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(e purpose of this study was to explore the deep learning radiomics (DLR) nomogram to predict the overall 3-year survival after
chemoradiotherapy in patients with esophageal cancer. (e 154 patients’ data were used in this study, which was randomly split
into training (116) and validation (38) data. Deep learning and handcrafted features were obtained via the preprocessing di-
agnostic computed tomography images. (e selected features were used to construct radiomics signatures through the least
absolute shrinkage and selection operator (LASSO) regression, maximizing relevance while minimizing redundancy. (e DLR
signature, handcrafted features’ radiomics (HCR) signature, and clinical factors were incorporated to develop a DLR nomogram.
(e DLR nomogram was evaluated in terms of discrimination and calibration with comparison to the HCR signature-based
radiomics model. (e experimental results showed the outperforming discrimination ability of the proposed DLR over the HCR
model in terms of Harrel’s concordance index, 0.76 and 0.784, for training and validation sets, respectively. Also, the proposed
DLR nomogram calibrates and classifies better than the HCR model in terms of AUC, 0.984 (vs. 0.797) and 0.942 (vs. 0.665) for
training and validation sets, respectively. Furthermore, the nomogram-predicted Kaplan–Meier survival (KMS) curves differed
significantly from the nonsurvival groups in the log-rank test (p value <0.05).(e proposed DLRmodel based on conventional CT
images showed the outperforming performance over the HCR signature model in noninvasively individualized prediction of the
3-year survival rate in esophageal cancer patients.(e proposed model can potentially provide prognostic information that guides
and helps the clinical decisions between observation and treatment.

1. Introduction

Esophageal cancer (EC) is the eighth most common ma-
lignancy and the sixth most common disease-related cause
of death worldwide [1, 2]. (e incidence of esophageal
cancer is notably high in Asia and Iceland, as well as the
United Kingdom and the United States [3–5]. In order to
systemically control the disease, radiotherapy and neo-
adjuvant chemotherapy are commonly combined with
surgery [6–8]. Regardless of its benefit for severe patients
with a low survival rate, an aggressive treatment plan,
including multiple cycles of treatment and adjuvant
chemotherapy, is not suitable for the other patients with
esophageal cancer [9]. Pre-identification for such pa-
tients having a low survival rate before surgery can help

provide other suitable treatment regimens for these
patients [10]. (erefore, identification of patients having
a lower survival rate is vital to take benefit from addi-
tional treatment.

Radiomics features [11, 12] have been widely used as an
extremely useful tool in quantitative analysis of medical
imaging and in medical diagnosis [13, 14]. (e traditional
radiomics utilized handcrafted features, such as tumor
shape and texture, obtained from medical images [11].
However, such handcrafted low-order features are not
suitable to define intrinsic characteristics of intratumor
imaging heterogeneity, limiting the applicability of the
radiomics model [11–13]. Furthermore, the construction of
handcrafted features is limited within the known knowl-
edge of medical imaging.
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Deep learning, especially CNN, has recently achieved
promising results in medical image analysis [15–18]. Deep
networks consist of multiple layers that can be learned from
data [19, 20]. For example, prognostic tumor features can be
extracted through hierarchical convolution operation on the
medical images [21–24]. Compared with handcrafted fea-
tures, DLR features contain more important tumor infor-
mation that may help diagnose [25–27].

However, unlike handcrafted radiomics studied widely
for radiological diagnosis and prediction [28], the applica-
tion of deep learning in predicting overall survival in
esophageal cancer has not been thoroughly explored yet.
Hence, this study aims to develop and validate the deep
survival prediction model based on a radiomics nomogram
for individualized prediction of three years’ overall survival
in patients with esophageal cancer.

It is worthwhile to highlight three aspects of the con-
tributions here. (1) (is study investigated DLR features in
the survival prediction of patients with esophageal cancer.
Unlike the traditional handcrafted features, clinical target-
oriented DLR features can be automatically learned from
data. (2) Both HCR features and DLR features are consid-
ered in the prediction model to characterize the esophageal
lesions thoroughly. (e main reason is that the DLR and
HCR can describe imaging heterogeneity of esophageal le-
sions in different levels. In particular, HCR comprise shape
features, first-order statistics, and texture features; DLR
contains the “real-world” textures, which are extracted from
the pretrained DenseNet-169 network via transfer learning
strategy. (3) (is study develops a noninvasive predictive
model that combines deep learning-based radiomics fea-
tures, handcrafted features, and clinical factors to predict
survival rates within three years at diagnosis of esophageal
cancer. (e DLR nomogram survival prediction of esoph-
ageal cancer patients can allow more proper treatment. (e
experimental results showed that the DLR nomogram
outperforms the HCR model and the clinical model.

2. Materials and Methods

2.1. Patients. Esophageal cancer patients at Shanxi Cancer
Hospital were the subject of our retrospective study. (e
patients were included according to the inclusion criteria: (a)
patients who had pathologically confirmed esophageal
cancer, (b) a standard CT scan performed before any
treatment, and (c) clinical characteristics available. (e
patients were excluded with the following criteria: (a) too
poor CT image quality, which may affect the diagnosis of the
patient, (b) patients who had chemotherapy treatment at
another institution, and (c) patients who are also suffering
from other cancers.

(e survival group includes patients who survived more
than three years since the treatment, whereas the non-
survival group includes patients who died within three years.
A total of 154 esophageal cancer patients diagnosed from
November 2012 to February 2015 participated in our ret-
rospective study. (ose data were grouped into two sets:
training (116) and validation (38) data at a ratio of 3 :1.

Baseline clinical data were collected via the electronic
medical record system (EMRS) [29], including gender, BMI,
age, M-stage, N-stage, T-stage, overall stage, and planning
target volume (PTV). (e picture archiving and commu-
nication system (PACS) was used to obtain CT images. (e
dataset was constructed and evaluated in April 2019, and all
enrolled patients were followed for at least 3 years. (e
Institutional Review Board approved the study.

2.2. CT Image and Region of Interest (ROI) Acquisition.
General Electric Light Speed RT16 was used for scanning,
with a CT thickness of 5mm. (e primary tumor volumes
for radiotherapy planning were set as the ROI to quanti-
tatively analyze the images. Two skilled radiologists man-
ually selected the three-dimensional tumor ROI using the
software package 3D Slicer [30].

Training CT images were preprocessed to avoid accuracy
degradation of DL models caused by noises introduced with
the interval change, which include resampling, rescaling,
and voxel normalization. (ose CT images were recon-
structed with a matrix of 512 × 512 and 0.5× 0.5mm2 pixel
size, and the resampling with cubic interpolation to
1× 1× 1mm3 pixels was conducted, minimizing CT images
variabilities [31].

(e tumor area was located with a rectangle bounding
box that covers the primary tumor area. (e ROI for each
patient was obtained with three cropped consecutive slices to
avoid the bias of manual segmentation that affects the lo-
cation of a bounding box. Lastly, the tumor image was
resized to 224× 224× 3 voxels.

2.3. Radiomics Feature Extraction. Phenotypic differences
between tumors can be captured by a large number of
quantitative radiomics features. In this study, deep learning
features and handcrafted features were extracted to quantify
tumor phenotype to enhance the learning efficiency of the
radiomics model. (ose two feature sets have comple-
mentary advantages that can be combined to improve the
model. Also, expert knowledge on the esophageal cancer
lesion can be reflected with shape and texture features. On
the contrary, the high-level DLR features can significantly
represent complex spatial features in both global and local
perspectives.

(e handcrafted feature extraction algorithm was
standardized by referring to the Image Biomarker Stan-
dardization Initiative (IBSI) [32–34] and Radiomics On-
tology [35]. For each CT ROI, 1,670 handcrafted features
were extracted using Python implementation, including 18
first-order statistics, 16 geometric, and 1,564 texture fea-
tures. (e textural features include 14 gray-level dependence
[36], 23 gray-level co-occurrence [37], 16 gray-level run-
length [38], 16 gray-level size-zone [39], and 5 neighborhood
gray-tone difference [40] matrices. Refer to the supple-
mentary appendix of Lambing [41], for mathematical def-
initions of those features.

(e DenseNet-169, designed for the image classification
task, was adopted to extract DLR features. In the training
cohort, data augmentation approaches including random
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rotation, random shear, and random zoom were employed
before the training procedure. (e deep learning model was
pretrained on the ImageNet dataset, one of the largest image
datasets, and then fine-tuned in a transfer learning strategy
to avoid the overfitting problem [42]. (e network was
trained with cross-entropy loss function and Adam opti-
mizer with a learning rate of 0.0001, a batch size of 16, and a
regularization weight of 0.0001. (e network was imple-
mented on Keras (https://keras.io/) with the TensorFlow
library as the backend (https://www.tensorflow.org/). As
depicted in Figure 1, the tumor ROI was fed into the
DenseNet-169, and the outputs of hidden layers were col-
lected to obtain 1,664 features in total.

2.4. DLR Signature Building. In order to obtain the most
effective feature, three stages of feature selection were carried
out. First, features (p< 0.05) were obtained through the
Mann–Whitney U (MWU) test. (en, the features were
sorted based on the mutual information (MI) between
features and the survival status using the minimum re-
dundancy maximum correlation (mRMR) scheme [43]. It
should be noted that, in this study, only the top 50 features in
mRMR were retained. Lastly, the dimension of features is
reduced by the LASSO to obtain optimal features [44]. (e
survival-related features were retained while the other fea-
tures were removed by LASSO regression. (e 10-fold cross
validation was conducted with 100 iterations in LASSO
regression. (e obtained features are used to construct the
DLR signature, and the HCR signature was constructed in a
similar way for comparison.

2.5. DLR Nomogram Construction. A DLR nomogram was
built by integrating DLR signature, HCR signature, and
clinical features with a multivariable logistic regression
model. Backward stepping selection was used with infor-
mation criterion of Akaike as the stopping rule [45]. (e
variable multicollinearity in the multiple logistic regression
model was checked by the variance inflation factor (VIF),
where VIF> 10 indicates high multicollinearity [46]. A DLR
nomogram was then built based on the multivariate logistic
analysis, predicting the individual probability of survival in
the training dataset.

2.6. Evaluation of the DLR Nomogram. Harrel’s C -index
was employed to evaluate the discrimination ability of the
DLR nomogram in both training and testing datasets. (e
bootstrap method was used to resampling 1,000 times, and
the C index in both cohorts was calculated with 95% con-
fidence intervals. (e AUC, accuracy, specificity, and sen-
sitivity were calculated on the plotted ROC curves. (e
calibration ability of the DLR nomogram was evaluated
using the calibration curve that depicts the consistency
between predicted and actual survival probabilities. Hos-
mer–Lemeshow (HL) test [47] and decision curve analysis
(DCA) [48] were utilized to evaluate the fitting accuracy and
robustness of the DLR nomogram, respectively. Further-
more, KMS curves were constructed to predict survival

status. Accordingly, the patients were predicted as survival
or nonsurvival, and then, the difference in survival curves
between the two groups was evaluated using the log-rank
test.

2.7. Statistical Analysis. All the statistical analyses were
conducted with R software (version 4.0.3; http://www.
Rproject.org). MWU and Chi-square tests were adopted
for univariate analysis, and Spearman’s correlation rank was
employed for correlation. (e penalty parameter (λ) was
tuned by LASSO logistic regression model. (is study used
the following packages for each analysis. “glomnet” package:
LASSO logistic regression, “rms” package: nomograms and
calibration plots, “ResourceSelection” package: HL test,
“car” package: VIFs calculation, “survivalROC” package:
AUC analysis, “survminer” package: KMS analysis, and
“dca.R” function: DCA performance. (is study utilized a
bilateral statistical significance level p value <0.05.

3. Results

Figure 2 depicts the schematic diagram of the study.

3.1. Clinical Characteristics. Table 1 summarizes the clinical
characteristics of the training and validation cohorts, where
the Chi-square test (p value is 0.572) for two data shows no
significant observable difference in the survival rate, 30.2%
and 36.8%, for training and validation, respectively.

3.2. DLR Signature. Fifty features were obtained for each
patient after survival-unrelated and redundant feature re-
moval from 1,664 DLR features. (en, based on the training
cohort, 33 potential predictors were selected by LASSO
regression. Parameter (λ) selection and coefficients of
LASSO are given in Supplementary Material (II). (e DLR
signature was constructed using the selected features.

(e results show that scores of the survival group were
higher than the nonsurvival group with a significant dif-
ference in terms of DLR signatures (1.10± 0.75 vs.
−2.22± 0.75) in the training cohort and (0.15± 1.11 vs.
−1.90± 1.12) in the validation cohort. MWU test was used
with a p value <.001. Also, a significant correlation between
DLR signature and survival status was found (C index: 0.729,
p � 0.035 in the training data, and C index: 0.766, all
p< 0.001 in the validation data).

(e LASSO algorithm selected 18 handcrafted features to
build HCR signatures. HCR signatures were also signifi-
cantly different between survival and nonsurvival groups. In
the training data, 0.68± 1.12 vs. −0.50± 1.03, p value <.001,
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Max pooling

Features
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Figure 1: DLR feature extraction process.
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MWU test, and in the validation data, 0.80± 1.26 vs.
−0.23± 1.48, p value� 0.035, MWU test. HCR feature se-
lection by LASSO regression is described in detail in Sup-
plementary Material (I).

3.3. DLR Nomogram. (e DLR signature, HCR signature,
and BMI were combined to construct a DLR nomogram, as

shown in Figure 3. (e VIFs of DLR signature, HCR sig-
nature, and BMI were 1.45, 1.41, and 1.07, respectively,
indicating no severe collinearity in the regression model.

Figure 4 depicts ROC curves of the DLR nomogram for
the DLR signature model and HCR signature model. (e
AUC was 0.984, 0.955, and 0.797 for the DLR nomogram,
DLR signature model, and HCR signatures’ model, re-
spectively, in the training data. In the validation data, the

CT images

ROI segmentation

Feature extraction Statistics analysis

Radiomics nomogram

Lasso regression

Assessment

First order statistics 

geometric features

Texture features

Deep learning features

Figure 2: Schematic diagram of this study.

Table 1: Clinical characteristics of esophageal cancer patients.

Training cohort (n� 116) Validation cohort (n� 38)
Characteristic Nonsurvival (81) Survival (35) p Nonsurvival (24) Survival (14) p

Gender
Male: female 51 : 30 23 :12 0.836 12 :12 6 : 8 0.745
Age 67.96± 9.41 68.83± 8.80 0.644 66.54± 9.65 67.36± 7.09 0.785
BMI 21.70± 3.14 23.69± 4.25 0.006 23.04± 3.98 22.55± 3.24 0.702

T-stage
T1 1 (1.2%) 2 (5.7%)

0.042

1 (4.2%) 0 (0.0%)

0.938T2 20 (24.7%) 16 (45.7%) 9 (37.5%) 7 (50.0%)
T3 43 (53.1%) 13 (37.1%) 10 (41.7%) 5 (35.7%)
T4 17 (21.0%) 4 (11.4%) 4 (16.7%) 2 (14.3%)

N
N0 20 (25.0%) 14 (40.0%) 0.123 7 (29.2%) 6 (42.9%) 0.486N1 60 (75.0%) 21 (60.0%) 17 (70.8%) 8 (57.1%)

M
M0 69 (85.2%) 35 (100.0%) 0.017 22 (91.7%) 14 (100.0%) 0.522M1 12 (14.8%) 0 (0.0%) 2 (8.3%) 0 (0.0%)

TNM
I 0 (0.0%) 2 (5.7%)

0.002

0 (0.0%) 0 (0.0%)

0.766II 27 (33.3%) 19 (54.3%) 10 (41.7%) 8 (57.1%)
III 42 (51.9%) 14 (40.0%) 12 (50.0%) 5 (35.7%)
IV 12 (14.8%) 0 (0.0%) 2 (8.3%) 1 (7.1%)

PTV 379.62± 158.34 335.22± 179.33 0.186 382.56± 134.39 362.53± 166.27 0.687
HCR_signature −0.50± 1.03 0.68± 1.12 <0.001 −0.23± 1.48 0.80± 1.26 0.035
DLR_signature −2.22± 0.75 1.10± 0.75 <0.001 −1.90± 1.12 0.15± 1.11 <0.001
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AUC was 0.942, 0.846, and 0.665 for the DLR nomogram,
DLR signature model, and HCR signatures’ model, re-
spectively. (e results indicate that the DLR nomogram
model provides better discrimination ability (Harrel’s
concordance index, 0.76 and 0.784, for the training and
validation data, respectively).

Figure 5 depicts the calibration curves, showing the
consistency between predicted and actual survival rates. A

nonsignificant statistic of the training cohort (p value� .563,
HL test) showed no deviation from the ideal fit. In the
validation cohort, the 3-year survival rate was also well-
calibrated (p value� .648, HL test).

(e DCA examined the clinical outcomes based on
threshold probability at which a net benefit could be derived.
Figure 6 depicts the DCA of the DLR nomogram, showing
that the DLR nomogram obtained outstanding net benefits
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Figure 3: (e construction of the DLR nomogram.
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Figure 4: ROC curves for the DLR and HCR signatures for (a) training data and (b) validation data.
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over the other strategies: treat-all-patients and treat-none
strategies. A significant difference (p value <.05, log-rank
test) between prediction survival and nonsurvival groups
was found in KMS curves (Figure 7).

4. Discussion

Treatment planning can be further individualized via pre-
operative prediction of three-year survival. In previous
studies, handcrafted features were analyzed to predict sur-
vival rates. However, due to the limited feature extraction
ability, the prediction accuracy was not high enough. In
order to overcome such a limitation, this study investigated

DLR features in the survival prediction of patients with
esophageal cancer. Unlike the traditional handcrafted fea-
tures, clinical target-oriented DLR features can be auto-
matically learned from data [49].

Intratumor heterogeneity has been considered a po-
tential prognosis factor. (e DRL feature extraction can
robustly characterize the intratumor heterogeneity non-
invasively from the medical images [26]. (e experimental
results showed that the use of DLR features contributed to
the performance of the model, which is also supported by
recent studies that high-dimensional features can preserve
more detailed cancer information, making them more
sensitive when assessing survival status [24]. (erefore, by
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Figure 5: Calibration curves for the DLR nomogram for (a) training data and (b) validation data, where the x-axis and y-axis represent the
predicted and actual rates. (e solid red line is the performance of the DLR nomogram, and the dashed blue line is the ideal prediction.
Closer the solid red line is to the dashed blue line, more accurate the prediction of the model.
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Figure 6: DCA for the DLR nomogram in (a) training and (b) validation data. (e black and gray lines represent the hypothesis that all
patients die and that no patient dies within three years, respectively. (e red line represents the net benefit of the DLR nomogram.

6 Journal of Healthcare Engineering



combining these DLR features, a DLR nomogram survival
prediction of esophageal cancer patients can allow more
proper treatment. (e experimental results showed that the
DLR nomogram outperforms the HCR model and the
clinical model.

(is study has several limitations, described as follows.
First, only 154 patients were available for a three-year follow-
up analysis. A larger amount of data is required to improve
the performance of the model. Second, all the patients were
collected to form a single-center, thereby limiting the
generalizability of the DLR model. A more diverse dataset is
required to validate the robustness and reproducibility of the
DLR model. (ird, our study did not consider genetic
markers. Multiple factors should be considered for more
personalized treatment, including biology, pathology, ge-
nomics [24, 26, 42–52], and imaging biomarkers [53]. In
addition, this study was limited to CT images despite the
essentiality of MIR images in surgical planning due to their
excellent resolution for soft tissues. (e focus should,
therefore, be given towards developing an additional model
combining CTand MRI image features. Finally, the primary
tumor volumes were manually delineated for feature ex-
traction. Even though the delineations are commonly used
with confirmation by another radiation oncologist in ra-
diotherapy planning, previous studies showed that semi-
automatic tumor segmentation could reduce interobserver
variability and therefore is more suitable for radiomics
studies [54].

5. Conclusions

(is study details the development of a noninvasive pre-
dictive model that combines deep learning-based radiomics
features, handcrafted features, and clinical factors to predict
survival rates within three years at diagnosis of esophageal

cancer. (e performance of the proposed DLR nomogram is
superior to the traditional radiomics model in terms of
Harrel’s concordance index and AUC. (e calibration
curves show the good prediction performance of the no-
mogram. (e nomogram-predicted Kaplan–Meier survival
(KMS) curves differed significantly from the nonsurvival
groups in the log-rank test (p value <0.05). (e proposed
model can present the basis for clinicians to make better
treatment decisions and personalized diagnoses. Future
works will include the model improvement based on larger
data and complementary clinical factors.
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Supplementary Materials

(I) HCR feature selection using the least absolute shrinkage
and selection operator (LASSO) logistic regression model.
Figure S1. HCR feature selection using the LASSO logistic
regression algorithm. (a)(e penalization coefficient λ in the
LASSO model was tuned by the binomial deviance
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Figure 7: KMS curves of the predicted survival and nonsurvival groups in (a) training and (b) validation data.
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minimization criteria. (e binomial deviance metrics (the y-
axis) were plotted against log(λ) (the bottom x-axis). (e top
x-axis indicates the number of predictors with the given
log(λ). Red dots indicate average binomial deviance for each
model at the given λ. Vertical bars through the red dots show
the upper and lower values of the binomial deviance. (e
vertical black lines represent the optimal λ, where the model
provides the best fit to the data. As a result, the optimal λ of
0.02373184 was selected. (b) LASSO coefficient profiles of
the 50 radiomics features. For the optimal λ, eighteen fea-
tures with nonzero coefficient were selected. (II) DLR feature
selection using the least absolute shrinkage and selection
operator (LASSO) logistic regression model. Figure S2. DLR
feature selection using the LASSO logistic regression algo-
rithm. (a)(e penalization coefficient λ in the LASSOmodel
was tuned by the binomial deviance minimization criteria.
As a result, the optimal λ of 0.0445107 was selected. (b)
LASSO coefficient profiles of the 50 radiomics features. For
the optimal λ, thirty three features with nonzero coefficient
were selected. (Supplementary Materials)
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