers require further
investigation to determine their association with specific disease
outcomes.

Harnessing TCGA methylation data, we examined the same five
genes in a second cohort. We found that all five genes validated by
MethyLight analysis had at least four CpG probes per gene that were
significantly differentially methylated on the 450K array for the
comparison of LG versus HG. Thus, the independent TCGA array
data validated our original Agilent array findings. A comparison of
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Figure 3. ROC curves for discrimination of HG BC. ROC curves and AUC values were generated for 5 genes to compare methylation in 40
LG and 40 HG cases. The genes assessed were (A) EOMES, (B) GP5, (C) PAX6, (D) TCF4, (E) ZSCAN12, and (F) combination of GP5 and
ZSCAN12.
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benign bladder tissue and HG cases was also significant for each of the
five genes tested, indicating that these markers may have clinical
utility for diagnosis as well as discernment of grade in BC. Despite our
promising results, we recognize that this is not a comprehensive
analysis of the TCGA data set and further exploration of this large data set
should be performed. Also, although the TCGA data set provided a
well-characterized independent cohort of cases, only 21 cases were LG
and all were MIBC. Thus, our gene panel warrants further investigation

image of Figure 3


Table 4. Associations between Methylation of a Five-Gene Panel and Grade in BC Patients from
TCGA

Gene EOMES GP5 PAX6 TCF4 ZSCAN12

Probe ID cg21473142 cg18780769 cg24701575 cg23482397 cg20271532
Benign vs cancer
Benign 0.261 0.137 0.137 0.022 0.072
Cancer 0.606 0.129 0.281 0.028 0.098

P value .003 .94 .02 1.9 × 10−4 .31
Benign vs LG vs HG
Benign 0.261 0.137 0.137 0.022 0.072
LG 0.314 0.092 0.156 0.026 0.056
HG 0.753 0.232 0.465 0.046 0.225

P value 2.7 × 10−5 2.9 × 10−4 1.3 × 10−4 1.7 × 10−4 .02
LG vs HG
LG 0.314 0.092 0.156 0.046 0.225
HG 0.753 0.232 0.565 0.026 0.056

P value .003 .001 .001 .04 .02
Benign vs LG
Benign 0.261 0.137 0.137 0.022 0.072
LG 0.314 0.092 0.156 0.026 0.056

P value .77 .009 .97 .01 .46
Benign vs HG
Benign 0.246 0.137 0.137 0.022 0.072
HG 0.753 0.232 0.565 0.046 0.225

P value 2.3 × 10−6 .01 5.5 × 10−5 9.3 × 10−5 .01
Stage
T2 0.321 0.125 0.226 0.027 0.079
T3 0.671 0.098 0.280 0.046 0.070
T4 0.732 0.195 0.347 0.027 0.429

P value .12 .39 .77 .59 .44

Themost significant probewithin each gene for the comparison of LG toHGwas used for each association.
Median beta values and Mann-Whitney U test or Kruskal-Wallis test P values are shown.

Figure 4.Methylation in benign urothelial tissue, LG BC, and HG BC
tissue in EOMES,GP5, PAX6, TCF4, and ZSCAN12 genesmeasured
by Illumina 450K array through TCGA. Mann-Whitney U test was
used to compare methylation between benign urothelial tissue
(n = 21), LG MIBC (n = 21), and HG MIBC (n = 21). Kruskal-Wallis
test was used to compare methylation between LG and HG.
*P b .05, **P b .01, and ***P b .001. + represents outliers.
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of methylation markers in large, well-characterized patient cohorts
representing all grades equally to determine their utility as prognostic and
predictive biomarkers for aggressive BC. Additionally, the TCGA probes
did not cover the same CpG sites as our Agilent arrays or MethyLight
primers. Thus, we provided results for the most significant probes located
within each of the five genes, regardless of their location.

The current grading system for BC is limited in its reproducibility
among pathologists, which can impact patient management decisions
[5,49]. Methylation-based testing could complement pathological
grading to allow for more accurate prediction of disease aggressiveness
at the time of BC diagnosis, which will greatly improve clinical
decision-making and impact on patient management and quality of
life [7]. DNA methylation-based biomarkers have a great potential for
clinical utility because some DNAmethylation changes may represent
early events and it is a stable mark that can be easily determined in
archived material as well as samples collected in a noninvasive manner
such as urine. Assessment of methylation levels in urine of BC
patients could lead to the development of a noninvasive screen or a
diagnostic aid for use in conjunction with traditional cystoscopy and/
or urine cytology for BC. Urinalysis utilizing methylation markers
could also potentially be applied to other aspects of BC, for example,
monitoring response to Bacillus Calmette-Guérin therapy. Further-
more, DNA methylation can be analyzed with great sensitivity and
specificity using an increasing number of high-throughput methods.

Conclusions
Our findings indicate significant differences in global methylation
patterns between LG and HG BC, with HG tumors exhibiting a general
increase in methylation. Among these, we identified a 32-gene
methylation signature that can completely separate LG from HG BC.
In addition, we validated hypermethylation marks inGP5, EOMES, and
ZSCAN12 genes that should be further investigated as markers of BC
detection in screening and differentiation of more aggressive disease.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.tranon.2017.01.001.
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