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Abstract: Preparation of green synthesized silver nanoparticle (AgNPs)-doped hydroxyapatite
(Ag/HA) utilizing Curcuma longa leaf extract and land snail (Achatina fulica) shell waste was per-
formed. Physicochemical characteristics and antibacterial activity of Ag/HA composite as a function
of Ag content was studied. Instrumental analysis such as XRD, SEM-EDX, TEM, and XPS were
employed to characterize the nanocomposites. The physicochemical study revealed the maintained
porous structure of HA after Ag immobilization, and from TEM analyses, it was found that the
distributed spherical particles are associated with the dispersed Ag and have a particle diameter of
around 5–25 nm. Antibacterial activity of the nanocomposite was evaluated against Escherichia coli,
Staphylococcus aureus, Kliebsiella pneumonia, and Streptococcus pyogenes. The results showed that the var-
ied Ag content (1.0; 1.6; and 2.4% wt) influenced the nanoparticle distribution in the nanocomposite
and enhanced the antibacterial feature.

Keywords: hydroxyapatite; silver nanoparticles; antibacterial nanocomposite

1. Introduction

Silver nanoparticles (AgNPs) have received intensive attention due to their vast appli-
cations in the biomedical field, i.e., as antibacterial, antifungal, and anticancer agents [1].
The uses of AgNPs-based materials for such medical uses as in artificial bone and teeth,
ceramic coating, and other sanitizing installations, are already popular in commercial use.
Within these schemes, the addition of AgNPs to composite materials such as chitosan,
graphene, and hydroxyapatite (HA) demonstrated some beneficiary advantages for certain
purposes [2,3]. Among possible combinations, substituted HA with AgNPs was widely
developed to extend its biomimetic applications with antioxidative, antibacterial, anti-fungi,
and anti-virus features. The antibacterial and antioxidative activity of the composites are
useful for various medical applications, and thus the explorations were attempted from
many perspectives [4,5]. Several research studied the use of Ag-doped HA for various
medical devices; for example, they are used as a bone implant with an improved osteocon-
ductivity [6], and as bioceramic layers with antifungal and antibacterial properties [7,8]. In
biosensing application, Ag-doped HA was reported to be potential applied for trace-level
formaldehyde detection [9].

The interests for Ag-doped HA synthesis are related to the composition of dopant
in the nanocomposite–due to its toxicity at a certain level–and to the effectiveness of the
synthesis procedure, cost, and materials characteristics [10]. One of the critical develop-
ments is to minimize the use of hazardous chemicals by the green synthesis approach,
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either in the synthesis of AgNPs or synthesis of HA. The synthesis via bioreduction of Ag+

precursor by secondary metabolites from many valuable plants is a well-known and emerg-
ing research [11–13]. The uses of secondary metabolites from medicinal plants extracts as
bio-reductors are the popular pathway for this; more than 73,000 publications have been re-
ported to synthesize AgNPs with certain forms with specific bioactivity performance [14,15].
In addition, HA synthesis utilizing CaO derived from waste minerals aims to achieve a
similar goal. From several publications, biogenic calcium (CaO) derived from Molluscan
shell waste–including land snail shell–for HA synthesis is a potential low-cost option for
sustainable material development [16,17]. Based on these ideas, combining green syn-
thesized AgNPs and HA to get an antibacterial and antioxidative active composite is an
exciting perspective that needs further explorations [14].

Based on previous investigations, it was revealed that extract from Curcuma longa
tuber and leaf powder is inspiring for AgNPs synthesis due to its bioactivity and bio-
reductivity [18,19]. The huge potency of C. longa in traditional medicine in some countries,
including in Indonesia, will become a distinctive innovation for further important research
schemes in nanocomposites for biomimetic and other medical purposes. Based on these
factors, this research aims to study the physicochemical characteristics and antibacterial
features of Ag-doped HA (from herein called Ag/HA) utilizing C. longa leaf extract, (CLE)-
mediated synthesized AgNPs, and land snail shell waste as biogenic calcium for HA. As
the renewable resources of bioreductor and biogenic calcium utilized in the synthesis, it
can be denoted as the green synthesis method. The focus of the studies were on the effect
of the AgNPs content on the antibacterial activity of Ag/HA. The antibacterial activity of
AgNPs was evaluated on Escherichia coli (ATCC 11303), Staphylococcus aureus (ATCC 25923),
Kliebsiella pneumonia (ATCC 11828), and Streptococcus pyogenes (ATCC 87110) due to the
infectious effect and impact of these bacteria on humans and the environment. All bacteria
were obtained from Microbiology Laboratory, Universitas Islam Indonesia.

2. Materials and Methods
2.1. Materials

Land snail (Achatina fulica) shell waste was obtained from a cultivation area in Sleman
District, Yogyakarta Province, Indonesia. Fresh C. longa leaves were collected from the
Universitas Islam Indonesia Park. The identification and authentication of plant taxon-
omy were performed at the Biology Department, Universitas Gadjah Mada, Yogyakarta,
Indonesia. About 10 g of washed leaves were crushed and soaked in aquadest for 4 h and
filtered to obtain C. longa leaf extract (called CLE). Biogenic calcium (CaO) was derived by
calcining crushed land snail shells at 1050 ◦C [20,21]; previous investigation revealed the
single phase of CaO obtained by this treatment. Chemicals consisting of AgNO3 (>99%)
and (NH4)2HPO4 (99%) were purchased from Merck (Darmstadt, Germany).

2.2. Synthesis of AgNPs

The AgNPs was synthesized by mixing 9 mL of AgNO3 10−3 M with 1 mL of CLE,
followed by microwave heating for 15 min. The reduction mechanism was monitored by
UV-Visible spectrophotometry and particle size distribution identifications. Physicochemi-
cal characterization of synthesized AgNPs was conducted by UV-Visible spectrophotometer
analysis based on the identification of surface plasmon resonance of AgNPs, with additional
TEM analysis to determine the nanoparticle sizes and distribution.

2.3. Synthesis of Ag/HA

The Ag/HA samples were prepared utilizing AgNPs solution and CaO derived from
land snail shells by slow mixing and setting with the atomic ratio of Ag/[Ag+ Ca] at
1.0; 1.6; 2.4%. Furthermore, the Ca with AgNPs solution was added with (NH4)2HPO4
to obtain [Ca+ Ag]/P as 1.67 in a total 250 mL solution. The range of Ag percentage
was determined based on previous investigations considering the range of Ag content
significantly influences the antibacterial activity of the Ag/HA [22–24]. The solution was
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stirred for 2 h before it was hydrothermally treated in an autoclave at 150 ◦C overnight.
The obtained slurry was then dried in an electric oven at 80 ◦C before sintering at 750 ◦C
for 1 h. The obtained samples were encoded as Ag1.0/HA, Ag1.6/HA, and Ag2.4/HA for
the varied Ag concentrations. There was no residue left from these syntheses.

2.4. Physicochemical Characterization of Ag/HA

The physicochemical characterization of the nanocomposites was investigated by
using X-ray diffraction (XRD)(Bruker AXS D8, Singapore), Scanning Electron Microscope-
energy dispersive X-ray (SEM-EDX) (Phenom-X, Singapore), transmission electron mi-
croscopy (TEM), and X-ray photoelectron spectroscopy (XPS). For XRD analysis, a Shi-
madzu X6000 diffractometer (Singapore) operated using Cu Kα radiation at λ = 0.154 nm
was employed, and the peaks were recorded at the range of 5–80◦. For surface morphology
and elemental analyses, SEM-EDX was operated on Au-coated samples. The analysis
was conducted by a magnification of 10,000×. Transmission electron microscopy (TEM)
identification was performed on a JEOL-JEM-2100 (Tokyo, Japan) operated at 20 kV, and a
ULVAC instrument (Quantera SXM, Japan) was used for XPS analysis.

2.5. Antibacterial Activity Test of Ag/HA

A nutrient medium for the bacterial culture was utilized for bacterial growth and
prepared by suspending nutrient agar in distilled water and autoclaved before use. About
5 µL of Ag/HA suspension solution was loaded onto a 6 mm filter disc, and bacterial
culture was evenly spread throughout the petri plate. The evaluation of the antibacterial
activity was performed based on the inhibition zone of each sample after 24 h incubation.
The minimum inhibitory concentration (MIC) of each sample was performed by the dilution
method. The inhibition zone at varied Ag/HA concentration was measured, and the MIC
was determined by the smallest concentration giving significant antibacterial activity.

3. Results
3.1. Synthesis of AgNPs

The synthesis of AgNPs is the first step of the Ag/HA preparation. The principle
of AgNPs synthesis is the bioreduction of Ag+ from AgNO3 into Ag0 by the secondary
metabolite from CLE. Figure 1a presents the UV-Visible spectrum of CLE and the formed
AgNPs as the proof of bioreduction. The CLE spectrum exhibits some peaks at the range
of 200–400 nm as the indication of phenolic compounds from such secondary metabolites
contained in CLE. As the result of Ag+ reduction, these peaks associated with CLE com-
pounds disappear, with instead a single peak at 410 nm that is characteristics of the surface
plasmon resonance spectrum of AgNPs [25]. The similar spectrum was also reported in the
AgNPs synthesis by using CLE [18,26]. The formation of nanoparticles was also confirmed
by the TEM image of the formed particles and the particle size distribution presented in
Figure 1b,c, respectively. In addition, TEM analysis was performed for the synthesized
AgNPs. The TEM image in Figure 1b represents a heterogeneous form of the nanoparticles,
with the particle sizes ranging from 2–20 nm. The particle size distribution depicted in
Figure 1c implies a particle size mean of around 12 nm.

3.2. Characterization of Ag/HA

The XRD patterns of Ag/HA samples are shown in Figure 2. The presence of the
crystalline structure of HA is identified by the planes of (002), (210), (211), (112), (300), (310),
(222), and (213); refer to the JCPDS card no. 09–432 [27,28]. Reflections are still maintained
in Ag/HA samples other than the existence of Ag reflections presented at around 37.5,
39.0, and 47.4◦, which are associated with planes (111), (110), and (200) (refer to JCPDS
No: 84–7103), respectively. From the compared (211) plane of HA, a shifted reflection to a
higher angle due to the Ag doping is found, which indicates the replacement of Ca ions
with Ag ions [29,30]. Moreover, the shift is not significant due to the increasing Ag content.
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In addition, using the Scherer calculation for the (111) plane of Ag, the crystallite size of Ag
is not appreciably different, valued at about 87.7–88.9 nm.
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Figure 2. XRD pattern of nanocomposites.

Figure 3 shows the surface morphology of HA and Ag/HA samples. A distributed
AgNPs identified by white dots is exhibited by Ag/HA samples, which was also confirmed
by the elemental analysis from XRD analyses presented in Figure 3e. It was also found
that the Ag contents in the nanocomposite are relatively matched with what was set up,
and so are the Ca/P ratios at around 1.65–1.70. The more detailed morphology revealed
the porous structure of HA, which is maintained by the modification. The more detailed
analysis of the doped Ag was performed by TEM analysis, with the images presented in
Figure 4.
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Figure 4. (a–d) TEM images of HA, Ag1.0/HA, Ag1.6/HA, and Ag2.4/HA (d–g) HRTEM of Ag/HA.

The high-resolution TEM images in Figure 4f highlighted well-resolved lattice fringes,
which are observed at the distances of 0.35 and 0.28 nm that are associated with the d002
and d211 of HA structure, respectively. In addition, the distributed spherical particles
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are associated with the dispersed Ag have a particle diameter of around 5–25 nm. The
lattice fringes of the spot presented in Figure 4g represent the distance of 0.23 nm, which
is associated with the (111) plane of Ag [31,32]. From the different Ag content, the higher
particle diameters and the density appeared at higher Ag concentrations. The relatively
controlled Ag substitution was identified at lower AgNPs amount in the preparation step.

However, XPS analysis of the samples exhibits a single species of Ag0 in the structure,
as confirmed by the Ag 3d spectrum presented in Figure 5. The survey scan in Figure 5a
reveals some peaks associated with the existence of Ca, P, and O atoms as the main
components of HA [33]. The calculation of the intensity ratio of the Ca/P peaks shows
1.667, which is within the ratio obtained by EDX analysis and meets the theoretical ratio
in HA (1.67). In addition, the Ag 3d spectrum shows double peaks at 368.3 and 374.7 eV
associated with 3d5/2 and 3d3/2, respectively. These peaks correspond to unperturbed
metallic silver, as expected for Ag in nanoparticle form [34].
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3.3. Antibacterial Activity

Antibacterial activity of the Ag/HA samples is presented by the recapitulated inhibi-
tion zone in Figure 6a, with some images from the test presented in Figure 6b. Referring to
several previous works, the mechanism of antibacterial activity in Ag/HA is associated
with the capability of nano-sized Ag to penetrate cell walls and create ionic conditions that
prevent the formation of ATP and DNA replication of bacteria. As the ions enter the cyto-
plasm, there is an increase in permeability that causes bacterial death. Another mechanism
is that Ag+ ions penetrate the cell membrane and react directly with the -SH (thiol) group of
cell proteins, causing the release of ATP synthesis during cellular respiration and the loss of
protons, disrupting the cell metabolism system (Figure 6c). From the inhibition zone value,
varied Ag content (1.0; 1.6; and 2.4 %wt.), it is seen that the higher Ag content creates a
trend in increasing antibacterial activity. Similarly, a higher activity against Gram-negative
compared to Gram-positive bacteria is found [24]. In more detail, the minimum inhibitory
concentration (MIC) of the samples compared to AgNPs and HA are presented in Table 1.

Table 1. MIC of Ag/HA samples in comparison with HA and AgNPs.

Sample
MIC (µg/mL)

Ag1.0/HA Ag1.6/HA Ag2.4/HA HA AgNPs

E. coli 5 10 10 100 2
S. aureus 20 10 10 100 2

K. pneumonia 20 20 20 100 5
S. pyogenes 40 20 20 100 5
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Figure 6. (a). Recapitulated inhibition zone of Ag/HA (b). Images from antibacterial test (c).
Schematic representation of antibacterial activity of Ag/HA.

The data suggest that the higher Ag doped in HA expressed a lower MIC compared to
HA, suggesting that the increase in nanoparticle sites interacting with the cell wall affects
the bacterial membrane permeability for ongoing cell lysis [35,36]. The materials showed
a stronger inhibition against Gram-negative rather than Gram-positive bacteria, as the
Gram-negative bacteria have more accessible walls. With a thin peptidoglycan layer and
some functional groups such as amino groups, carboxyl, and phosphate in the phospholipid
structure of the cellular membrane, the wall has negative charges, which allows it to be
penetrated more easily by the positive charge of AgNPs of Ag/HA composites [37–39]. The
activity against E. coli from this work is higher (15 mm) compared to Ag/HA synthesized
by previous researchers with 8%wt of Ag–which showed an inhibition of 10 mm [40]–and
higher compared to Ag/HA synthesized using Clitoria ternatea extract with an inhibition
zone of 12 mm [37]. However, the activity against S. aureus is smaller as it showed a smaller
inhibition zone (10 mm) than what was recorded in the aforementioned research works
of 18 mm and 12 mm, respectively. Moreover, the examination of the minimum inhibition
concentration (MIC) suggests that all materials synthesized in this work have the potential
to be developed as the values are comparable to previous works. For example, the MIC of all
samples toward all tested bacteria are lower than what was expressed by Ag/HA prepared
with Black Sumatra chicken bone [41]. In addition, the similar inhibition values for E. coli
and S. aureus were achieved by higher concentrations of Ag/HA material synthesized using
gallic acid as a bioreductor [42], or a higher Ag content [43]. The comparisons between
the antibacterial activity with similar works are listed in Table 2. Various bioreductors
such as gallic acid, Clitoria ternatea, and synthesis methods were reported. Compared to
the Ag/HA composites obtained using gallic acid and Clitoria ternatea as bioreductors,
the MIC values for S. aureus and E. coli from this work are smaller, indicating a higher
bioactivity. However, with a similar Ag content (2%), the MIC value is lower than what was
prepared by mixing and hydrothermal methods. The competitiveness of Ag/HA composite
obtained in this work is related to the sustainable raw material. From these observations, it
is conclusive that the Ag/HA synthesized in this work has the potential to be developed as
an antibacterial material.
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Table 2. The comparison of the antibacterial activity in similar works.

Synthesis Method of Ag/HA Remark Reference

Ag/HA synthesized by using gallic acid as bioreductor
The material showed an inhibition zone of around
15 mm for E. coli, and 9.5 mm for S. aureus at the
concentration of 5mM

[42]

Ag/HA synthesized by 8%wt. of Ag content
The material exhibited an inhibition zone of
10 mm for E. coli and 18 mm for S. aureus at the
concentration of 20 µg/mL

[40]

Ag/HA synthesized by using Clitoria ternatea as bioreductor
The material showed an inhibition zone of around
12 mm for E. coli, and 12 mm for S. aureus at the
concentration of 20 µg/mL

[37]

Ag/HA synthesized by using sol-gel method The MIC towards E. coli, and S. aureus are 15 and
25 µg/mL, respectively [44]

Ag/HA synthesized by using black Sumatra chicken shell The MIC towards E. coli, and S. aureus are 72 and
45 µg/mL, respectively [41]

Ag/HA synthesized by rapid mixing method The MIC towards S. aureus is 2.5 µg/mL for the Ag
content of 2 % wt. [45]

Ag/HA synthesized by using hydrothermal method
The MIC towards S. aureus is 7.85 µg/mL and the
MIC towards E. coli is 3.9 µg/mL by the Ag:HA
molar ratio of 3:10.

[43]

4. Conclusions

Green synthesis of silver nanoparticle-doped hydroxyapatite (Ag/HA) nanocomposite
was successfully prepared. The AgNPs was synthesized by using Curcuma longa leaf extract
as a bioreductor, and for hydroxyapatite preparation, biogenic silica derived from land
snail shells was utilized. The effect of the Ag content on the physicochemical characteristics
and antibacterial activity of Ag/HA was studied by employing instrumental analysis of
XRD, TEM, and XPS. It was found that the green synthesized AgNPs had a particle size
ranging from 2–20 nm, and was homogeneously distributed in the Ag/HA form. The
effect of silver doping revealed that increasing the Ag content influenced the distribution
of Ag nanoparticles. The presence of doped silver enhanced the antibacterial activity
against E. coli, K. pneumoniae, S. aureus, and S. pyogenes. The results provide a reference for
developing novel antibacterial materials for various applications, such as environmental
applications and medical applications.
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