

GOPEN ACCESS

Citation: Devi YD, Goswami HB, Konwar S, Doley C, Dolley A, Devi A, et al. (2021) Immunoinformatics mapping of potential epitopes in SARS-CoV-2 structural proteins. PLoS ONE 16(11): e0258645. https://doi.org/10.1371/journal. pone.0258645

Editor: William C. Nierman, J Craig Venter Institute, UNITED STATES

Received: January 19, 2021

Accepted: October 1, 2021

Published: November 15, 2021

Peer Review History: PLOS recognizes the benefits of transparency in the peer review process; therefore, we enable the publication of all of the content of peer review and author responses alongside final, published articles. The editorial history of this article is available here: https://doi.org/10.1371/journal.pone.0258645

Copyright: © 2021 Devi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All the data associated with the manuscript is provided as $\underline{\text{S1}}$ File.

RESEARCH ARTICLE

Immunoinformatics mapping of potential epitopes in SARS-CoV-2 structural proteins

Yengkhom Damayanti Devi^{1®}, Himanshu Ballav Goswami^{1®}, Sushmita Konwar^{1®}, Chandrima Doley^{1®}, Anutee Dolley^{1®}, Arpita Devi¹, Chen Chongtham^{1,2}, Dikshita Dowerah³, Vashkar Biswa⁴, Latonglila Jamir⁵, Aditya Kumar⁰, Siddhartha Shankar Satapathy^{6,7}, Suvendra Kumar Ray^{1,7}, Ramesh Chandra Deka^{3,7}, Robin Doley¹, Manabendra Mandal^{1,7}, Sandeep Das⁴, Chongtham Shyamsunder Singh⁸, Partha Pratim Borah⁹, Pabitra Nath¹⁰, Nima D. Namsa^{1,7}*

1 Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, India, 2 National Institute of Immunology, Aruna Asaf Ali Marg, Jawaharlal Nehru University, New Delhi, India, 3 Department of Chemical Sciences, Tezpur University, Napaam, Assam, India, 4 Department of Biotechnology, Bodoland University, Kokrajhar, Assam, India, 5 Department of Environmental Science, Nagaland University (Central), Lumami, India, 6 Department of Computer Science and Engineering, Tezpur University, Napaam, Assam, India, 7 Centre for Multi-disciplinary Research, Tezpur University, Napaam, Assam, India, 8 Department of Paediatrics, Regional Institute of Medical Sciences, Imphal, India, 9 Department of Paediatrics and Neonatology, Pratiksha Hospital, Borbari, Guwahati, Assam, India, 10 Department of Physics, Tezpur University, Napaam, Assam, India

These authors contributed equally to this work.
* namsa@tezu.ernet.in

Abstract

All approved coronavirus disease 2019 (COVID-19) vaccines in current use are safe, effective, and reduce the risk of severe illness. Although data on the immunological presentation of patients with COVID-19 is limited, increasing experimental evidence supports the significant contribution of B and T cells towards the resolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Despite the availability of several COVID-19 vaccines with high efficacy, more effective vaccines are still needed to protect against the new variants of SARS-CoV-2. Employing a comprehensive immunoinformatic prediction algorithm and leveraging the genetic closeness with SARS-CoV, we have predicted potential immune epitopes in the structural proteins of SARS-CoV-2. The S and N proteins of SARS-CoV-2 and SARS-CoVs are main targets of antibody detection and have motivated us to design four multi-epitope vaccines which were based on our predicted B- and T-cell epitopes of SARS-CoV-2 structural proteins. The cardinal epitopes selected for the vaccine constructs are predicted to possess antigenic, non-allergenic, and cytokine-inducing properties. Additionally, some of the predicted epitopes have been experimentally validated in published papers. Furthermore, we used the C-ImmSim server to predict effective immune responses induced by the epitope-based vaccines. Taken together, the immune epitopes predicted in this study provide a platform for future experimental validations which may facilitate the development of effective vaccine candidates and epitope-based serological diagnostic assays.

Funding: The author(s) received no specific funding for this work.

Competing interests: The authors have declared that no competing interests exist.

Introduction

Coronavirus disease 2019 (COVID-19) is a highly transmissible acute respiratory disease caused by a novel strain of coronavirus called the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Phylogenetic analysis of whole-genome sequences of SARS-CoV-2 isolated from infected patients revealed an overall sequence identity of 96.2%, 79.6%, and 50% with the genome of RaTG13, SARS-CoV BJ01, and MERS-CoV, respectively [1, 2]. The genome of SARS-CoV-2 encodes both structural and nonstructural proteins (NSPs). The first ORFs (ORF1a/b) encode 16 NSPs (NSP1-16) except in gamma coronavirus which lacks NSP1. There is a -1 frameshift between ORF1a and ORF1b leading to the production of two polypeptides (pp1a and pp1ab). These polyproteins are post-translationally processed by virusencoded chymotrypsin-like protease (3CLpro) or main protease (Mpro) and by one or two papain-like proteases into 16 NSPs. The structural proteins include spike glycoprotein (S), envelope protein (E), membrane protein (M), and nucleocapsid protein (N). The S protein has two functional subunits that mediate cell attachment (S1 subunit) and virus-host membrane fusion (S2 subunit). The S proteins of SARS-CoV-2 and SARS-CoV are phylogenetically closely related with an amino acid sequence identity of approximately 77% [1] while utilizing the same cellular receptor angiotensin-converting enzyme 2 (ACE2) for entry into cells [3].

Antibodies that bind to the S protein have been reported to neutralize SARS-CoV-2. The ensuing rapid development of neutralizing antibodies against the S protein is correlated with the immune response to the virus, and individuals who show seroconversion may develop a lasting immune response against SARS-CoV-2 [4-6]. In a recent study, a rapid diagnostic test for the serodiagnosis of COVID-19 was developed using the S and N proteins of SARS-CoV-2 [7–9]. Many studies have reported the generation of IgM- and IgG-specific neutralizing antibodies against the S protein of SARS-CoV-2 [10-15]. Limited information is available on specific SARS-CoV-2 proteins that are recognized by immune cells; however, a few studies have found a higher proportion of T-cell responses specific to structural proteins in convalescent serum from patients with COVID-19 [16–18]. As of June 3, 2021, the World Health Organization (WHO) has approved the emergency use of COVID-19 vaccines, namely AstraZeneca/ Oxford, Moderna, Johnson and Johnson, Pfizer/BioNTech, Sinopharm, and Sinovac Biotech after the evaluation of safety and efficacy data from clinical trials. The findings from clinical trials of a Chimpanzee adenoviral vector vaccine (ChAdOx1 nCoV-19, AZD1222) expressing the S protein of SARS-CoV-2 protein demonstrated an acceptable safety profile and good efficacy in symptomatic patients [19]. B.1.1.7, a new variant of SARS-CoV-2, has emerged as the dominant variant of COVID-19 in the UK. The clinical efficacy of AZD1222 against symptomatic infection was 70.4% for the B.1.1.7 variant and 81.5% for non-B.1.1.7 lineages; however, the neutralization activity of AZD1222 was lower against the B.1.1.7 variant than that against the non-B.1.1.7 variants [20]. The Moderna COVID-19 (mRNA-1273) vaccine is a lipid nanoparticle-encapsulated nucleoside-modified mRNA vaccine, which encodes the stabilized prefusion S protein of SARS-CoV-2. It showed an overall efficacy of 94.1% (95% confidence interval = 89.3–96.8%) in preventing symptomatic patients diagnosed with COVID-19, including those with severe symptoms [21]. The vaccine was also highly effective in clinical trials, exhibiting a high efficacy in individuals with different demographical characteristics, including age, sex, race, and ethnicity, as well as in individuals with pre-existing medical conditions. In a phase 1 trial of the mRNA-1273 vaccine, serum neutralizing antibody responses were detected in all participants (40 adults aged between 56 to 70 years), which were similar to those previously reported among vaccine recipients by multiple methods [22]. The vaccine elicited an increased production of CD4 response lymphocytes, including type 1 helper T cells [22]. The COVID-19 vaccine developed by Johnson and Johnson's/Janssen (Ad.26.COV2.S) is a

recombinant, replication-incompetent adenovirus serotype 26 (Ad26) vector vaccine, which encodes the stabilized prefusion S protein of SARS-CoV-2. The Johnson and Johnson vaccine showed 66.3% efficacy in symptomatic patients with laboratory-confirmed COVID-19 with no prior history of COVID-19 [23]. The efficacy of Ad.26.COV2.S, which varied geographically, was the highest in the United States (74.4%; 95% CI = 65.0-81.6%), followed by Latin America (64.7%; 95% CI = 54.1–73.0%) and South Africa (52.0%; 95% CI = 30.3–67.4%) [23]. These findings indicated that CD4+ T-cell responses were observed in 76 to 83% of the participants in cohort 1. In addition, 60 to 67% of those in cohort 3 showed a clear skewing toward type 1 helper T-cell responses on day 14 post-vaccination [23]. The Pfizer-BioNTech COVID-19 (BNT162b2) vaccine is a lipid nanoparticle-formulated nucleoside-modified mRNA vaccine, which encodes the prefusion S protein of SARS-CoV-2. Randomized clinical trials of a twodose regimen of BNT162b2 revealed an overall efficacy of 95% in patients with COVID-19 who were 16 years of age or older [24]. The Sinopharm COVID-19 or BIBP is an inactivated vaccine developed by Beijing Bio-Institute of Biological Products Co Ltd. This vaccine showed an overall efficacy of 79% in preventing symptomatic disease and hospitalization [25]. Sinovac-CoronaVac is an inactivated vaccine developed by Sinovac Biotech showed efficacies of 51% against symptomatic SARS-CoV-2 infection, 100% against severe COVID-19, and 100% against hospitalization in the studied population [26]. Although the above-mentioned vaccines are effective against both symptomatic and asymptomatic COVID-19, the recent global rise in the emergence of SARS-CoV-2 variants might compromise the effectiveness of these vaccines. In recent years, in silico vaccine designing, which involves the prediction of immunogenic antigenic sequences in viral proteins, has gained increasing attention due to advantages such as the rapid screening and identification of multiple antigen candidates that can generate an immune response in vivo. This approach harnesses high-throughput proteomics data available in public databases to screen for the most effective candidate epitopes based on criteria such as antigenicity and immunogenicity profiles. Therefore, the identification of B-cell and T-cell epitopes of structural proteins is essential for developing effective diagnostic tests and epitopebased vaccine candidates against SARS-CoV-2. Although computational approaches have successfully predicted potential B- and T-cell epitopes, a detailed analysis of epitopes of four structural proteins of SARS-CoV-2 might have important implications in the design and analysis of COVID-19 vaccines under various stages of clinical development [27-38]. Currently, welldeveloped bioinformatic approaches for epitope analysis have been used to successfully identify epitopes that generate both weak and strong immune responses, which might have been experimentally ignored [39]. In our study, we used multiple online bioinformatics resources and stringent selection criteria to identify potent B- and T-cell epitopes of four structural proteins of SARS-CoV-2. Our *in-silico* prediction method has led to the identification of potent, common, and species-specific B- and T-cell epitopes, which are likely to be recognized in humans. Moreover, we determined the conservancy of the predicted epitopes across different species of coronaviruses (CoVs).

Materials and methods

Sequence retrieval of structural proteins of SARS-CoV-2 and SARS-CoV

Coding sequences for structural proteins including S, N, M, and E proteins of SARS-CoV-2 (isolate WIV02, accession number MN996527.1) [1] and SARS-CoV (isolate BJ01, accession number AY278488.2) were retrieved from NCBI GenBank [40]. Sequence alignment of the receptor-binding domains (RBDs) of the S protein of SARS-CoV-2 (QHR63250.2) and SARS-CoV (QHR63300.2) was performed using Clustal Omega.

Prediction of B-cell epitopes

Linear B-cell epitopes were predicted using BepiPred-2.0, Bcepred, and ABCpred online servers. The BepiPred-2.0 server predicts linear B-cell epitopes based on a web-based random forest algorithm, which is trained on epitopes annotated from antibody-antigen protein structures [41]. The Bcepred server predicts B-cell epitopes based on physicochemical properties such as hydrophilicity, flexibility, accessibility, polarity, exposed surface, number of turns, and antigenic propensity [42]. The ABCpred server uses an artificial neural network algorithm to predict linear B-cell epitopes in an antigen sequence with 65.93% accuracy. In this study, we applied a window length of 18 amino acids (aa) with a threshold setting of 0.7 and ranked the predicted B-cell epitopes according to their score; a higher score indicates a higher probability of being an epitope [43].

Moreover, EPSVR, DiscoTope, CBTOPE, and ElliPro servers were used to predict conformational B-cell epitopes. The EPSVR server uses a support vector regression (SVR) method to predict antigenic B-cell epitopes [44]. The DiscoTope server predicts discontinuous B-cell epitopes from 3D structures of proteins. This method calculates the surface accessibility and a novel epitope propensity amino acid score to predict potential epitopes [45]. The CBTOPE server predicts conformational B-cell epitopes from the primary sequence of the protein with an accuracy of more than 85% [39]. The ElliPro server predicts linear and discontinuous B-cell epitopes based on the protein structure and the homology-based model of the amino acid sequence [46]. The helical behavior of predicted monomeric peptides was computed using the Agadir server (http://agadir.crg.es) [47].

Prediction of T-cell epitopes

TepiTool is an interactive and easy-to-use tool used to predict potential major histocompatibility complex (MHC) class I- and class II-binding peptides based on a panel of 27 most frequent alleles [48]. The Proteasomal cleavage/TAP transport/MHC class I combined predictor (http:// tools.iedb.org/processing) in the Immune epitope database and analysis resource (IEDB) integrates data on proteasomal processing, transporter associated with antigen processing (TAP) transport, and MHC binding to produce an overall score for the intrinsic potential of each peptide being a T-cell epitope [49]. The MHC-NP predictor predicts T-cell peptides naturally processed by the MHC [50]. The NetMHCIIpan 4.0 server predicts peptide binding to known sequences of any MHC II molecule using artificial neural networks [51]. Three different tools, the IEDB combined server, TepiTool, and MHC-NP were used to predict 9-mer epitopes of MHC I. First, the 9-mer epitope list was generated using the 27 HLA-Class I allele reference list. Next, the top 2% were chosen from the high-scoring epitopes with an IC50 cut-off value of less than or equal to 500 nM. In TepiTool, MHC-I epitopes were searched from the query sequence using 'the panel of 27 most frequent A & B alleles' available in the server. In the 'Prediction method', the default IEDB method was selected. When the field 'peptides' was to be included in prediction, the default setting was applied at 'low number of peptides' since the epitope length was only 9 mer. Finally, the peptides were predicted based on the IC50 cut-off value of less than or equal to 500 nM. In MHC-NP, all default parameters were selected, and 9-mer epitopes that bind to 17 class I alleles were selected. The top 2% highest binders (epitopes with highest scores) were selected from the raw files.

MHC II epitopes of 15-mer length were predicted using three different tools, namely, IEDB combined server, TepiTool, and NetMHCIIpan. In TepiTool, MHC-II epitopes were searched using 'the panel of 27 most frequent A & B alleles', with the inclusion of HLA-DR, HLA-DP, and HLA-DQ alleles. In the 'prediction method', the default IEDB was applied, and a 'moder-ate number of peptides' was selected for the default setting of 'peptides' since the epitope length

was 15-mer. Finally, the peptides were predicted based on the IC50 cut-off value of less than or equal to 1000 nM. In NetMHCIIpan, 15-mer peptides were predicted for binding to the 27 MHC-II alleles from the reference list. The default threshold value for strong binders (% rank) was set as 1 and that for weak binders (% Rank) was set as 5. The results were sorted according to the prediction score; the strong binders were listed first and subjected to further analysis. All 9-mer and 15-mer peptides were predicted for their binding affinity to 27 MHC class I and MHC class II molecules, which accounted for 97% of HLA-A and HLA-B allelic variants in most ethnicities [52].

Population coverage analysis of T-cell epitopes

The IEDB analysis resource tool was used to analyze the population coverage of predicted MHC class I and class II epitopes using the allele frequency database of 115 countries [53]. The population coverage was analysed by entering the following data: the number of epitopes, epitope, MHC-restricted alleles as predicted by the epitope prediction servers, and the populations in which the coverage is to be checked. The MHC-I alleles (n = 27) that bound to the predicted epitopes were checked using IEDB. For MHC-II alleles, twenty three alleles (n = 23) were available in the population coverage tool of IEDB (http://tools.iedb.org/population/) and four alleles (HLA-DRB3*01:01, HLA-DRB3*02:02, HLA-DRB4*01:01, and HLA-DRB5*01:01) were excluded from the analysis. The ability of the predicted T-cell epitopes to induce interferon-gamma (IFN- γ) response was assessed using the IFN epitope server. The IFN epitope tool uses an algorithm based on three models, motif-based, SVM-based, and hybrid approaches, for the prediction of IFN- γ -inducing epitopes [54].

Analysis of antigenicity, allergenicity, and conservancy of predicted B- and T-cell epitopes

The antigenicity and allergenicity of epitopes were predicted using VaxiJen v2.0 and AllerTOP online servers, respectively. VaxiJen predicts protective antigens and subunit vaccines based on an alignment-independent method [55]. AllerTOP is a server for *in silico* prediction of allergens in a given antigen [56]. The epitope conservancy analysis tool from the IEDB analysis resource was used to compute the degree of the conservancy of an epitope within a given protein sequence [57].

Immune simulation of multi-epitope vaccine

For designing multi-epitope vaccine, the predicted immunogenic epitopes were united with the help of linkers B-cell (GGGGS), HTL (KK), and CTL (AAY) [58]. To determine the immunogenicity and immune response profile of the multi-epitope vaccine consisting of the top predicted B- and T-cell epitopes, *in silico* immune simulation was conducted using the C-ImmSim server. The C-ImmSim server uses a position-specific scoring matrix and machine learning techniques to predict epitope and immune interactions [59]. The server simulates three components of the immune system found in mammals: (i) the bone marrow, where hematopoietic stem cells differentiate into cells of lymphoid and myeloid lineages; (ii) the thymus, where naive T-cells are selected to avoid autoimmunity; (iii) a tertiary lymphatic organ such as lymph nodes. All default simulation parameters were selected, with time steps set at 1, 84, and 168 (each time step is 8 hours, and time step 1 is injection at time = 0). Therefore, three injections were administered four weeks apart, without lipopolysaccharide (LPS). The Simpson index D (a measure of diversity) was interpreted from the plot.

Results

Prediction of B-cell epitopes of S, E, M, and N proteins of SARS-CoV-2

In this study, we predicted B- and T-cell epitopes using multiple prediction servers by leveraging existing immunological knowledge and the genetic closeness of SARS-CoV-2 with SARS--CoV [4–6]. Previous studies have identified epitopes mainly on the S protein of SARS-CoV-2 (Table 1) using a limited number of prediction servers [27–38]. Using well-established prediction tools, we identified potential B- and T-cell epitopes in the structural proteins (S, E, M, and N) of SARS-CoV-2 (Fig 1a). By selecting the top linear B-cell epitopes predicted using BepiPred, Bcepred, and ABCpred servers, we obtained 20 linear B-cell epitopes (11 for S, 6 for N, 2 for M, and 1 for E proteins) in the structural proteins of SARS-CoV-2 (Table 2). A heat map was generated using R software that showed the distribution of antigenic B-cell epitopes across the length of SARS-CoV-2 structural proteins (Fig 1b and 1c). Interestingly, some of the antigenic epitopes predicted by at least two servers are clearly delineated in the heat map.

In the absence of bioinformatics tools to analyze the common epitopes, we manually sorted the epitopes and found conserved epitopes of S (aa 407–416, aa421-427, aa1028-1049, aa1254-1273), N (aa173-189, aa235-247), M (aa163-182), and E (aa 58–68) proteins that are common to both SARS-CoV and SARS-CoV-2 (Table 3). The B-cell epitopes were mapped on the 3D structure of the structural proteins of SARS-CoV and SARS-CoV-2 and visualized using BIO-VIA Discovery Studio 2017 R2. The images predicted the probable localization of epitopes on the surface of the 3D structure of S, E, M, and N proteins (Fig 2a–2e). In addition, the high alpha-helical content of most peptides, as predicted by the high Agadir scores, indicated the stability of peptides in solution [47].

Table 1. A summary of literature review showing the bioinformatically predicted B- and T-cell epitopes identified in the structural proteins of SARS-CoV-2.

Sl No	Type of protein	Predicted B cell epitope	Predicted T cell epitope	Reference
1	Spike protein (S)	Yes	Yes	[20]
	4 structural proteins and 5 non-structural proteins (open reading frame (ORF)3a, ORF6, ORF7a, ORF8, ORF10); and 1 non-structural polyprotein (ORF1ab)	-	Yes	
2	S	Yes	Yes	[21]
3	S	Yes	Yes	[22]
4	N	Yes	Yes	[23]
5	S	Yes	Yes	[24]
6	S	Yes	-	[25]
	S	-	Yes	
	М			
	Ν			
7	S	Yes	Yes	[27]
8	S	Yes	Yes	[28]
9	S	Yes	Yes	[29]
	N			
	М			
	Orf3a protein			
	Orf 1ab protein			
10	S, E, M	Yes	-	[30]
11	S	Yes	Yes	[31]

The findings of the present in silico study have been provided, and the gap in the study has been addressed.

https://doi.org/10.1371/journal.pone.0258645.t001

Fig 1. (a) Schematic representation of the *in-silico* workflow for the prediction of potential B- and T-cell epitopes of structural proteins (spike [S], envelope [E], membrane [M], and nucleocapsid [N] of SARS-CoV-2 and SARS-CoV. Summary of SARS-CoV-2-derived B-cell epitopes. Heat map showing the distribution of (b) linear (continuous) and (c) conformational (discontinuous) B-cell epitopes across the protein sequences of spike (1273 aa), nucleocapsid (419 aa), membrane (222 aa), and envelope (75 aa) proteins of SARS-CoV-2. Red represents the antigenic epitopes predicted using the methods described in Fig 1a.

https://doi.org/10.1371/journal.pone.0258645.g001

The Cryo-EM structure of the S protein of SARS-CoV-2 (PDB: 6VSB) is available from residues 1 to 1208, but it lacks the 65 residues of the C-terminal region of the protein [3]. To overcome this problem, we used I-TASSER-modelled structures of the S protein of SARS-CoV-2 [60]. We compared I-TASSER-modelled structures with cryo-EM solved structures and observed high similarity, with a root mean square deviation (RMSD) of approximately 1.3 Å (SARS-CoV) and 2.0 Å (SARS-CoV-2). Similarly, the structures of E, M, and N proteins were modelled and used as query and input structures to identify potent conformational B-cell epitopes using CBTOPE, DiscoTope, ElliPro, and EPSVR servers. We filtered and selected the top conformational B-cell epitopes that were predicted by at least two prediction servers used in this study. We obtained a total of 21 conformational B-cell epitopes (9 for S, 8 for N, 3 for M, and 1 for E proteins) in the structural proteins of SARS-CoV-2 (Table 4). We observed conformational B-cell epitopes of S, E, M, and N proteins common to both SARS-CoV-2 and SARS-CoV with a high degree of epitope conservancy (Table 5). Furthermore, we noticed that the predicted conformational epitopes are likely to be localized on the accessible region of the 3D structure of SARS-CoV-2 proteins, as visualized by BIOVIA Discovery Studio 2017 R2 (Fig 3a-3e).

We performed sequence alignment of RBDs of the S protein and found that some of the linear and conformational B-cell epitopes are located in the RBD of the S protein of SARS-CoV-2 (Fig 4, inset Table). A previous study has identified four linear B-cell immunodominant (ID) sites on the RBD of the S protein located at aa330-349, aa375-394, aa450-469, and aa480-499 with an average positive rate of \geq 50% among all 39 patients [61]. Although mice immunized with the entire RBD, aa370-395, and aa435-479 generated high titers of specific antibodies, these antibodies demonstrated weak neutralizing activity [61]. The identification of these epitopes in our present study clearly suggests that the bioinformatically predicted epitopes contribute to the immunogenicity of the S protein (Table 2). Interestingly, we observed that CR3022, a monoclonal antibody targeting a highly conserved cryptic epitope, has 20 out of 28 binding residues of the SARS-CoV-2 located in the RBD of the S protein (aa370-395; Table 2 & Fig 4) [10,

	Experimentally verified epitopes /	ViPR reference	[74]	[53, 36]	[53] [<i>In silico</i> predicted, 24, 25, 26]	[<i>In silico</i> predicted, 20, 22, 25, partial sequence from aa 405–418, 27]	[10, 53, 69, 74] {[<i>In silico</i> predicted partial sequence from aa 440–450 [20], aa 441–448 [27]}	[10, 35]	[<i>In silico</i> predicted, 25]	[71][In silico predicted partial sequence from aa 657–664, 29 and aa656-660, 30]	[74]	[74]	[55]IEDB ID: 6476 [59][<i>In silico</i> predicted partial sequence from aa 1256–1265, 22]		
	r analysis by tool	SARS-CoV	0.31% (1/ 326)	0.00% (0/ 326)	0.00% (0/ 326)	0.00% (0/ 326)	0.00% (0/ 326)	0.00% (0/ 326)	0.31% (1/ 326)	0.31% (1/ 326)	84.05% (274/326)	84.36% (275/326)	83.74% (273/326)	0.00% (0/ 301)	0.00% (0/ 301)
	Conservancy IEDB	SARS-CoV- 2	99.43% (174/175)	100.00% (175/175)	100.00% (175/175)	100.00% (175/175)	100.00% (175/175)	100.00% (175/175)	100.00% (175/175)	99.43% (174/175)	100.00% (175/175)	98.29% (172/175)	94.86% (166/175)	100.00% (185/185)	99.46% (184/185)
	Agadir Score		1.32	0.55	0.39	0.45	4.42	0.16	0.28	0.03	0.41	3.24	0.26	0.23	0.37
	Allergeicity by AllerTOP	v. 2.0	Non- allergen	Allergen	Non- allergen	Non- allergen	Non- allergen	Allergen	Allergen	Non- allergen	Allergen	Non- allergen	Non- allergen	Non- allergen	Non- allergen
	Antigenicity by VaxiJen	(T = 0.4)	Antigen (0.6174)	Antigen (0.5525)	Antigen (1.3609)	Antigen (1.0356)	Antigen (0.4015)	Antigen (0.5612)	Antigen (0.7688)	Antigen (0.6687)	Antigen (0.7717)	Antigen (0.5738)	Antigen (0.9101)	Antigen (0.6672)	Antigen (0.8571)
	Server		2	1 & 2	1	1 & 2	1 & 2	1	1 & 2	1 & 2	1 & 2	2	1 & 2	1 & 2	1, 2 & 3
	Length		20	26	26	25	25	11	22	14	22	21	21	12	15
opes of structural proteins of SARS-CoV-2.	Linear B-cell epitopes		MDLEGKQGNFKNLREFVFKN	NITNLCFFGEVFNATRFASVYAWNRK	NSASFSTFKCYGVSPTKLNDLCFTNV	RGDEVRQIAPGQTGKIADYNYKLPD	NSNNLDSKVGGNYNYLYRLFRKSNL	VEGENCYFPLQ	CGPKKSTNLVKNKCVNFNFNGL	AEHVNNSYECDIPI	KMSECVLGQSKRVDFCGKGYHL	KNLNESLIDLQELGKYEQYIK	CCKFDEDDSEFVLKGVKLHYT	SDNGPQNQRNAP	RSGARSKQRRPQGLP
B-cell epite	Amino acid	position	177-196	331-356	370-395	403-427	437–461	483-493	525-546	653-666	1028 - 1049	1191- 1211	1253- 1273	2-13	32-46
Table 2. Linear	SARS-CoV-2 protein		Spike (S)										-Nucleocapsid (N)		

(Continued)

SARS-CoV-2 protein	Amino acid position	Linear B-cell epitopes	Length	Server	Antigenicity by VaxiJen (T = 0.4)	Allergeicity by AllerTOP v. 2.0	Agadir Score	Conservancy IEDB SARS-CoV- 2	' analysis by tool SARS-CoV	Experimentally verified epitopes / ViPR reference
	173-190	AEGSRGGSQASSRSSSRS	18	1, 2 & 3	Antigen (0.8081)	Non- allergen	0.21	99.46% (184/185)	79.73% (240/301)	IEDB ID: 22481 [59][<i>In silico</i> predicted, 23]
	227-266	LNQLESKMSGKGQQQGQTVTKKSAAEASKKPRQKRTATK	40	1, 2 & 3	Antigen (0.5387)	Non- allergen	1.9	100.00% (185/185)	0.00% (0/ 301)	[<i>In silico</i> predicted, partial sequence from aa 235–243, aa 249– 263, 23]
	274–283	FGRRGPEQTQ	10	2	Antigen (1.0355)	Allergen	0	100.00% (185/185)	83.39% (251/301)	[73]
	366-394	TEPKKDKKKRADETQALPQRQKKQQTVTL	29	1, 2 & 3	Antigen (0.5248)	Non- allergen	0.63	100.00% (185/185)	0.00% (0/ 301)	{[<i>In silico</i> predicted, partial sequence from aa 363–379 [23] and aa 355–394 [29]}
Membrane (M)	101-119	RLFARTRSMWSFNPETNIL	19	2	Antigen (0.4166)	Allergen	0.17	98.82% (168/170)	82.46% (221/268)	[73]
	160-182	DIKDLFKEITVATSRTLSYYKLG	23	2 & 3	Antigen (0.7442)	Non- allergen	0.31	98.24% (167/170)	79.48% (213/268)	
Envelope (E)	57-75	YVYSRVKNLNSSRVPDLLV	19	1, 2 &	Antigen (0.565)	Non- allergen	0.2	100.00% (177/177)	0.00% (0/ 245)	[<i>In silico</i> predicted partial sequence from aa 656–660, 30]
Four structural]	proteins of	SARS-CoV-2, namely spike (S), envelope (E), membrane (M,)	and nucle	eocapsid	(N) proteins, w	ere subjected to	prediction	ı of B-cell epite	opes. List of B	-cell epitopes

predicted by at least two servers, with the corresponding prediction servers numbered as (1) for BepiPred, (2) for Bcepred, and (3) for ABCpred.

https://doi.org/10.1371/journal.pone.0258645.t002

Table 2. (Continued)

CoVs protein	Amino acie	d position	Common linear B-cell epitopes	Length	Probable Antigenicity by	Allergeicity by	Agadir	Conservancy analy	sis by IEDB tool
	SARS-CoV- 2	SARS-CoV			VexiJen $(T = 0.4)$	AllerTope v. 2.0	score	SARS-CoV-2	SARS-CoV
Spike (S)	281-291	268-278	ENGTITDAVDC	11	Antigen (0.5860)	Allergen	0.09	100.00% (175/175)	85.58% (279/326)
	374-383	361-370	FSTFKCYGVS	10	Antigen (0.7239)	Allergen	0.05	100.00% (175/175)	86.20% (281/326)
	407-416	394-403	VRQIAPGQTG	10	Antigen (1.3856)	Non-allergen	0	100.00% (175/175)	85.89% (280/326)
	421-427	408-414	ZNYKLPD	7	Antigen (1.1454)	Allergen	0	100.00% (175/175)	86.20% (281/326)
	694-701	676-683	AYTMSLGA	8	Antigen (0.6924)	Non-allergen	0.02	100.00% (175/175)	85.58% (279/326)
	828-833	810-815	LADAGF	6	Antigen (1.1934)	Non-allergen	0.01	100.00% (175/175)	85.58% (279/326)
	1028-1049	1010-1031	KMSECVLGQSKRVDFCGKGYHL	22	Antigen (0.7717)	Allergen	0.41	100.00% (175/175)	84.05% (274/326)
	1112-1118	1094-1100	PQIITTD	7	Antigen (0.6387)	Allergen	0	100.00% (175/175)	85.28% (278/326)
	1157-1165	1139-1147	KNHTSPDVD	6	Antigen (0.7809)	Allergen	0	100.00% (175/175)	85.89% (280/326)
	1254-1273	1236-1255	CKFDEDDSEPVLKGVKLHYT	20	Antigen (0.8247)	Non-allergen	0.28	94.86% (166/175)	83.74% (273/326)
Nucleocapsid	38-46	39-47	KQRRPQGLP	6	Antigen (0.9734)	Non-allergen	0	99.46% (184/185)	85.05% (256/301)
(Z)	121-126	122-127	LPYGAN	6	Antigen (0.7670)	Non-allergen	0	100.00% (185/185)	85.38% (257/301)
	173-189	174-190	AEGSRGGSQASSRSSSR	17	Antigen (0.7412)	Non-allergen	0.2	99.46% (184/185)	79.73% (240/301)
	228-233	229-234	NQLESK	6	Antigen (0.5533)	Non-allergen	0.03	100.00% (185/185)	84.72% (255/301)
	235-247	236-248	SGKGQQQQGQTVT	13	Antigen (0.5562)	Non-allergen	0.15	100.00%(185/185)	79.73% (240/301)
	339-344	340-345	LDDKDP	6	Antigen (1.9529)	Non-allergen	0	98.38% (182/185)	85.71% (258/301)
	382-389	383-390	LPQRQKKQ	8	Antigen (1.3573)	Non-allergen	0.13	100.00% (185/185)	82.72% (249/301)
Membrane (M)	41-48	40-47	NRNRFLYI	8	Antigen (0.6221)	Non-allergen	0.04	98.82% (168/170)	80.22% (215/268)
	136-144	135-143	SELVIGAVI	6	Antigen (0.6409)	Non-allergen	0.05	98.82% (168/170)	82.46% (221/268)
	163-182	162-181	DLPKEITVATSRTLSYYKLG	20	Antigen (0.4328)	Non-allergen	0.4	98.24% (167/170)	79.48% (213/268)
Envelope (E)	58-68	58-68	VYSRVKNLNSS	11	Antigen (0.7845)	Non-allergen	0.18	100.00% (177/177)	83.27% (204/245)
OF/and ink//.control	104 Jaminail 1701		S						

https://doi.org/10.1371/journal.pone.0258645.t003

Table 3. Linear B-cell epitopes common to SARS-CoV-2 and SARS-CoV.

Fig 2. Mapping of linear B-cell epitopes on the three-dimensional structure of SARS-CoV-2 structural proteins. Localization of top predicted monomeric B-cell epitopes (inset table) on the **(a)** modeled structure and **(b)** crystal structure (PDB: 6VSB) of the spike protein, **(c)** nucleocapsid, **(d)** membrane, and **(e)** envelope proteins, as observed using BIOVIA Discovery Studio 2017 R2.

https://doi.org/10.1371/journal.pone.0258645.g002

62]. The B38, which is a SARS-CoV-2-specific human neutralizing monoclonal antibody, has 9 out of 18 binding residues on the RBD of SARS-CoV-2 [11, 12, 62]. B38 is involved in both B38 and hACE2 interaction located in the ID of predicted linear and conformational B-cell epitopes (aa403-427, aa437-461, and aa483-493; Tables 2 and 4). Similarly, another monoclonal antibody (S309) known to neutralize both SARS-CoV-2 and SARS-CoV, has 11 out of 21 binding residues in ID sites [10, 62]. A previous computational study has predicted aa656-660 of the S protein and aa60-65 of the E protein as dominant conformational B-cell epitopes [37], and it is worthy to note that the same epitopes have been predicted in our study (Table 4). A recent study has predicted that conformational epitopes are mainly localized at aa405-427 and aa439-505 regions of the tertiary structure of the S protein [38]. The highly conserved linear B-cell epitope (aa1253-1273, Table 2) predicted in the S protein has been shown to elicit IgG antibodies in some patients with COVID-19 when tested using synthetic peptides spanning aa1256-1273 [63]. A previous study using pools of overlapping linear B-cell peptides has found IgG immunodominant regions on the S protein of SARS-CoV-2. These regions are recognized by convalescent sera from patients with COVID-19, and the region aa562-580 is localized near the RBD of the S protein [64]. The partial sequence of this immunogenic peptide is computationally predicted as a conformational B-cell epitope in our study (Table 4). Findings of computational prediction of epitopes reported in this study, as well as the published experimental observations, suggest the association of linear ID B-cell epitopes with conformational epitopes. However, further studies are needed to identify the functions of the predicted linear and conformational epitopes for the rational design of *de novo* peptide-based vaccines.

Prediction of MHC I-binding epitopes of S, E, M, and N proteins of SARS-CoV-2

A few studies on SARS-CoV-2-specific T-cell responses and their role in protective immunity [65] found that recovered patients with COVID-19 show CD4+ and CD8+ memory responses

Table 4. Confor	rmatio	nal B-cell epitopes of structural proteins of SARS-	CoV-2.							
SARS-CoV-2 protein	SI. No.	Conformational B-cell epitopes	Length	Server	Probable Antigenicity by	Allergeicity by AllerTOP v. 2.0	Agadir Score	Conservancy IEDB	analysis by tool	Experimentally verified epitopes /
					VaxiJen $(T = 0.4)$			SARS-CoV-2	SARS-CoV	ViPR reference
Spike (S)	-	S1161,P1162,D1163,V1164,D1165,L1166,G1167, D1168,I1169,S1170,G1171,11172,N1173,A1174, S1175,V1176,V1177,N1178	18	1,2,3,4	Antigen (0.872)	Allergen	0.29	100.00% (175/175)	83.44% (272/326)	
	7	Y904,R905,F906,N907,G908,I909,G910,V911, T912,Q913,N914,V915,L916,Y917,E918,N919, Q920,K921	18	1,4	Antigen (0.8334)	Non-allergen	0.21	100.00% (175/175)	85.89% (280/326)	ı
	Э	T887,F888,G889,A890,G891,A892,A893,L894, Q895,1896,P897,F898,A899,M900	14	1,3	Antigen (0.5837)	Non-allergen	0.33	100.00% (175/175)	85.58% (279/326)	
	4	Q1201,E1202,L1203,G1204,K1205,Y1206,E1207, Q1208,Y1209,I1210,K1211,W1212	12	3,4	Antigen (0.5743)	Allergen	0.42	94.86% (166/ 175)	82.52% (269/326)	
	5	T1027,K1028,S1030,E1031,L1034,G1035,S1037, K1038,R1039,V1040,D1041,F1042	12	1,4	Antigen (1.6883)	Non-allergen	0.15	100.00% (175/175)	84.05% (274/326)	
	9	R646,A647,G648,L650,I651,E654,H655,V656, N657,N658,S659,Y660,E661,C662,D663,I664, P665	17	1,4	Antigen (0.5886)	Non-allergen	0.16	99.43% (174/ 175)	0.31% (1/ 326)	[<i>In silico</i> predicted, 30]
	~	F175,L176,M177,D178,L179,E180,G181,K182, Q183,G184,N185,F186,K187,N188,L189,R190	16	1,3,4	Antigen (0.8797)	Non-allergen	0.35	99.43% (174/ 175)	0.31% (1/ 326)	
	8	1472,Y473,Q474,A475,G476,S477,T478,P479, C480,N481,G482,V483,E484,G485,F486,N487, C488,Y489,F490,P491,L492	21	1	Non-antigen (0.2378)	Allergen	0.16	98.86% (173/ 175)	0.00% (0/ 326)	[10]
	6	P491,L492,Q493,S494,Y495,G496,F497,Q498, P499,T500,V501	10	2 & 3	Antigen (0.5224)	Allergen	0.01	100.00% (175/175)	0.00% (0/ 326)	[10]
Nucleocapsid (N)	-	D22,S23,T24,G25,S26,N27,Q28,N29,G30,E31, R32,S33,G34,A35,R36,S37,K38,Q39,R40	19	2,3,4	Antigen (0.6738)	Non-allergen	0.27	100.00% (185/185)	0.00% (0/ 301)	
	7	R95,G96,G97,D98,G99,K100,M101,K102,D103, L104,S105,P106,R107,W108,Y109,F110,Y111, Y112,L113,G114	20	1,2,3	Antigen (1.1156)	Non-allergen	0.6	100.00% (185/185)	0.00% (0/ 301)	
	ŝ	P365,T366,E367,P368,K369,K370,D371,K372, K373,K374,K375,A376,D377,E378,T379,Q380, A381,L382,P383,Q384,R385,Q386,K387	23	1,2,3	Antigen (0.4426)	Non-allergen	0.69	100.00% (185/185)	0.00% (0/ 301)	
	4	A267,Y268,N269,V270,T271,Q272,A273,F274, G275,R276,R277,G278,P279,E280,Q281,T282, Q283,G284,N285,F286,G287,D288,Q289,E290, L291,I292,R293,Q294,G295,T296,D297,Y298, K299,H300	34	1,4	Antigen (0.6367)	Non-allergen	0.71	100.00% (185/185)	0.33% (1/ 301)	,
	υ	E378,T379,Q380,A381,L382,P383,Q384,R385, Q386,K387,K388,Q389,Q390,T391,V392,T393, L394,L395,P396	19	1,2	Antigen (0.7896)	Non-allergen	0.34	100.00% (185/185)	0.00% (0/ 301)	
	9	P302,Q303,I304,A305,Q306,F307,A308,P309, S310,F315,G316,R319,I320,G321,E323,V324, T325,P326,S327,G328,W330	21	1,3,4	Antigen (0.809)	Non-allergen	0.04	100.00% (185/185)	83.06% (250/301)	
	~	L104,S105,P106,R107,W108,Y109,F110,Y111, Y112,L113,G114,T115,G116,P117	14	2,3	Antigen (1.3764)	Non-allergen	0.77	100.00% (185/185)	83.39% (251/301)	
	∞	Q272,A273,F274,G275,R276,R277,G278,P279, E280,Q281,T282,Q283,G284,N285,F286,G287, D288,Q289	18	1,4	Antigen (0.8885)	Allergen	0.1	100.00% (185/185)	85.71% (258/301)	
										(Continued)

SARS-CoV-2 protein	SI. No.	Conformational B-cell epitopes	Length	Server	Probable Antigenicity by	Allergeicity by AllerTOP v. 2.0	Agadir Score	Conservancy IEDB	analysis by tool	Experimentally verified epitopes /
					VaxiJen $(T = 0.4)$			SARS-CoV-2	SARS-CoV	ViPR reference
Membrane (M)	1	L156,G157,R158,C159,D160,I161,K162,D163, L164,P165,A171,T172,S173,R174,T175,L176, S177	17	1,3	Antigen (0.8363)	Non-allergen	0.0	98.24% (167/ 170)	80.97% (217/268)	1
	7	G189,D190,F193,A194,A195,S197,Y199,R200, 1201,G202,N203,Y204,K205,L206,N207,T208, D209,H210	18	1,4	Antigen (0.4423)	Allergen	0.72	98.82% (168/ 170)	0.75% (2/ 268)	
	3	L176,S177,Y178,Y179,K180,L1801G182,A183, S184,Q185,R186,V187	12	1, 3, 4	Antigen (0.6421)	Allergen	0.11	98.82% (168/ 170)	82.46% (221/268)	
Envelope (E)	1	S60,R61,V62,K63,N64,L65,N66,S67,S68,R69, V70,P71,D72,L73,L74	15	1,3,4	Antigen (0.7404)	Allergen	0.12	100.00% (177/177)	0.00% (0/ 245)	[<i>In silico</i> predicted, 30]
The list of confo EPSVR.	rmatio	nal B-cell epitopes predicted by at least two servers.	, with the	correspo	nding prediction ser	vers numbered as (1) for CBT	OPE, (2) for Di	scoTope, (3) fo	r ElliPro, and (4) for

Table 4. (Continued)

PLOS ONE

https://doi.org/10.1371/journal.pone.0258645.t004

Protein, PDB/ I-TASSER	Conformational	B-cell epitopes	Length	Ser	ver	Probable Antigenicity by	Allergeicity by AllerTope	Agadir Score	Conservancy IEDB	y analysis by tool
	SARS-CoV-2	SARS-CoV		SARS-CoV- 2	SARS-CoV	VexiJen (T = 0.4)	v. 2.0		SARS-CoV- 2	SARS-CoV
Spike (S)	S1161,P1162, D1163,V1164, D1165,L1166, G1167,D1168, I1169,S1170, G1171,I1172, N1173,A1174, S1175,V1176, V1177,N1178	S1143,P1144, D1145,V1146, D1147,L1148, G1149,D1150, I1151,S1152, G1153,I1154, N1155,A1156, S1157,V1158, V1159,N1160	18	1,2,3,4	1,2,3,4	Antigen (0.872)	Allergen	0.29	100.00% (175/175)	83.44% (272/326)
	Q1201,E1202, L1203,G1204, K1205,Y1206, E1207,Q1208, Y1209,I1210, K1211,W1212	Q1183,E1184, L1185,G1186, K1187,Y1188, E1189,Q1190, Y1191,J1192, K1193,W1194	12	3,4	4	Antigen (0.5743)	Allergen	0.42	94.86% (166/175)	82.52% (269/326)
	C1254,K1255, F1256,D1257, E1258,D1259, D1260,S1261, E1262,P1263, V1264,L1265, K1266,G1267, V1268,K1269, L1270,H1271	C1236,K1237, F1238,D1239, E1240,D1241, D1242,S1243, E1244,P1245, V1246,L1247, K1248,G1249, V1250,K1251, L1252,H1253	18	1	1	Antigen (0.5883)	Non-allergen	0.24	94.86% (166/175)	83.74% (273/326)
Spike (S) SARS-CoV-2 (6VSB)	F797,G798,G799, F800,N801,F802, S803,Q804,I805	F779,G780,G781, F782,N783,F784, S785,Q786,I787	9	3	3	Antigen (1.2730)	Non-allergen	0.01	99.43% (174/175)	83.44% (272/326)
& SARS-CoV (5WRG)	Q901,M902,A903, Y904,R905,F906, N907,G908,I909	Q883,M884,A885, Y886,R887,F888, N889,G890,I891	9	3	3	Antigen (0.6803)	Non-allergen	0.04	100.00% (175/175)	86.81% (283/326)
	G1035,Q1036, S1037,K1038, R1039,V1040, D1041,F1042	G1017,Q1018, S1019,K1020, R1021,V1022, D1023,F1024	8	1	1 & 3	Antigen (1.9298)	Allergen	0.03	100.00% (175/175)	84.05% (274/326)
Nucleocapsid (N)	L104,S105,P106, R107,W108,Y109, F110,Y111,Y112, L113,G114,T115, G116,P117	L105,S106,P107, R108,W109,Y110, F111,Y112,Y113, L114,G115,T116, G117,P118	14	2,3	1,2	Antigen (1.3764)	Non-allergen	0.77	100.00% (185/185)	83.39% (251/301)
	Q272,A273,F274, G275,R276,R277, G278,P279,E280, Q281,T282,Q283, G284,N285,F286, G287,D288,Q289	Q273,A274,F275, G276,R277,R278, G279,P280,E281, Q282,T283,Q284, G285,N286,F287, G288,D289,Q290	18	1,4	1,2,4	Antigen (0.8885)	Allergen	0.1	100.00% (185/185)	85.71% (258/301)
Membrane (M)	L176,S177,Y178, Y179,K180, L1801G182,A183, S184,Q185,R186, V187	L175,S176,Y177, Y178,K179,L180, G181,A182,S183, Q184,R185,V186	12	1	1,3,4	Antigen (0.6421)	Allergen	0.11	98.82% (168/170)	82.46% (221/268)
Envelope (E)	C43,C44,N45,I46, V47,N48,V49,S50	C43,C44,N45,I46, V47,N48,V49,S50	9	3	3	Antigen (0.8522)	Allergen	0.02	100.00% (177/177)	84.49% (207/245)
	S60,R61,V62,K63, N64,L65,N66,S67, S68	S60,R61,V62,K63, N64,L65,N66,S67, S68	9	1,3,4	1,3,4	Antigen (0.7404)	Allergen	0.12	100.00% (177/177)	0.00% (0/ 245)

https://doi.org/10.1371/journal.pone.0258645.t005

Fig 3. Mapping of conformational B-cell epitopes on the three-dimensional structure of SARS-CoV-2 structural proteins. The selected B-cell epitopes are listed in the inset table, and the corresponding color shows the localization of predicted epitopes on the (a) modeled structure and (b) crystal structure (PDB: 6VSB) of the spike, (c) nucleocapsid, (d) membrane, and (e) envelope proteins, as observed using BIOVIA Discovery Studio 2017 R2.

https://doi.org/10.1371/journal.pone.0258645.g003

to SARS-CoV-2 [16]. SARS-CoV-2-specific CD4+ T-cell responses were also frequently observed in unexposed healthy participants, suggesting the possibility of pre-existing cross-reactive immune memory to seasonal human coronaviruses [18, 66]. The access to information on SARS-CoV-2 proteins, and epitopes recognized by human T-cells, can greatly assist researchers in selecting potential epitopes, or target proteins for the future design of candidate vaccines.

We selected the high affinity-ranked top 2% peptides and found 55 non-overlapping peptides (26 CD8+ T-cell epitopes for S, 16 for N, 10 for M, and 3 for E proteins), as strong binders of MHC I molecule, based on the prediction of epitopes by at least two servers (Table 6). These strong MHC I binding peptides were assessed for their predicted capacity to elicit IFN- γ responses and are concurrently predicted to possess antigenic and non-allergenic properties. Notably, we predicted 16 CD8+ T-cell epitopes (5 CD8+ T-cell epitopes each for S and N proteins and 3 each for M and E proteins), which are common to structural proteins of both SARS-CoV-2 and SARS-CoV (Table 7).

Prediction of MHC II-binding epitopes of S, E, M, and N proteins of SARS-CoV-2

Helper T cells, which are required for adaptive immune responses, help activate B cells to secrete antibodies and activate cytotoxic T cells to kill infected target cells. TepiTool [48] and NetMHCIIpan [51] were used to predict and identify high-affinity MHC II-binding epitopes based on 27 HLA class II molecules (HLA-DP, HLA-DQ, and HLA-DR). We found 25 non-overlapping CD4+ T-cell epitopes (15 CD4+ T-cell epitopes for S, 6 for N, 3 for M, and 1 for E

SARS-CoV SARS-CoV-2	RBD 30 2 RBD 31	6 RVVPSGDVVRFPNITNLCPFGEV9 RVQPTESIVRFPNITNLCPFGEV	/FNA'. /FNA'.	rkfp: rrfa:	SVYAWEF SVYAWNF	KKISN KRISN	CVADY: CVADY:	SVL <mark>YNS</mark> SVL <mark>YNS</mark>	F <mark>FSTF</mark> ASFSTF	365 378
SARS-CoV SARS-CoV-2	RBD 36 2 RBD 37	6 CYGVSATHLNDLCESNVYADSEV 9 CYGVSPTHLNDLCETNVYADSEV	/VKGI /IRGI	DVR DEVR	QIAPGQT QIAPGQT	'GVIAD 'GKIAD	YNYKL YNYKL	PDDFMG(PDDF T G(CVLAWN CVIAWN	T 425 S 438
SARS-CoV SARS-CoV-2	RBD 42 RBD 43	6 <mark>R</mark> NIDATSTGNYNYK <mark>I</mark> R <mark>YL</mark> RHGKI 9 <mark>M</mark> NLDSKVGGNYNYL <mark>I</mark> R <mark>LF</mark> RKSNI	LRPFI LKPFI	ERDI: ERDI:	SNVPFS <mark>E</mark> STEIYQ <mark>A</mark>	DGKPC GSTPC	TP−PA NG <mark>V</mark> EG	LNC <mark>y</mark> wpi FNC <mark>y</mark> FPi	L <mark>N DY</mark> GF L <mark>Q SY</mark> GF	484 2 498
SARS-CoV SARS-CoV-2	RBD 48 2 RBD 49	5 T <mark>TTG</mark> IG <mark>Y</mark> QPYRVVVLS <mark>FEL</mark> LNAI 9 P <mark>INGVGY</mark> QPYRVVVLS <mark>VEL</mark> LHAI	PATV PATV	CGPK: CGPKI	LSTDLIK KSTNLVK	NQCVN NKCVN	FNF 5 FN- 5	29 42		
Name		Predicted epitope of SARS-CoV-2	Length	Server	Antigenicity by VexiJen (T=0.4)	Allergeicity by AllerTope v.	Agadir Score	Conservancy a to	nalysis by IEDB ol	Experimentally verified epitope / ViPR reference
	A 12 MOUNTAIN AND 323		- 10		A-4	No. allower		SARS-CoV-2 100.00%	SARS-CoV	
	221 NETNI CIRCUMUNAT	1 A GU V A MINING 7 2 5 2	10	1.6.7	Antigon (0 5525)	Allorgon	0.04	(175/175) 100.00%	0.00% (0/226)	[52 60]
	270 NO AGEOTEV CV/MODI	ASV 1 AWNER-530	20	1 42.2	Antigen (U.3323)	Anergen	0.20	(175/175) 100.00%	0.00%(0/326)	[53,09]
Linear B-cell epitopes	102 BODIERO BOOME		20	1	Allugel (1.5009)	Non-alleagen	0.15	(175/175) 100.00%	0.00% (0/320)	[55]
	403-RGDBVRQIAPGQTGR		25	14.2	Anugen (1.0356)	Non-allergen	0.45	(175/175) 100.00%	0.00%(0/326)	162 601
		LIKLENKORL-401	2.5	182.2	Allugel (0.4013)	Non-ancagen	4.42	(175/175) 100.00%	0.00%(0/320)	[53,09]
	483-VEGENCIPPLA-493			1	Anugen (0.3612)	Allergen	010	(175/175) 100.00%	0.218 (1/226)	[55]
	525-COPKESTALVERACV K304,8305,F306,T307,V308 21,P322,T323,E324,8325	13909,K310,C311,J312,Y313,Q314,T315,8316,N317,F318,R319,V320,Q	3 22	1	Antigen (0.5575)	Non-allergen	0.14	(175/175) 100.00% (175/175)	0.00%(0/326)	
	L390,C391,F392,T393,N394	V395,Y396,A397,D398,8399,F400,V401,I402,R403	14	3	Antigen (0_5206)	Non-allergen	0.07	100.00% (175/175)	0.00% (0/326)	
Conformational B-cell epitopes	G496,F497,Q498,P499,T500		5	2	Antigen (0.4499)	Non-allergen	0.00	100.00%	0.00% (0/326)	
			-		-					
(6VSB)	P507,Y508,R509,V510,V511	V512,L513,8514,F515	9	1&3	Antigen (1.0281)	Non-allergen	0.06	100.00%	85.89% (280/326)	

https://doi.org/10.1371/journal.pone.0258645.g004

proteins), which were predicted as antigenic and non-allergenic, as well as IFN-gamma-inducing property, with a high degree of conservancy (Table 8). Furthermore, we found 4 CD4+ Tcell epitopes for S, 5 for N, and 2 each for M and E proteins, which are common to both SARS-CoV-2 and SARS-CoV, with epitope conservancy in the range of 80 to 100% (Table 9). The allele-wise distribution of predicted MHC I and MHC II epitopes for the S, E, M, and N proteins of SARS-CoV-2 are presented in a heat map (Fig 5a and 5b).

On careful observation of computationally predicted epitopes, we found that the regions aa403-427 and aa437-461 of the S protein were predicted as both linear B-cell and MHC I-binding epitopes (Table 10). Similarly, the conserved C-terminal epitope of S (aa1253-1273) and E (aa57-75) proteins common to SARS-CoV and SARS-CoV-2 were predicted as both linear and conformational B-cell epitopes. Notably, the peptide aa366-394 in the N protein and the peptide aa160-182 in the M protein were predicted to induce both humoral and cell-mediated immune responses (Table 11).

The findings of our computational predictions in conjunction with previous experimental studies suggest that T-cell-based immunity might be generated largely against the S and N proteins of SARS-CoV-2; therefore, the S and N proteins of SARS-CoV-2 could be selected as target candidates for recombinant protein-based vaccines [14–16, 61–63]. CD4+ T-cell responses were observed predominately in the S protein, and the robustness of the T-cell response was correlated with the values of IgG and IgA titers of SARS-CoV-2. Among the structural proteins, the S and M proteins were mainly recognized as possible targets for CD8+ T cells of SARS-CoV-2 [16, 17, 65, 66].

PLOS ONE

Experimentally verified epitopes /	ViPR reference	14	15	16	17	18	19	20	21	22	23	24	25	26
IFN gamma epitope		[<i>In silico</i> predicted, 21, 22] [17]	1	1	1	IEDB ID: 1074855 [59]	[17]	IEDB ID: 1074948 [59]	[17]	IEDB ID: 1074998 [59] [<i>In silico</i> predicted, 20]	[<i>In silico</i> predicted, 20, 22]		[17]	,
analysis by tool	SARS-CoV	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive
Conservancy IEDB	SARS-CoV- 2	84.97% (277/326)	85.89% (280/326)	0.31% (1/ 326)	83.44% (272/326)	0.31% (1/ 326)	76.07% (248/326)	0.31% (1/ 326)	0.31% (1/ 326)	85.28% (278/326)	86.20% (281/326)	0.31% (1/ 326)	0.92% (3/ 326)	79.14% (258/326)
Conservancy analysis by	IEDB tool	100.00% (175/ 175)	100.00% (175/ 175)	100.00% (175/ 175)	100.00% (175/ 175)	100.00% (175/ 175)	100.00% (175/ 175)	100.00% (175/ 175)	100.00% (175/ 175)	100.00% (175/ 175)	100,00% (175/	100.00% (175/ 175)	94.86% (166/ 175)	94.86% (166/ 175)
Probable Allergenicity	by AllerTop	Non-allergen	Non-allergen	Non-allergen	Non-allergen	Non-allergen	Non-allergen	Non-allergen	Non-allergen	Non-allergen	Non-allergen	Non-allergen	Non-allergen	Non-allergen
Probable Antigenicity by	VexiJen (Threshold = 0.4)	Antigen (0.5964)	Antigen (1.0909)	Antigen (0.8797)	Antigen (1.2630)	Antigen (0.5808)	Antigen (0.9306)	Antigen (0.5781)	Antigen (0.5487)	Antigen (0.4918)	Antigen (1.0278)	Antigen (0.8291)	Antigen (0.9673)	Antigen (1.0885)
Servers		1, 2 & 3	1 & 3	1, 2 &	1 & 3	1	1, 2 & 3	1, 2 &	1 & 3	1, 2 & 3	1, 2 &	1 & 3	1 & 3	1, 2 & 3
Number of Alleles		e	1	2	ц	1	4	e	e,	ى	o	-	4	2
Alleles		HLA-A*02:06, HLA-B*08:01, HLA-A*02:03	HLA-A*02:06	HLA-A*11:01, HLA-A*03:01	HLA-A*68:02, HLA-A*32:01, HLA-A*02:06, HLA-A*02:03, HLA-B*58:01	HLA-A*68:02	HLA-A*11:01, HLA-A*31:01, HLA-A*68:01, HLA-A*03:01	HLA-A*11:01, HLA-A*68:01, HLA-A*03:01	HLA-A* 68:02, HLA-A* 02:06, HLA-A* 02:03	HLA-A*68:02, HLA-A*02:06, HLA-B*35:01, HLA-B*15:01, HLA-A*02:03, HLA-A*02:03,	HLA-B* 35:01, HLA-B* 53:01, HLA-B* 58:01, HLA-A* 23:01, HLA-B* 15:01, HLA-A* 24:02, HLA-A* 22:01, HLA-A* 22:01, HLA-A* 02:06	HLA-A*02:06	HLA-A*32:01, HLA-A*23:01, HLA-B*58:01, HLA-B*57:01	HLA-A*02:03, HLA-A*02:01
Position		505-513	510-518	550-558	590-598	711-719	757-765	827-835	873-881	886-894	898-906	943-951	1209– 1217	1223- 1231
Peptide		YQPYRVVVL	VVVLSFELL	GVLTESNKK	CSFGGVSVI	SIAIPTNFT	GSFCTQLNR	TLADAGFIK	YTSALLAGT	WTFGAGAAL	FAMQMAYRF	SALGKLQDV	YIKWPWYIW	GLIAIVMVT
SI. No.		14	15	16	17	18	19	20	21	22	23	24	25	26
SARS-CoV-2 protein														

Table 6. (Continued)

Experimentally verified epitopes /	ViPR reference	1	0	ω	4	ю	6	2	œ	6	10	п	12	13
IFN gamma epitope		IEDB ID: 1075022 [59]	[61]	IEDB ID: 1074917 [59]	[17], [In silico predicted, 23]					IEDB ID: 1075062 [59]	1	IEDB ID: 1074947 [59]	[<i>In silico</i> predicted, 23]	IEDB ID: 56979 [59]
analysis by tool	SARS-CoV	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive
Conservancy IEDB	SARS-CoV- 2	0.00% (0/ 301)	83.39% (251/301)	0.00% (0/ 301)	0.00% (0/ 301)	85.71% (258/301)	79.73% (240/301)	81.40% (245/301)	0.66% (2/ 301)	1.33% (4/ 301)	83.39% (251/301)	0.66% (2/ 301)	85.71% (258/301)	85.71% (258/301)
Conservancy analysis by	IEDB tool	99.46% (184/ 185)	100.00% (185/ 185)	100.00% (185/ 185)	99.46% (184/ 185)	100.00% (185/ 185)	100.00% (185/ 185)	100.00% (185/ 185)	100.00% (185/ 185)	100.00% (185/ 185)	100.00% (185/ 185)	100.00% (185)	100.00% (185/ 185)	100.00% (185/ 185)
Probable Allergenicity	by AllerTop	Non-allergen	Non-allergen	Non-allergen	Non-allergen	Non-allergen	Non-allergen	Non-allergen	Non-allergen	Non-allergen	Non-allergen	Non-allergen	Non-allergen	Non-allergen
Probable Antigenicity by	VexiJen (Threshold = 0.4)	Antigen (0.9734)	Antigen (1.2832)	Antigen (0.864)	Antigen (0.8611)	Antigen (0.4353)	Antigen (0.7468)	Antigen (0.5495)	Antigen (0.6287)	Antigen (0.4548)	Antigen (0.5547)	Antigen (1.7645)	Antigen (0.55)	Antigen (0.4529)
Servers		1,2&3	1,2&3	1,2&3	2	1,2&3	1,2&3	1,2&3	1,2&3	1,2&3	1,2&3	1,2&3	1&2	1,2&3
Number of Alleles		-	υ	4	7	-	-	2	-	ŝ	ŝ	1	4	ى
Alleles		HLA-A*31:01	HLA-B*07:02, HLA-B*35:01, HLA-B*51:01, HLA-B*51:01, HLA-B*08:01, HLA-B*53:01	HLA-B*35:01, HLA-B*53:01, HLA-A*01:01, HLA-A*30:02	HLA-B*44:02, HLA-B*44:03	HLA-A*31:01	HLA-A*31:01	HLA-A*68:01, HLA-A*31:01	HLA-A*30:01	HLA-A*31:01, HLA-A*30:01, HLA-A*68:01	HLA-A*11:01, HLA-A*03:01, HLA-A*30:01	HLA-A*32.01, HLA-B*58.01, HLA-B*57.01, HLA-B*57.01, HLA-B*57.01, HLA-A*30.02, HLA-A*30.02, HLA-A*23.01, HLA-A*23.01, HLA-A*24.02, HLA-A*24.02, HLA-A*24.02,	HLA-A*24:02, HLA-A*23:01, HLA-B*15:01, HLA-B*35:01	HLA-A*11:01, HLA-A*68:01, HLA-A*31:01, HLA-A*33:01, HLA-A*33:01, HLA-A*33:01
Position		32-40	66-74	79-87	102-110	169–177	177–185	181–189	193–201	201-209	249-257	266-274	306-314	311-319
Peptide		RSGARSKQR	FPRGQGVPI	SPDDQIGYY	KDLSPRWYF	KGFYAEGSR	RGGSQASSR	QASSRSSSR	SSRNSTPGS	SSRGTSPAR	KSAAEASKK	KAYNVTQAF	QFAPSASAF	ASAFFGMSR
SI. No.		-	7	m	4	ŝ	9	~	~	6	10	=	12	13
SARS-CoV-2 protein		Nucleocapsid (N)												

Table 6. (Continued)

SARS-CoV-2 protein	SI. No.	Peptide	Position	Alleles	Number of Alleles	Servers	Probable Antigenicity by	Probable Allergenicity	Conservancy analysis by	Conservancy IEDB	analysis by tool	IFN gamma epitope	Experimentally verified epitopes /
1							VexiJen (Threshold = 0.4)	by AllerTop	IEDB tool	SARS-CoV- 2	SARS-CoV		ViPR reference
	14	DPNFKDQVI	343-351	HLA-B*51:01, HLA-B*08:01, HLA-B*53:01	3	7	Antigen (0.5439)	Non-allergen	100.00% (185/ 185)	0.33% (1/ 301)	Positive	[17]	14
	15	LNKHIDAYK	353-361	HLA-A*68:01, HLA-A*31:01, HLA-A*30:01	33	e	Antigen (1.7367)	Non-allergen	98.38% (182/ 185)	85.71% (258/301)	Positive	1	15
	16	KTFPPTEPK	361-369	HLA-A*11:01, HLA-A*30:01, HLA-A*03:01, HLA-A*31:01, HLA-A*81:01,	ц	1,2&3	Antigen (1.1677)	Non-allergen	100.00% (185/ 185)	84.05% (253/301)	Positive	1	16
Membrane (M)		GTITVEELK	6-14	HLA-A*11:01, HLA-A*68:01	2	2&3	Antigen (1.0976)	Non-allergen	98.82% (168/ 170)	50.00% (134/268)	Positive	IEDB ID: 107499 [59]	1
	7	WICLLQFAY	31-39	HLA-A*02:06, HLA-A*30:01	2	e	Antigen (1.4562)	Non-allergen	98.82% (168/ 170)	0.75% (2/ 268)	Positive	IEDB ID: 10749920 [59]	5
	ε	AYANRNRFL	38-46	HLA-A*02:06, HLA-A*02:01, HLA-A*68:02, HLA-A*02:03, HLA-A*32:01	υ	1,2&3	Antigen (0.5136)	Non-allergen	98.24% (167/ 170)	0.75% (2/ 268)	Positive	IEDB ID: 1074985 [59]	۳.
	4	TWLLWPVTL	54-62	HLA-B*40:01, HLA-B*44:03, HLA-B*44:02	3	2&3	Antigen (0.6409)	Non-allergen	98.82% (168/ 170)	82.46% (221/268)	Positive	[76]	4
	Ś	CFVLAAVYR	64-72	HLA-A*33:01, HLA-A*31:01	2	1,2&3	Antigen (0.9181)	Non-allergen	98.82% (168/ 170)	78.73% (211/268)	Positive		ю
	6	WITGGIAIA	75-83	HLA-A*02:01, HLA-A*02:06	2	1&3	Antigen (1.4835)	Non-allergen	98.82% (168/ 170)	0.75% (2/ 268)	Positive	IEDB ID: 1075124 [59]	6
	~	MACLVGLMW	84-92	HLA-A*33:01, HLA-A*31:01, HLA-A*68:01	3	1,2&3	Antigen (1.1961)	Non-allergen	98.82% (168/ 170)	0.75% (2/ 268)	Positive	IEDB ID: 1075124) [59]	~
	∞	FIASFRLFA	96-104	HLA-A*32:01, HLA-B*58:01, HLA-A*23:01, HLA-B*57:01	4	1&3	Antigen (0.4968)	Non-allergen	98.24% (167/ 170)	3.36% (9/ 268)	Positive	IEDB ID: 1075069 [59]	œ
	6	RSMWSFNPE	107-115	HLA-A*02:06, HLA-A*68:02, HLA-B*58:01, HLA-A*02:03, HLA-B*51:01	ω	ς.	Antigen (1.1704)	Non-allergen	98.82% (168/ 170)	82.46% (221/268)	Positive	IEDB ID: 1075081 [59]	6
	10	TSRTLSYYK	172-180	HLA-A*68:01, HLA-A*31:01, HLA-A*11:01, HLA-A*33:01	4	1,2&3	Antigen (1.1027)	Non-allergen	98.82% (168/ 170)	80.97% (217/268)	Positive	[17]	10
													(Continued)

Table 6. (Continued)

ntinued)
<u>C</u> O
le 6.
[ab]

Fable 6. (Cc	ntinu	ed)											
SARS-CoV-2 protein	SI. No.	Peptide	Position	Alleles	Number of Alleles	Servers	Probable Antigenicity by	Probable Allergenicity	Conservancy analysis by	Conservancy IEDB	r analysis by tool	IFN gamma epitope	Experimentally verified epitopes /
							VexiJen (Threshold = 0.4)	by AllerTop	IEDB tool	SARS-CoV- 2	SARS-CoV		ViPR reference
Envelope (E)	-	VLLFLAFVV	17–25	HLA-A*02:01, HLA-A*02:06, HLA-A*02:03, HLA-A*32:01	4	1 & 3	Antigen (0.5677)	Non-allergen	100.00% (177/ 177)	83.27% (204/245)	Positive	IEDB ID: 62215 [59]	-
	5	FLLVTLAIL	26-34	HLA-A*02:01, HLA-A*02:03, HLA-A*02:06	e	1 & 3	Antigen (0.9645)	Non-allergen	100.00% (177/ 177)	86.12% (211/245)	Positive		5
	ŝ	RLCAYCCNI	38-46	HLA-A*02:03, HLA-A*02:01, HLA-A*02:06	33	n	Antigen (1.1243)	Non-allergen	100.00% (177/ 177)	84.90% (208/245)	Positive	IEDB ID: 154490 [59]	ę
						.							

List of top-ranked CD8+ T-cell epitopes predicted using at least two servers, with the corresponding prediction servers numbered as (1) for IEDB Proteasomal cleavage/TAP transport/MHC class I combined predictor, (2) for MHC-NP, and (3) for TepiTool. Epitopes of 9-mer length with IC50 value < 500 nM were considered good binders towards specific alleles.

https://doi.org/10.1371/journal.pone.0258645.t006

IFN	gamma epitope	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive	Positive
Probable	Allergenicity by AllerTop	Non-Allergen	Non-Allergen	Non-Allergen	Non-Allergen	Non-Allergen	Non-Allergen	Non-Allergen	Non-Allergen	Non-Allergen	Non-Allergen	Non-Allergen	Non-Allergen	Non-Allergen
Probable	Antigenicity by VexiJen (Threshold = 0.4)	Antigen (1.0281)	Antigen (1.0909)	Antigen (0.4918)	Antigen (1.0278)	Antigen (1.0885)	Antigen (1.2832)	Antigen (0.8611)	Antigen (0.5495)	Antigen (0.6287)	Antigen (0.4548)	Antigen (1.0976)	Antigen (1.1072)	Antigen (0.9181)
	Conservancy	85.89% (280/ 326)	85.89% (280/ 326)	85.28% (278/ 326)	86.20% (281/ 326)	79.14% (258/ 326)	85.71% (258/ 301)	79.73% (240/ 301)	85.71% (258/ 301)	84.72% (255/ 301)	83.72% (252/ 301)	50.00% (134/ 268)	81.34% (218/ 268)	82.46% (221/ 268)
	Servers	1,2 & 3	1 & 3	1, 2 & 3	1, 2 & 3	2 & 3	1,2 &	1,2 & 3	1 & 2	1, 2 & 3	1, 2 & 3	2&3	1, 2 & 3	1, 2 &
RS-CoV	Number of Alleles	2	-	Q	Ξ	2	4	1	4	c,	1	2	2	ε
SA	Alleles	HLA-A*23:01, HLA-A*24:02	HLA-A*02:06	HLA-A*68:02, HLA-A*02:06, HLA-B*35:01, HLA-B*15:01, HLA-A*26:01, HLA-A*02:03	HLA-B" 5501, HLA-B" 5301, HLA-B" 5801, HLA-A" 2301, HLA-A" 2402, HLA-B" 1501, HLA-B" 200, HLA-B" 5701, HLA-B" 5101, HLA-B" 51:01,	HLA-A*02:03, HLA-A*02:01	HLA-A*30:02, HLA-A*01:01, HLA-B*58:01, HLA-A*11:01	HLA-A*31:01	HLA-A*24:02, HLA-A*23:01, HLA-B*15:01, HLA-B*35:01	HLA-A*02:03, HLA-A*02:01, HLA-A*02:06	HLA-A*68:02	HLA-A*11:01, HLA-A*68:01	HLA-A*23:01, HLA-A*24:02	HLA-A*30:01, HLA-A*23:01, HLA-A*24:02
	Position	493–501	496–504	868-876	880-888	1205- 1213	105-113	178-186	307-315	317-325	324-332	5-13	53-61	197–205
	Conservancy	100.00% (175/175)	100.00% (175/175)	100.00% (175/175)	100.00% (175/175)	94.86% (166/ 175)	100.00% (185/185)	99.46% (184/ 185)	100.00% (185/185)	100.00% (185/185)	100.00% (185/185)	98.82% (168/ 170)	98.24% (167/ 170)	98.82% (168/ 170)
	Servers	1,2 & 3	1 & 3	1, 2 & 3	1, 2 &	1,2 & 3	1, 2 & 3	1,2 & 3	1 & 2	1, 2 & 3	1,2 & 3	2 & 3	1,2 & 3	1, 2 & 3
RS-CoV-2	Number of Alleles	7	1	v		2	4	1	4	ς,	1	2	7	ĸ
SAI	Alleles	HLA-A*23:01, HLA-A*24:02	HLA-A*02:06	HLA-A*68:02, HLA-A*02:06, HLA-B*35:01, HLA-B*15:01, HLA-B*15:01, HLA-A*26:01, HLA-A*02:03	HLA-B* 3501, HLA-B* 5301, HLA-B* 5301, HLA-B* 5301, HLA-A* 23:01, HLA-A* 22:01, HLA-B* 15:01, HLA-B* 25:01, HLA-B* 51:01, HLA-B* 51:01, HLA-B* 51:01, HLA-B* 51:01, HLA-B* 52:06, HLA-A* 02:06, HLA-B* 52:01, HLA-B*	HLA-A*02:03, HLA-A*02:01	HLA-A*30:02, HLA-A*01:01, HLA-B*58:01, HLA-A*11:01	HLA-A*31:01	HLA-A*24:02, HLA-A*23:01, HLA-B*15:01, HLA-B*35:01	HLA-A*02:03, HLA-A*02:01, HLA-A*02:06	HLA-A*68:02	HLA-A*11:01, HLA-A*68:01	HLA-A*23:01, HLA-A*24:02	HLA-A*30:01, HLA-A*23:01, HLA-A*24:02
	Position	507-515	510-518	886894	606-868	1223- 1231	104-112	177–185	306–314	316-324	323-331	6-14	54-62	198–206
Peptide		PYRVVVLSF	VVVLSFELL	WTFGAGAAL	FAMQMAYRF	GLIAIVMVT	LSPRWYFYY	RGGSQASSR	QFAPSASAF	GMSRIGMEV	EVTPSGTWL	GTITVEELK	TWLLWPVTL	RYRIGNYKL
SI.	No.	-	2	e	4	5	-	2	ŝ	4	ŝ		3	3
CoV protein		Spike (S)					Nucleocapsid (N)					Membrane (M)		

Table 7. List of predicted T-cell epitopes with high-affinity binding to MHC I molecules common to SARS-CoV-2 and SARS-CoV.

inued	
(Conti	
e 7.	
F	

	2-100-CUIVC					6	AKS-CoV			Probable	Probable	IFN
Alleles		Number of Alleles	Servers	Conservancy	Position	Alleles	Number of Alleles	Servers	Conservancy	Antigenicity by VexiJen (Threshold = 0.4)	Allergenicity by AllerTop	gamma epitope
LA-A*02:(LA-A*02:(LA-A*68:(LA-A*68:(LA-A*02:	<u> </u>	06, 4 11, 22, 03	1,2 & 3	100.00% (177/177)	16-24	HLA-A*02:06, HLA-A*02:01, HLA-A*68:02, HLA-A*02:03	4	1 & 3	83.27% (204/ 245)	Antigen (0.4765)	Non-Allergen	Positive
LA-A*02:03 LA-A*02:03 LA-A*02:06 LA-A*02:06 LA-A*68:03	0.000	4	1, 2 & 3	100.00% (177/177)	20-28	HLA-A*02:01, HLA-A*02:03, HLA-A*02:06, HLA-A*02:06, HLA-A*68:02	4	1, 2 & 3	83.67% (205/ 245)	Antigen (0.5308)	Non-Allergen	Positive
LA-A*02:01 LA-A*02:03 LA-A*02:03	503	m î mî vo	1 & 3	100.00% (177/177)	26-34	HLA-A*02:01, HLA-A*02:03, HLA-A*02:06	33	1 & 3	86.12% (211/ 245)	Antigen (0.9645)	Non-Allergen	Positive

combined predictor, (2) for MHC-NP, and (3) for TepiTool. Epitopes of 15-mer length with IC50 value <1000 nM were considered good binders towards specific alleles. à

https://doi.org/10.1371/journal.pone.0258645.t007

Experimentally verified epitopes / ViPR reference		[<i>In silico</i> predicted from aa 309–323, 27]			[<i>In silico</i> predicted, 22]						(Continued)
IFN gamma epitope	Positive	Positive		Positive	Positive	Positive	Positive	Positive	Positive	Positive	
Conservancy (SARS-CoV)	175) 175)	100.00% (175/ 175)		100.00% (175/ 175)	100.00% (175/	100.00% (175/ 175)	100.00% (175/ 175)	100.00% (175/ 175)	94.86% (166/ 175)	105,00% (175/	
Conservancy (SARS-CoV-2)	0.31% (1/326)	0.00% (0/326)		0.61% (2/326)	0.00% (0/326)	0.31% (1/326)	0.31% (1/326)	0.31% (1/326)	0.00% (0/326)	0.31% (1/326)	
Probable Allergenicity by AllerTop	Non-alletgen	Non-allergen		Non-allergen	Non-allergen	Non-allergen	Non-allergen	Non-allergen	Non-allergen	Non-alletgen	
Probable Antigenicity by VexiJen (Threshold = 0.4)	Antigen (0.9134)	Antigen (0.8838)		Antigen (1.0042)	Antigen (0.4874)	Antigen (0.8330)	Antigen (0.5235)	Antigen (0.5659)	Antigen (0.2829)	Antigen (0.5204)	
Servers	7	1		7	1 & 2	5	2	1	1 & 2	и	
Number of Alleles	14	œ		×	18	4	1	-	4	13	
Alleles	HLA-DQA1'01.01/DQB1'05:01, HLA-DPA1'01.03/DPB1'05:01, HLA-DPA1'01.03/DPB1'02:01, HLA-DPA1'02.01/DPB1'01:01, HLA-DPA1'02.01/DP81'01:01, DPB1'04:02, HLA-DPA1'05:01/ DPB1'04:02, HLA-DRB1'04:05, HLA-DRB1'09:01, HLA-DRB1'06:01, HLA-DRB1'01:01, HLA-DRB1'06:01, HLA-DRB1'01:01, HLA-DRB1'07:01	HLA-DRB1*07:01, HLA-DRB1*13:02, HLA-DRB1*15:01 HLA-DPA1*02:01/DPB1*01:01,	HLA-DPA1*01:03/DPB1*02:01, HLA-DPA1*01:03/DPB1*04:01, HLA-DPA1*03:01/DPB1*04:02, HLA-DPA1*02:01/DPB1*05:01	HLA-DRB1°09:01, HLA-DRB1°07:01, HLA-DRB1°09:01, HLA-DRB1°07:01, HLA-DRB1°04:05, HLA-DRB1°15:01, HLA-DRB1°05:01, OB1°03:01, HLA-DRB1°11:01	HLA-DRB1'01:01, HLA-DRB1'09:01, HLA-DRB1'04:01, HLA-DRB1'06:05, HLA-DRB1'05:01, HLA-DRB1'06:02, HLA-DRB1'05:01, HLA-DRB1'06:02, HLA-DRB3'02:02, HLA-DPA1'01:03/ DPB1'04:01, HLA-DPA1'01:03/ DPB1'01:01, HLA-DPA1'01:03/ HLA-DQA1'01:02/DQB1'06:02, HLA-DQA1'01:02,1DQB1'06:02, HLA-DQA1'01:02,1DQB1'06:02, HLA-DRB1'11:01, HLA-DRB5'01:01, HLA-DRB1'13:02, HLA-DRB5'01:01,	HLA-DRB1*03:01, HLA-DRB1*13:02, HLA-DRB5*01:01, HLA-DRB1*01:01	HLA-DRB1'03:01, HLA-DRB3'01:01, HLA-DRB1'13:02, HLA-DRB1'04:01, HLA-DRB1'07:01, HLA-DRB4'01:01, HLA-DRB1'07:01, HLA-DRB4'01:01,	HLA-DQA1*01:02/DQB1*06:02	HLA-DRB1*04:01, HLA-DRB1*04:05, HLA-DRB5*01:01, HLA-DRB1*01:01	HLA-DRA1'01:02/DQB1'06:02, HLA-DRB1'07:01, HLA-DRB1'15:01, HLA-DRB1'09:01, HLA-DRB1'15:01, DPB1'02:01, HLA-DRB1'01:03/ HLA-DRB1'04:05, HLA-DRB1'12:01, HLA-DRB1'08:02, HLA-DRB1'03:01, DPB1'04:02, HLA-DRB1'03:01, DPB1'04:02, HLA-DRB1'03:01, HLA-DRB1'04:02, HLA-DRB1'03:01, HLA-DRB4'01:01, HLA-DRB1'03:02, HLA-DRB1'01:01, HLA-DRB1'03:02, HLA-DRB1'11:01, HLA-DRB3'01:01,	
Position	260-274	310-324		374-388	512-526	549-563	621-635	635-648	670-684	687-701	
Core		IYQTSNFRV YQTSNFRVQ		1	FELLHAPAT	I	1	STGSNVFQT	YQTQTNSPR		
Peptide	AGAAYYVGYLQPRT	KGIYQTSNFRVQPTE		FSTFKCYGVSPTKLN	VLSFELLHAPATVCG	TGVLTESNKKFLPFQ	PVAIHADQLTPTWRV	VYSTGSNVFQTRAGC	ICASYQTQTNSPRRA	VASQSIIAYTMSLGA	
SI. No.	-	7		'n	4	Ś	Q	~	8	<i>б</i>	
SARS-CoV-2 protein	Spike (S)										

Table 8. List of predicted SARS-CoV-2-derived T-cell epitopes with high affinity binding to MHC II molecules.

Experimentally verified epitopes / ViPR reference	[<i>In silto</i> predicted, 22]		[<i>In silico</i> predicted, 22]	IEDB ID: 100428 [59] [<i>In silico</i> predicted, 20, 21]	[In silico predicted.	27]	[22]	- I	[22]	•	IEDB ID: 3958 [59]	
IFN gamma epitope	Positive	Positive	Positive	Positive	Positive		Positive	Positive	Positive	Positive	Positive	Positive
Conservancy (SARS-CoV)	100.00% (175/ 175)	100.00% (175/ 175)	100,00% (175/ 175)	100.00% (175/ 175)	100.00% (175/	175)	0.66% (2/301)	0.00% (0/301)	82.72% (249/ 301)	85.71% (258/ 301)	85.05% (256/ 301)	0.33% (1/301)
Conservancy (SARS-CoV-2)	76.07% (248/ 326)	0.31% (1/326)	85.89% (280/ 326)	85.58% (279/ 326)	0.31% (1/326)		100.00% (185/ 185)	100.00% (185/ 185)	100.00% (185/ 185)	100.00% (185)	100.00% (185/ 185)	100.00% (185/ 185)
Probable Allergenicity by AllerTop	Non-allergen	Non-allergen	Non-allergen	Non-allergen	Non-allergen	0	Non-allergen	Non-allergen	Non-allergen	Non-allergen	Non-allergen	Non-allergen
Probable Antigenicity by VexiJen (Threshold = 0.4)	Antigen (0.722)	Antigen (0.6953)	Antigen (0.4784)	Antigen (0.5709)	Antigen (1.172)		Antigen (0.6649)	Antigen (1.0027)	Antigen (0.434)	Antigen (0.4032)	Antigen (0.6408)	Antigen (0.7693)
Servers	6	2	2	1	-	•	-	7	7	1 & 2	1	-
Number of Alleles	16	7	5	г	ų	•	ę	4	ę	61	1	3
Alleles	HLA-DRB1'0405, HLA-DRB1'04:01, HLA-DRB1'09:01, HLA-DPA1'01:03/ DPB1'04:01, HLA-DPA1'01:03/ DPB1'04:01, HLA-DRB1'01:01, HLA-DRB1'550, HLA-DPA1'02:01/ DPB1'01:01, HLA-DRB1'02:01, HLA-DRB1'03:01, JHA-DRB1'04:02, HLA-DRB1'03:01, JHA-DQA1'05:01/ HLA-DRB1'08:02, HLA-DRB1'11:01, HLA-DRB1'08:02, HLA-DQA1'05:01/ DQB1'03:01, HLA-DRB4'01:01	HLA-DQA1*05:01/DQB1*02:01, HLA-DQA1*01:02/DQB1*06:02	HLA-DRB1'13:02, HLA-DQA1'01:02/ DQB1'06:02, HLA-DQA1'05:01/ DQB1'05:03, HLA-DQA1'05:01, HLA-DRB1'09:01, HLA-DRB1'04:05, HLA-DRB1'01:01, HLA-DRB1'04:05, HLA-DRB1'01:01, HLA-DRB1'02:01, HLA-DRB1'01:01, HLA-DRB1'11:01, HLA-DRB1'01:01, HLA-DRB1'11:01, HLA-DRB5'01:01,	HLA-DRB1*04:01, HLA-DRB1*08:02, HLA-DRB1*13:02, HLA-DRB1*15:01, HLA-DRB3*02:02, HLA-DRB4*01:01, HLA-DPA1*02:01/DPB1*14:01	HLA-DRB5*01:01	HLA-DPA1*02:01/DPB1*01:01; HLA-DPA1*02:01/DPB1*02:01, HLA-DPA1*01:03/DPB1*04:01, HLA-DPA1*01:03/DPB1*04:02, HLA-DPA1*02:01/DPB1*05:01	HLA-DRB1*08:02, HLA-DRB1*11:01, HLA-DRB1*13:02	HLA-DPA1*01:03/DPB1*04:01, HLA-DPA1*01:03/DPB1*02:01, HLA-DPA1*02:01/DPB1*01:01, HLA-DPB1*02:01/DPB1*01:01,	HLA-DQA1'05;01/DQB1'03;01,H, LA-DQA1'01;02/DQB1'06:02, HLA-DRB1'09:01,HLA-DRB1'01:01, HLA-DRB1'04:01,HLA-DRB1'04:05	HLA-DRB1'09:01, HLA-DRB1'07:01, HLA-DRB1'09:01, HLA-DRB1'05:01, DPB1'14:01, HLA-DRB1'06:01, HLA-DRB1'06:02, HLA-DRB1'06:02, HLA-DRB3'06:02, HLA-DRB1'06:02, HLA-DRB3'06:01, HLA-DRB1'06:02, HLA-DRB1'50:01, HLA-DRB1'06:02, HLA-DRB1'50:01, HLA-DRB1'02:01, DB1'04:01, HLA-DRB1'02:01, DB1'04:01, HLA-DRB1'02:01, DB1'04:01, HLA-DRB1'02:01, HLA-DRB1'01:01, HLA-DRB1'02:01, DB1'01:01, HLA-DRB1'02:01, HLA-DRB1'11:01	HLA-DRB1*11:01	HLA-DRB1*08:02, DRB1*11:01, HLA-DRB1*12:01
Position	753-767	766-780	963-977	1014- 1028	1060-	1074	84–98	101-115	298-312	303-317	309-323	345-359
Core		1		IRASANLAA	VTYVPAOEK	FLHVTYVPA	YRRATRRIR	1	1	FAPSASAFF	FFGMSRIGM	UIHNKHID
Peptide	LLQYGSFCTQLNRAL	ALTGIAVEQDKNTQE	VKQLSSNFGAISSVL	RAAEIRASANLAATK	VVFLHVTYVPAOEKN	Y Y	IGYYRRATRRIRGGD	MKDLSPRWYFYYLGT	YKHWPQIAQFAPSAS	QIAQFAPSASAFFGM	PSASAFFGMSRIGME	NFKDQVILLNKHIDA
No.	10	Ξ	12	13	14	:	-	2	ε	4	5	9
SARS-CoV-2 protein	Spike (S)						Nucleocapsid (N)					

Table 8. (Continued)

Membrane I LWLLWP (M)						Antigenicity by VexiJen (Threshold = 0.4)	Allergenicity by AllerTop	(SARS-CoV-2)	(SARS-CoV)	gamma epitope	verified epitopes / ViPR reference
	WTLACEVLA	54-68	HLA-DQA1*01.01/DQB1*05.01, HLA-DPA1*01.03/DPB1*05.01, HLA-DPA1*01.03/DPB1*04.02, HLA-DPA1*03.01/DPB1*04.02, HLA-DPA1*03.01/DPB1*04.01, HLA-DRB1*04.05, HLA-DRB1*15.01, HLA-DRB1*07.01, HLA-DRB1*15.01, HLA-DRB1*04.01, HLA-DRB1*06.01, HLA-DRB1*04.01, HLA-DRB4*01.01	14	2	Antigen (0.937)	Non-allergen	82.46% (221/ 268)	98.24% (167/ 170)	Positive	
2 PUTLAC	FVLAAVYRI	59-73	HLA-DPA1'01.03/DPB1'02.01, HLA-DPA1'01.03/DPB1'04.01, HLA-DPA1'030/DPB1'04.02, HLA-DQA1'01.02/DQB1'06.02, HLA-DQA1'01.01/DQB1'05.01, HLA-DRB1'09.01, HLA-DRB1'01.01, HLA-DRB1'09.01, HLA-DRB1'01.01, HLA-DRB1'01.01, HLA-DRB1'13.02, HLA-DRB1'04.05, HLA-DRB1'13.02, HLA-DRB1'04.01, HLA-DRB1'13.02, HLA-DRB1'04.01, HLA-DRB1'13.02, HLA-DRB1'04.01, HLA-DRB1'01.01, HLA-DRB1'04.01, HLA-DRB4'01.01,	20	0	Antigen (0.8548)	Non-allergen	78,73% (211/ 268)	98.24% (167/ 170)	Positive	· ·
3 LVIGAN	TLRGHLRIA	138-152	HLA-DRB4'01:01, HLA-DRB1'12:01, HLA-DRB1'15:01, HLA-DRB5'01:01, HLA-DRB1'15:01, HLA-DRB1'06:02, HLA-DQA1'01:02,DQB1'06:02, HLA-DPA1'02:01,DPB1'05:01, HLA-DRB1'03:01, HLA-DRB1'07:01, DQB1'03:01, HLA-DRB1'07:01, DQB1'03:01, HLA-DRB1'04:05, DPB1'03:01, HLA-DRB1'04:05, DPB1'01:01, HLA-DRB1'04:05, HLA-DRB1'04:01, HLA-DRB1'04:05,	24	2	Antigen (0.8769)	Non-allergen	0.75% (2/268)	98.82% (168/ 170)	Positive	
Envelope (E) 1 AFVVFI	LVTLAILTA	22-36	HLA-DPA1*01:03/DPB1*02:01, HLA-DRB1*01:01	2	2	Antigen (0.6229)	Non-allergen	100.00% (177/ 177)	0.00% (0/326)	Positive	ı

a https://doi.org/10.1371/journal.pone.0258645.t008

Table 8. (Continued)

Experimentally	verified epitopes / ViPR reference		IEDB-ID: 100428 [59]	[65]	[43]	(Continued)
IFN	gamma epitope	Positive	Positive	Negative	Negative	
Probable	Allergenicity by AllerTop	Non-allegen	Non-allergen	Allergen	Non-allergen	
Probable	Antigenicity by VexiJen (Threshold = 0.4)	Artigen (0.722)	Antigen (0.5709)	Antigen (1.2439)	Antigen (1.2934)	
	Servers	N	-	1 & 2	-	
	Conservancy	76.07% (248/ 32.6)	85.58% (279/ 326)	86.20% (281/ 326)	86.20% (281/ 326)	
	Number of Alleles	16	15	11	1	
SARS-CoV	Alleles	HLA-DR81'0465, HLA-DR81'0961, HLA-DR81'0961, HLA-DRA1'0169, HLA-DR41'0169, HLA-DR41'0169, HLA-DR81'1561, HLA-DR81'1561, HLA-DR81'1561, HLA-DR81'1561, HLA-DR81'1561, HLA-DR81'1691, HLA-DR81'1161, HLA-DR41'0162, HLA-DR81'060, HLA-DR81'061, DR81'061, HLA-DR	HLA-DRB1'0401, HLA-DRB1'0401, HLA-DRB1'0802, HLA-DRB1'0502, HLA-DRB3'0202, HLA-DRB3'0202, HLA-DRB3'0201, HLA-DRB3'0201, HLA-DRB3'0201, HLA-DPB10201/ HLA-DPB11401	HLA-DRB1 (9801, 114, DRB1 (9701, HLA-DRB1 (7701, HLA-DRB1 (7701, HLA-DRB1 (7701, HLA-DRB1 (7701, HLA-DRB1 (9701, HLA-DRB1 (970	HLA-DRB3*02:02	
	Position	735-749	-996- 1010	525-539	881-895	
	Core		IRASANLAA	ABITGTQ	YRFNGIGVT	
	Servers	N	-	1 & 2	1	
	Conservancy	100.00% (175/175)	100.00% (175/175)	100.00% (175/175)	100.00% (175/175)	
	Number of Alleles	16	ى	11	-	
SARS-CoV-2	Alleles	HLA-DRB1 04:05, HLA-DRB1 04:01, HLA-DRB1 04:01, HLA-DRB1 09:03, HLA-DRB1 01:01, HLA-DRB1 01:01, HLA-DRB1 15:01, HLA-DRB1 15:01, HLA-DRB1 15:01, HLA-DRB1 11:01, DPB1 09:10, HLA-DRB1 11:01, DPB1 09:10, HLA-DRB1 11:01, DPB1 09:10, DPB1 09:10, HLA-DRB1 10:01, DPB1 09:10, HLA-DRB1 10:01, DPB1 09:02, HLA-DRB1 10:01, DPB1 09:02, HLA-DRB1 10:01, DPB1 09:02, HLA-DRB1 00:02, HLA-DRB1 00:00, HLA-DRB1 00; HLA-DRB1 0	HLA-DRB1°04:01, HLA-DRB1°08:02, HLA-DRB1°13:02, HLA-DRB1°13:01, HLA-DRB1°15:01, HLA-DPA1°02:01/ HLA-DPA1°02:01/ DPB1°14:01	HLA-DRB1'0901, HLA-DRB1'0701, HLA-DRB1'0702, HLA-DRB3'02302, HLA-DRB1'05301, DQB1'05301, HLA-DRB1'05301, HLA-DRB1'05302, HLA-DRB1'05302, HLA-DRB1'1501, HLA-DRB1'1501, HLA-DRB1'1501, HLA-DRB1'1501,	HLA-DRB3*02:02	
	Position	753-767	1014-1028	539-553	899-913	
	Core		IRASANLAA	FNGLTGTGV	YRFNGIGVT	
Peptide		ILQYGSFCTQLNRAL	RAEIRASANLAATK	NHNHNGLIGUTI	AMQMAYRFNGIGVTQ	
SI.	No.	-	7	ις.	4	
SARS-CoV-2	protein	Spike (S)				

Table 9. T-cell epitopes predicted with high affinity to MHC II molecules common to SARS-CoV-2 and SARS-CoV.

Experimentally	verified epitopes / ViPR reference					۲ ۵
IFN	gamma epitope	Positive	Positive	Positive	Negative	Negative
Probable	Allergenicity by AllerTop	Non-allergen	Non-allergen	Non-allergen	Non-allergen	Non-allergen
Probable	Antigenicity by Vexifen (Threshold = 0.4)	Antigen (1.0041)	Antigen (0.7357)	Antigen (0.434)	Antigen (0.86.20)	Antigen (0.7397)
	Servers	2	ิณ	2	1 & 2	7
	Conservancy	79.73% (240/ 301)	301)	82.72% (249/ 301)	84.72% (255/ 301)	83.06% (250/ 301)
	Number of Alleles	-	61	٥	22	7
SARS-CoV	Alleles	HLA-DQA1*05:01/ DQB1*03:01	HLA-DRB1 (0301, HLA-DRB1 (0301, HLA-DRB1 (1201), HLA-DRB1 (1201), DFB1 (0402, HLA-DRB1 (1302), DFB1 (0402, HLA-DRB1 (1302, HLA-DRB1 (1302), DFB1 (0401, HLA-DRA1 (0303, HLA-DRB1 (0401, HLA-DRB1 (0401, HLA-DR	HLA-DQA1'05:01/ DQB1'03:01, HLA-DQA1'01:02/ DQB1'06:02, HLA-DRB1'09:01, HLA-DRB1'01:01, HLA-DRB1'04:05, HLA-DRB1'04:05	HIA-DRB1'1191, HIA-DRB1'01301, HIA-DRB1'01301, HIA-DRB1'08001, HIA-DRB1'08001, HIA-DRB1'08002, DQB1'0602, DQB1'0602, DQB1'0601, HIA-DRB1'0301, HIA-DRB1'0301, HIA-DRB1'0301, HIA-DRB1'0301, HIA-DRB1'0301, HIA-DRB1'0301, DBB1'01301, HIA-DRB1'0301, DBB1'01301, HIA-DRB1'0301, DBB1'01301, HIA-DRB1'0301, DBB1'01301, HIA-DRB1'0301, DBB1'0402, HIA-DRB1'0301, DBB1'0402, HIA-DRB1'0301, DBB1'0402, HIA-DRB1'0301, HIA-DRB	HLA-DRB1'0401, HLA-DRB1'0405, HLA-DRB1'0501, HLA-DRB1'0501, HLA-DRB1'0501, HLA-DRB1'091, HLA-DRB1'01, HLA-DRB1'01, HLA-DRB1'01,
	Position	178-192	220-234	299-313	312-326	318-332
	Core				FFGMSRLGM	
	Servers	7	N	2	1 & 2	0
	Conservancy	99.46% (184/ 185)	100.00% (185/185)	100.00% (185/185)	100.00% (185/185)	100,00% (185/185)
	Number of Alleles	-	19	v	18	-1
SARS-CoV-2	Alleles	HLA-DQA1*05:01/ DQB1*03:01	HLA-DRB1'0301, HLA-DRB1'0301, HLA-DRB1'1201, HLA-DRB1'1201, DPB1'0402, HLA-DPA1'0301, DPB1'0402, HLA-DPA1'0301, HLA-DPA1'0302, HLA-DPA1'0303, HLA-DPA1'0303, HLA-DPA1'0303, HLA-DPB1'0403, HLA-DRB1'0403, HLA-DRB1'0403, HLA-DRB1'0403, HLA-DRB1'0401, HLA-DRB1'0403, HLA-DRB1'0401, HLA-DRB1'0401, HLA-DRB1'0401, HLA-DRB1'0201,	HLA-DQA1*05:01/ DQB1*03:01, H, LA-DQA1*01:02/ DQB1*06:02, HLA-DRB1*09:01, HLA-DRB1*04:01, HLA-DRB1*04:01, HLA-DRB1*04:01,	HLA-DRB1'01:01, HLA-DRB1'01:01, HLA-DRB1'01:01, HLA-DRB1'05:01, HLA-DRB1'06:02, DQB1'06:02, DQB1'06:02, HLA-DR1'01:0301, HLA-DR1'01:0301, HLA-DR1'01:0301, HLA-DR1'01:0301, HLA-DR1'01:0301, HLA-DR1'01:0301, HLA-DR1'01:031, HLA-DR1'02:01, HLA-DR1'0	HLA-DRB1'04:01, HLA-DRB1'04:05, HLA-DRB1'004:05, HLA-DRB1'0901, HLA-DRB1'0901, HLA-DRB4'01:01, HLA-DRB1'09:01, HLA-DRB1'09:01
	Position	177-191	219-233	298-312	311-325	317-331
	Core				FFGMSRIGM	
Peptide		RGGSQASSRSSRSR	FAILLURINGLESK	YKHWPQIAQFAPSAS	ASAFFGMSRIGMEVT	MSRIGMEVTPSGTWL
SI.	No.	-	N	m	4	w
SARS-CoV-2	protein	Nucleocapsid (N)				

Table 9. (Continued)

Experimentally	verified epitopes / ViPR reference			(Continued)
IFN	gamma epitope	Positive	Negative	
Probable	Allergenicity by AllerTop	Non-allergen	Non-allergen	
Probable	Antigenicity by VexiJen (Threshold = 0.4)	Antigen (0.8548)	Antigen (0.5800)	
	Servers	Ν	1 & 2	
	Conservancy	78.73% (211/ 268)	79.48% (213/ 268)	
	Number of Alleles	30	9	
SARS-CoV	Alleles	HLA-DRB1 '07'01, HLA-DRA1'01:30], DBB1'0201, DBB1'0401, HLA-DQA1'01:30], DBB1'0602, HLA-DQA1'01:30], DQB1'0501, HLA-DQA1'0501, HLA-DR1'10:01, HLA-DR1'10:01, HLA-DR1'10:01, HLA-DR1'10:01, HLA-DR1'10:01, HLA-DR1'10:01, HLA-DR1'10:01, HLA-DR1'0501, DQB1'0501, HLA-DR1'0501, HLA-DR1'010, HLA-DR1'010, HLA-DR1'010, HLA-DR1'010, HLA-DR1'01001, HLA-DR1'010, HLA-DR1'00, HLA-	HIA. DRB1 '0701, HIA. DRB1 '0802, HIA. DRB1 '0802, HIA. DRB1 '0802, HIA. DRB1 '0801, HIA. DRB1 '0801, HIA. DRB1 '0801, HIA. DRB1 '0801, HIA. DRB1 '0102/ DOB1 '0802, HIA. DRB1 '0102/ HIA. DRB1 '0102/ HIA. DRB1 '0103, HIA. DRB1 '0103, HIA. DRB1 '0103, HIA. DRB1 '0103,	
	Position	58-72	164-178	
	Core		ITVATSKTL	
	Servers	N	1 & 2	
	Conservancy	98.24% (167/ 170)	98.24% (167/ 170)	
	Number of Alleles	20	18	
SARS-CoV-2	Alleles	HLA-DRA' 01:93/ PEN'0201, PEN'0201, PEN'0201, DPEN'0201, DPEN'0201, DPEN'0201, DPEN'0201, HLA-DRA'0201, HLA-DRA'0201, HLA-DRH'0201,	HIA-DRBF 01.92, HIA-DRBF 07.91, HIA-DRBF 07.91, HIA-DRBF 07.91, HIA-DRBF 08.02, HIA-DRBF 08.02, HIA-DRBF 08.01, HIA-DRBF 03.01, HIA-DRBF 03.01, HIA-DRBF 03.01, HIA-DRBF 03.01, HIA-DRBF 04.01, HIA-DRBF 04.01, HIA-DRF 04.01, HIA-DRF 04.01, HIA-DRF 04.01, HIA-DRF 04.01, HI	
	Position	59-73	165-179	
	Core		ITVATSRTI.	
Peptide		PVTLACFVLAAVYRI	PKEITVATSKTIJSYY	
SI.	No.	-	N	
SARS-CoV-2	protein	Membrane (M)		

Table 9. (Continued)

Experimentally	verified epitopes / ViPR reference	[23]	[2]	<u>6</u>	
IFN	gamma epitope	Positive	Positive	Negative	Negative
Probable	Allergenicity by AllerTop	Non-allergen	Non-allergen	Non-allergen	Non-allergen
Probable	Antigenicity by VexiJen (Threshold = 0.4)	Antigen (0.6386)	Antigen (0.6229)	Antigen (0.407)	Antigen (0.8552)
	Servers	2	2	0	2
	Conservancy	82.86% (203/ 245)	86.12% (211/ 245)	245) 245)	84.08% (206/ 245)
	Number of Alleles	5	7	19	10
SARS-CoV	Alleles	HLA-DPA1*01:03/ DPB1*04:01, HLA-DPA1*01:03/ DPB1*02:01	HLA-DPA1*01:03/ DPB1*02:01, HLA-DRB1*01:01	HLA-DRB1'1201, HLA-DRB1'1301, HLA-DRB1'0301, HLA-DRB1'0302, HLA-DRB1'0302, HLA-DRB1'0301, HLA-DRB1'0301, HLA-DRB1'0301, HLA-DRB1'0301, HLA-DRB1'0302, HLA-DRB1'0302, HLA-DRB1'0302, HLA-DRB1'0502, HLA-DRB1'0502, HLA-DRB1'0502, HLA-DRB1'0501, HLA-DRB1'0501, HLA-DRB1'0501, HLA-DRB1'0501, HLA-DRB1'0501, HLA-DRB1'0201, HLA-DR	HLA-DRB1 0202, HLA-DRB1 0401, HLA-DRB1 0401, HLA-DRB1 0501, HLA-DRB1 0501, HLA-DRB1 0501, HLA-DRB1 0802, HLA-DRB1 0802, HLA-DRB1 1501, HLA-DRB1 1501, HLA-DRB1 01:01
	Position	17-31	22-36	28-42	39-53
	Core				
	Servers	5	7	0	0
	Conservancy	100.00% (177/177)	100.00% (177/177)	9944% (176/ 177)	100.00%
	Number of Alleles	7	2	61	10
SARS-CoV-2	Alleles	HLA-DPA1*01:03/ DPB1*04:01, HLA-DPA1*01:03/ DPB1*02:01	HLA-DPA1*01:03/ DPB1*02:01, HLA-DRB1*01:01	HLA-DR81' 1201, HLA-DR81' 1201, HLA-DR81' 0101, HLA-DR81' 0101, HLA-DR81' 0102, HLA-DR81' 0102, HLA-DR81' 0103, HLA-DR1' 01030, HLA-DR1' 01030, HLA-DR1' 01030, DP81' 0400, HLA-DR1' 01030, DP81' 0400, HLA-DR1' 01030, DP81' 0201, HLA-DR1' 0201, HLA	HLA-DRB3°02402, HLA-DRB1°0401, HLA-DRB1°0405, HLA-DRB1°0405, HLA-DRB1°0405, HLA-DRB1°0405, HLA-DRB1°0501, HLA-DRB1°0800, HLA-DRB1°0800, HLA-DRB1°1501, HLA-DRB1°1501, HLA-DRB1°09001
	Position	17-31	22-36	28-42	39-53
	Core				
Peptide		VLLFLAFVVFLLVTL	AFVVFLLVTLAILTA	LYTLAILTAILTAIL	ICAYCONIVNVSLVK
SI.	No.	-	5	m	4.
SARS-CoV-2	protein	En velope (E)			

https://doi.org/10.1371/journal.pone.0258645.t009

PLOS ONE

Table 9. (Continued)

Fig 5. Summary of SARS-CoV-2-derived T-cell epitopes. Heat map showing the distribution of **(a)** HLA class I and **(b)** HLA class II epitopes across the protein sequences of spike (1273 aa), nucleocapsid (419 aa), membrane (222 aa), and envelope (75 aa) proteins of SARS-CoV-2. Red color represents antigenic epitopes predicted using the methods described in Fig 1.

https://doi.org/10.1371/journal.pone.0258645.g005

Cross-validation of predicted epitopes of SARS-CoV-2 in the NIAID Virus Pathogen Database and Analysis Resource and published literature

The Virus Pathogen Database and Analysis Resource (ViPR) database funded by the National Institute of Allergy and Infectious Diseases (NIAID), USA, provides two types of immunerelated information on antigens; the predicted epitopes (NetCTL 1.2 server) and the experimentally determined epitopes derived from the IEDB. The B- and T-cell epitopes predicted in this study were searched on the ViPR database (https://www.viprbrc.org) by selecting different parameters such as family-*Coronaviridae*, human host, and experimentally determined B- and T-cell epitopes. Two different assays, positive T-cell and positive MHC-binding assays were applied for testing the T-cell response against epitopes and epitope-MHC binding, respectively [67]. We have furnished the unique identification number (IEDB ID) of some predicted Band T-cell epitopes of structural proteins of SARS-CoV-2, which are identical to experimentally determined epitopes of structural proteins of SARS-CoV (Tables 2–10). It is pertinent to note that the predicted continuous B-cell epitopes reported in this study have been previously identified using similar computational tools, and some of the predicted epitopes have now been experimentally validated (Tables 2–9). Similar findings presented in this work have been reported previously [27–38].

Identification of potential B- and T-cell epitopes of structural proteins for development of serological assays and multi-epitope-based vaccines

Generally, the S and N proteins are the major targets for the development of vaccines and diagnostic tools against SARS-CoV-2 using recombinant antigens. The development of rapid

SARS-CoV-2 protein	Name of epitope	Predicted epitope of SARS-CoV-2	Length	Antigenicity by VexiJen	Allergeicity by AllerTope v.	Agadir Score	Conservancy IEDB	analysis by ool	Experimentally verified epitopes /
				(T = 0.4)	2.0		SARS-CoV-2	SARS-CoV	ViPR reference
Spike (S)	Linear and conformational B-cell epitopes	1253-CCKFDEDDSEFVLKGVKLHYT-1273	21	Antigen (0.9101)	Non-allergen	0.26	94.86% (166/ 175)	83.74% (273/326)	(IEDB-ID: 6476) [59]
	Linear B-cell epitopes and MHC I	403-RGDEVRQIAPGQTGKIADYNYKLPD-427	25	Antigen (1.0356)	Non-allergen	0.45	100.00% (175/175)	0.00% (0/ 326)	
		437-NSNNLDSKVGGNYNYLYRLFRKSNL-461	25	Antigen (0.4015)	Non-allergen	4.42	100.00% (175/175)	0.00% (0/ 326)	(MHC I, IEDB-ID: 1074979) [59]
Nucleocapsid (N)	Linear and conformational B-cell epitopes and MHC I	366-TEPKKDKKKKADETQALPQRQKKQQTVTL-394	29	Antigen (0.5248)	Non-allergen	0.63	100.00% (185/185)	0.00% (0/ 301)	·
	Linear B-cell epitopes and MHC I	173-AEGSRGGSQASSRSSSRS-190	18	Antigen (0.8081)	Non-allergen	0.21	99.46% (184/ 185)	79.73% (240/301)	(B-cell, IEDB-ID: 22481) [59]
		227-LNQLESKMSGKGQQQQGTVTKKSAAEASKKPRQKRTATK- 266	40	Antigen (0.5387)	Non-allergen	1.9	100.00% (185/185)	0.00% (0/ 301)	(B-cell, IEDB-ID: 31692) [59]
Membrane (M)	Linear and conformational B-cell epitopes and MHC I	160-DIKDLFKEITVATSRTLSYYKLG-182	23	Antigen (0.7442)	Non-allergen	0.31	98.24% (167/ 170)	79.48% (213/268)	(B-cell, IEDB-ID: 48052) [59]
Envelope (E)	Linear and conformational B-cell epitopes	57-YVYSRVKNLNSSRVPDLL-75	19	Antigen (0.565)	Non-allergen	0.2	100.00% (177/177)	0.00% (0/ 245)	

PLOS ONE | https://doi.org/10.1371/journal.pone.0258645 November 15, 2021

https://doi.org/10.1371/journal.pone.0258645.t010

Table 10. List of SARS-CoV-2 proteins that were predicted as common and overlapping B- and T- cell epitopes.

Table 11. Design of multi-epitope vaccine constructs of SARS-CoV-2.

(Continued)

Multi- epitope constructs of SARS-CoV-2	Protein	Linear B-cell epitope	Conformational B-cell epitope	CTL epitope	HTL epitope
Chimeric construct of S and N proteins (B- and T-cell epitopes of S and N)	Spike	370-NSASFSTFKCYGVSPTKLNDLCFTNV-395, 403-RGDEVRQIAFGQTGKIADYNYKLPD-427, 437-NSNNLDSKVGGNYNYLYRLFRKSNL-461, 770-IAVBQDKNNQEVFAQVKQ-787, 1028-KMSECVLGQSKRVDFCGKGYHL-1049, 1191-KNLNESLIDLQELGKYEQYIK-1211, 1253-CCKFDEDDSEPVLKGVKLHYT-1273	175-FIMDLEGKOGNFKNLR-190, 904-YRFNGIGVTQNVLYENQK-921, 1161-SPDVDLGDISGINASVVN-1178, 1204-GKYEQYIKNPWYIWLGFI-1221, 1254-CKFDEDDSEPVLKGVKLH-1271	507-PYRVVLSF- 515, 590-CSFGGVSVI- 886-WTFGAGAAL- 896-WTFGAGAAL- 898-FAMQMAYRF- 909, 123-GLIAIVMVT- 1231	<pre>539-VNENFNGLTCTGVLT-553, 753-LLQYGSFCTQLNRAL-767, 819-EDLLFNKVTLADAGF-833, 894-LQIFFAMQMAYRFNG-908, 906-FNGIGVTQNVLYENQ-920, 1014-RAAEIRASANLAATK 1038-KRVDFCGRGYHLMSF- 1038-KRVDFCGRGYHLMSF- 1052</pre>
	Nucleocapsid	32 - RSCARSKOPRPOGLP-46, 173- AEGSRGGSQASSRSSSRS-190, 227- LNOLESKMSGKGQQOGGTVTKKSAAEASKKPRQKRTATK- 266, 366- TEPKKDKKKADETQALPQRQKKQCTVTL-394	95-RGGDGKWKDLSPRWYFYYLG-114, 104-LSPRWYFYYLGTGP-117, 272-QAFGRRGPEQTQGNFGDQ-289	104-LSPRWYFYY- 112, 177-RGGSQASSR- 185, 306-QFAPSASAF- 316-QMSRIGMEV- 324, 323-EVTPSGTWL- 331	177-RGGSQASSRSSRSRS-191, 219-LALLLLDRLNQLESK-233, 298-YKHWPQIAQFAPSAS-312, 303-QIAQFAPSASAFFGM-317, 311-ASAFFGMSRIGMEVT-325, 317-MSRIGMEVTPSGTWL-331

PLOS ONE | https://doi.org/10.1371/journal.pone.0258645 November 15, 2021

ī.

i.

List of potent B- and T-cell epitopes that are included in the multi-epitope vaccine constructs.

https://doi.org/10.1371/journal.pone.0258645.t011

Table 11. (Continued)

Fig 6. Schematic diagram of multi-epitope vaccine constructs of SARS-CoV-2. The multi-epitope vaccine constructs consisted of top-ranked predicted and experimentally validated B- and T-cell epitopes. Cytotoxic T lymphocytes (CTL) epitopes were joined by the AAY linker, whereas helper T lymphocytes (HTL) and B-cell epitopes were joined by KK and GGGGS linkers, respectively. (a) The receptor-binding domain (RBD) of the spike (S) protein (B- and T-cell epitopes); (b) The S protein (B- and T-cell epitopes), (c) The structural protein construct (B- and T-cell epitopes of S, N, M, and E proteins); (d) The chimeric construct of S and N proteins (B- and T-cell epitopes of S and N proteins).

https://doi.org/10.1371/journal.pone.0258645.g006

antibody tests requires the production of recombinant antigens and their validation in an enzyme-linked immunosorbent assay (ELISA) using the convalescent serum of patients with COVID-19. In addition, ELISA does not require the culture of SARS-CoV-2 in a BSL-3 containment facility [10–14, 68–70]. In this study, we designed a multi-epitope chimeric construct, using the computationally predicted B- and T-cell epitopes of the S, E, M, and N proteins of SARS-CoV-2 (Table 6). In the multi-epitope vaccine constructs, we included MHC class I (CTL)- and class II (HTL)-binding antigenic, non-allergenic, and conserved epitopes, which were predicted to elicit IFN- γ release. The CTL and HTL epitopes were linked together by AAY and KK cleavable linkers, whereas the B-cell epitopes (linear and conformational) were linked together with the GGGGS flexible linker (Fig 6a–6d). The following four multi-epitope chimeric vaccine constructs containing N-CTL, HTL and B-cell epitopes were designed: (i) The RBD of the S protein (B- and T-cell epitopes), (ii) the full-length S protein (B- and T-cell epitopes), (iii) the structural protein construct (B- and T-cell epitopes of S, E, M, and N proteins), and (iv) the chimeric construct of S and N proteins (B- and T-cell epitopes of S, E, M, and N proteins) (Fig 6).

The structure of multi-epitope vaccine constructs was modeled using I-TASSER and was validated by the RAMPAGE server to generate a Ramachandran plot [71] (S1a-S1d Fig in S1 File). Most of the amino acid residues of epitope constructs were found in the favorable region (S3 Fig in S1 File, Inset table). Various physicochemical parameters including the number of residues, theoretical pI, molecular weight, aliphatic index, and grand average of hydrophobic-ity (GRAVY), were analysed using ProtParam [48]. Based on the aliphatic index scores, the multi-epitope constructs might be considered moderately thermostable (S1 Table in S1 File). GRAVY scores obtained displayed negative value for all the constructs, indicating the likelihood of the chimeric multi-epitope constructs being globular and hydrophilic in nature. The secondary structure of multi-epitope constructs was predicted using the online server

Fig 7. *In silico* **immune simulation of multi-epitope vaccine constructs of SARS-CoV-2.** C-ImmSim simulation of the cytokine levels induced by three injections administered four weeks apart. The main plot shows cytokine levels after the injections. The inset plot shows IL-2 levels with the Simpson index (D), which is indicated by the dotted line, is a measure of diversity. Increase in D over time indicates the emergence of different epitope-specific dominant clones of T cells. The smaller the D value, the lower the diversity. **(a)** The receptor-binding domain (RBD) of the spike (S) protein (B- and T-cell epitopes); **(b)** The S protein (B- and T-cell epitopes); **(c)** The structural protein construct (B- and T-cell epitopes of S, N, M, and E proteins); **(d)** The chimeric construct of S and N proteins (B- and T-cell epitopes of S and N proteins).

https://doi.org/10.1371/journal.pone.0258645.g007

PSIPRED [51], and the alpha-helical content of the constructs is provided in S4a-S4d Fig in S1 File.

The cleavable linkers are required to be accessible for the proteases associated with the MHC I and II antigen processing pathways [49]. We observed that the cleavable linkers (AAY and KK) included in multi-epitope vaccines were predicted on the accessible region of vaccine constructs, indicating a high probability of T-cell epitope presentation by MHC molecules (S2a-S2d in S1 File). The results of C-ImmSim server (http://150.146.2.1/C-IMMSIM/index.php) prediction revealed the multi-epitope constructs were able to stimulate cytokine production, including IFN- γ , following immunization with the peptide (Fig 7a–7d). *In silico* immune simulation of the multi-epitope construct of S and N proteins)} showed consistent correlation with the actual immune responses as observed by the primary response of high levels of IgM. This is followed by a marked increase in B-cell populations and levels of IgG₁ + IgG₂, IgM, and IgG + IgM antibodies, as a part of the secondary and tertiary responses S5a-S5d in S1 File [i-iv]). A similarly high response was seen in the T_H (helper) and T_C (cytotoxic) cell populations with corresponding memory development, especially for constructs made of structural proteins (S, E, M, and N) and chimeric constructs of S and N proteins (S5c and S5d Fig in S1 File).

Discussion

Research communities around the world are in the process of developing safe, effective, and affordable vaccines against COVID-19. As of June 3, 2021, the World Health Organization has

evaluated and recommended the emergency use of COVID-19 vaccines developed by AstraZeneca/Oxford, Moderna, Johnson and Johnson, Pfizer/BioNTech, Sinopharm, and Sinovac Biotech based on satisfactory published findings on the safety and efficacy profiles of these vaccines [19-26, 72, 73]. Although data on immunological characteristics of patients with COVID-19 are limited, growing experimental evidence suggests that B and T cells are naturally activated during infection, and they contribute substantially towards the resolution of SARS--CoV-2 infection [16-18, 74, 75]. Importantly, SARS-CoV-2-specific antibodies which are found in convalescent sera of approximately 95% of patients with COVID-19 can neutralize the virus, and the antibody titers correlate positively with measured levels of immunoglobulins that mainly target S and N proteins [7–9, 14, 76]. There have been interesting observations on virus-specific CD4+ and CD8+ T cells in sera from both patients with acute COVID-19 and convalescent patients. A similar development of T cells in SARS-CoV-2-unexposed healthy individuals might have important implications for new design and analysis of ongoing vaccine trials [16-18]. A proportion of the SARS-CoV-2-specific CD8+ T cells isolated from convalescent peripheral blood of patients with COVID-19 exhibited the undesirable "exhausted" phenotype; such perturbations of T-cell subsets may eventually weaken the antiviral immunity of the host [77]. While efforts to develop vaccines that are more effective are ongoing, there is a need to develop a better understanding of B- and T-cell responses against SARS-CoV-2.

Of the linear B-cell epitopes predicted in the RBD of the S protein (Fig 4, Inset table), the synthetic peptide spanning the regions aa331-356, aa370-395, aa437-461, and aa483-493 has been shown to react with convalescent sera from patients with COVID-19 [61, 77]. Intriguingly, most of the amino acid residues spanning the predicted B-cell epitope (aa331-356 and aa437-461, Fig 4, Inset table) of the S protein have been shown to interact with the cross-neutralizing mAb S309 in an ACE2 receptor-independent manner [10, 62]. In a related study using the recombinant SARS-CoV-2 RBD antigen, a strong correlation between levels of RBD-binding antibodies and SARS-CoV-2-neutralizing antibodies was observed in patients with COVID-19 [11, 78]. Similar investigations performed using samples collected from patients with COVID-19 in the USA, Europe, and Hong Kong have detected specific and sensitive antibodies using the full-length and RBD of the S protein [69, 78]. Interestingly, the predicted linear B-cell epitope (aa653-666, Table 2) has now been experimentally validated using the synthetic peptide aa655-672 of the S protein, which was abundantly detected in samples derived from patients with COVID-19 [79].

The S and N proteins are considered the main targets for the development of vaccines and immunoassays against COVID-19. Antibodies to N protein appear earlier than S antibodies are found more sensitive for detection of early infection of SARS-CoV-2 [14]. Leung et al. (2004) showed that antibody responses specific to the N protein were detected during early infection with SARS-CoV [5]. The B-cell epitope predicted and identified (aa359-403) in the N protein of SARS-CoV was previously shown to react abundantly with the serum of patients with SARS-CoV [80, 81]. The C-terminal epitope (aa366-TEPKKDKKKKADET-QALPOROKKOOTVTL-394) predicted in the N protein of SARS-CoV-2 was located on the accessible region of the virus protein structure; however, the immunogenicity of this predicted epitope requires further experimental validation. A recent study used a peptide-based SARS--CoV-2 proteome microarray and identified several B-cell peptides (approximately 5-mer in length) in the serum of patients with COVID-19 [82]. Many of these peptides partially overlap with the predicted B-cell epitopes of S, N, and M proteins presented in this study (Table 2). Previously, 206 monoclonal antibodies specific to the RBD of the S protein of SARS-CoV-2 have been characterized in infected individuals [83]. Wang et al. (2020) identified a human monoclonal antibody (47D11) that neutralizes SARS-CoV-2 and SARS-CoV by binding to their respective RBDs without hampering ACE2 receptor interaction [12]. Amanat et al.

(2020) developed a serological assay using the S protein expressed in insect and mammalian expression systems; the results indicated plasma/serum samples derived from patients with COVID-19 reacted strongly to both the RBD and the full-length S protein [68]. To date, the findings from published work juxtaposed with those of our study might have significant implications in the rational designing of epitope-based vaccines and serological diagnostic assays based on S and N proteins of SARS-CoV-2 [10–14, 68, 70].

Increasing experimental evidence suggests the development of CD4+ and CD8+ T-cell responses in a majority of patients who recovered from COVID-19; however, their role in disease progression and protection is not well understood [16-18, 65]. For example, the presence of a high proportion of CD4+ T cells in SARS-CoV-2-unexposed healthy individuals might be attributed to cross-reactivity of the C-terminus of the S protein, which shares homology with the C-terminus of spike glycoproteins in human endemic coronaviruses [18]. The identification of non-spike dominant CD8+ T-cell epitopes suggest that other proteins such as E, N, M, and ORFs can be used to design effective vaccines [17]. Therefore, in this study, we considered the four structural proteins (S, E, M, and N) for the mapping of T-cell epitopes based on data from published literature regarding immune responses to SARS-CoV and SARS-CoV-2 [16-18]. We selected the T-cell epitopes based on predicted parameters such as antigenicity, conservancy, non-allergenicity, and ability to elicit IFN-y response. The CD8+ T-cell epitope of S protein (aa268-GYLQPRTFL-276, Table 6) predicted in this study has been experimentally verified to induce IFN-y response in peripheral blood monocular cells (PBMCs) isolated from patients who recovered from COVID-19 [17, 84]. Similarly, the CD8+ T-cell epitopes predicted for the S protein (aa505-520, aa755-765, aa873-881, and aa1209-1217), N protein (aa66-74, aa102-110, and aa343-369), and M protein (aa54-62, aa64-72, and aa172-180) have been experimentally validated using PBMCs of patients with COVID-19 (Table 6) [17, 67, 85]. Notably, the highly conserved CD8+ T-cell epitope (aa361-369) of the N protein (Table 6) has been detected in convalescent sera from patients with COVID-19 [17]. Therefore, these findings from previous studies endorse that epitope predicted through validated computational tools can help to rapidly identify immunogenic epitopes. The presence of conserved CD4+ Tcell epitopes common to both SARS-CoV and SARS-CoV-2 in proteins such as S (aa 1014-1028, aa539-553, aa899-913), N (aa219-233, aa298-312, aa311-325, aa317-331), and E (aa17-31) have already been validated experimentally [11, 80]. We have provided the unique IEDB IDs of predicted B- and T-cell epitopes of SARS-CoV-2 that matched with experimentally validated epitopes of SARS-CoV available in the ViPR database. The S, M, and N proteins of SARS-CoV-2 are associated with CD4+ responses, while the S, M, and some non-structural proteins contribute to CD8+ T-cell responses [16]. In this study, we found that the predicted B-cell epitopes of S (aa 407-416, aa421-427, aa1028-1049, aa1254-1273), N (aa173-189, aa235-247), M (aa163-182), and E (aa 58-68) proteins are both conserved and common in the two genetically divergent viruses (SARS-CoV and SARS-CoV-2). We predicted 16 CD8+ T-cell epitopes (five CD8+ T-cell epitopes predicted each for S and N proteins, and three each for M and E proteins) that are common to structural proteins of SARS-CoV-2 and SARS-CoV. Similarly, we found 4 CD4+ T-cell epitopes for S, 5 for N, and 2 each for M and E proteins that are common to SARS-CoV-2 and SARS-CoV, with epitope conservancy in the range of 80 to 100%. These findings imply the importance of determining the effect of pre-existing immune memory on COVID-19 disease severity. The findings of computationally predicted B- and Tcell epitopes common to both SARS-CoV-2 and SARS-CoV might have a role in heterotypic immunity against SARS-CoV-2. This hypothesis draws support from recent studies on the pre-existence of T-cell responses in a majority of healthy individuals unexposed to SARS--CoV-2 [16-18, 80]. For example, the presence of cross-reactive T cells, known in some viruses including HIV [86], is speculated to confer heterologous immunity upon exposure to a nonidentical pathogen [87, 88]. Furthermore, recent studies have experimentally demonstrated the presence of cross-reactive T cells in SARS-CoV-2 and SARS-CoV implicating the importance of heterologous immunity in SARS-CoV-2 infection [16, 18, 66].

Recently, to accelerate the process of vaccine development, researchers have employed *in silico* methods based on immunoinformatic data to develop multi-epitope vaccines without the cumbersome necessity to cultivate pathogens [27–38]. Experimental epitope identification is an expensive procedure, which presents several challenges, including antibody production to identify antigenic regions in a target protein, unavailability of animal models, and further epitope validation through crystallography. Computational approaches can help to guide experimental assays and improve precision by facilitating the selection of specific regions with a high probability of being effective epitopes [39]. An ideal multi-epitope vaccine should be designed to include epitopes that can elicit CTL, HTL, and B cells as well as induce effective responses against a targeted virus.

In this study, we designed multi-epitope chimeric constructs that included the predicted Band T-cell epitopes of the S, E, M, and N proteins of SARS-CoV-2. Some of the epitopes predicted in this study have been verified experimentally in peer-reviewed studies. Although we included CTL, HTL, and B-cell epitopes in the chimeric constructs, these multi-epitope vaccine constructs should be subjected to further experimental validation in vitro and in vivo. The designing of efficacious multi-epitope vaccines remains a great challenge. Expression of the recombinant multi-epitope protein from the synthetic gene encoding the constructed multiepitope vaccine can be a great challenge. Moreover, the ability of the multi-epitope construct to retain the native antigenic structure as a vaccine subunit and to elicit protective immune responses remains to be investigated. In addition, it is unclear whether the linear and conformational B-cell epitopes will fold into appropriate conformations resembling the native S, E, M, and N proteins and elicit a protective immune response. Tembusu virus (TMUV) is a newly emerging flavivirus that causes rapid egg drop and neurological symptoms in ducks. Potential *in silico* predicted B-cell epitopes of the E protein of TMUV fused with glutathione Stransferases tag have been successfully expressed in *Escherichia coli* [89]. The findings suggested that two of the four predicted B-cell epitopes could elicit the generation of neutralizing antibodies in ducks and provide protection when challenged with TMUV [89]. A chimeric recombinant antigen comprising of predicted CD4+ and CD8+ T cell-specific epitopes derived from Leishmania infantum was successfully expressed in E. coli. This purified antigen showed protective efficacy in mice against *Leishmania amazonensis* infection [90]. In our earlier study, we successfully synthesized chimeric antigens with predicted B- and T- cell epitopes of rotavirus proteins. The chimeric antigen was subsequently purified using the E. coli expression system, and the antigen presentation is yet to be investigated [58]. Thus, the present bioinformatic prediction provides a platform for the design of synthetic peptides and its validation using convalescent sera from patients with COVID-19. However, it remains to be investigated whether the pool of B- and T-cell epitopes identified in this study can stimulate B and T cells. The amount of cytokines released in response to these antigenic epitopes needs to be measured both *in vitro* and *in vivo*, thus providing a platform for future investigations on SARS-CoV-2-specific immune responses.

Conclusions

In this study, the *in silico* predicted immune epitopes are limited to the structural proteins of SARS-CoV-2. Noteworthily, many of the predicted B- and T-cell epitopes, derived from multiple computational tools, have been experimentally verified in recent studies using sera from convalescent patients with COVID-19. Further rigorous experimental validations of predicted

epitopes might provide a better understanding and resolution of the immune response to SARS-CoV-2 infection.

Supporting information

S1 File. (PPTX)

Acknowledgments

YDD is a recipient of UGC-CSIR Senior Research Fellowship (Sr. No. 2121530642, Ref. No: 20/12/2015(ii)EU-V) support for pursuing PhD work. SKR, RCD, SSS, and NDN duly acknowledged the use of computational facility at Centre for Computational Biology and Bioinformatics, Tezpur University, Assam supported by the Ministry of Science and Technology, Department of Biotechnology (DBT), Govt. of India.

Author Contributions

Conceptualization: Nima D. Namsa.

Data curation: Himanshu Ballav Goswami, Sushmita Konwar, Chandrima Doley, Anutee Dolley, Nima D. Namsa.

Formal analysis: Chongtham Shyamsunder Singh, Partha Pratim Borah, Nima D. Namsa.

- **Investigation:** Yengkhom Damayanti Devi, Himanshu Ballav Goswami, Sushmita Konwar, Chandrima Doley, Anutee Dolley, Arpita Devi, Dikshita Dowerah, Vashkar Biswa, Siddhartha Shankar Satapathy, Suvendra Kumar Ray, Ramesh Chandra Deka, Nima D. Namsa.
- **Methodology:** Yengkhom Damayanti Devi, Himanshu Ballav Goswami, Sushmita Konwar, Chandrima Doley, Anutee Dolley, Arpita Devi, Chen Chongtham, Dikshita Dowerah, Aditya Kumar, Suvendra Kumar Ray, Robin Doley, Manabendra Mandal, Sandeep Das, Chongtham Shyamsunder Singh, Partha Pratim Borah, Nima D. Namsa.
- Project administration: Nima D. Namsa.

Resources: Nima D. Namsa.

Software: Nima D. Namsa.

- Supervision: Nima D. Namsa.
- Validation: Himanshu Ballav Goswami, Sushmita Konwar, Chandrima Doley, Anutee Dolley, Chen Chongtham, Dikshita Dowerah, Vashkar Biswa, Pabitra Nath, Nima D. Namsa.
- Visualization: Himanshu Ballav Goswami, Chandrima Doley, Arpita Devi, Dikshita Dowerah, Latonglila Jamir, Aditya Kumar, Siddhartha Shankar Satapathy, Ramesh Chandra Deka, Robin Doley, Manabendra Mandal, Sandeep Das, Pabitra Nath, Nima D. Namsa.
- Writing original draft: Yengkhom Damayanti Devi, Nima D. Namsa.
- Writing review & editing: Latonglila Jamir, Suvendra Kumar Ray, Ramesh Chandra Deka, Robin Doley, Nima D. Namsa.

References

 Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798):270–273. Epub 2020/02/03. <u>https://doi.org/https://doi.org/10.1038/s41586-020-2012-7</u> PMID: 32015507.

- Lu R, Zhao X, Li J, Niu P, Yang B, Wu H et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020; 395(10224):565– 574. Epub 2020/01/30. https://doi.org/https://doi.org/10.1038/s41586-020-2012-7 PMID: 32007145.
- Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O et al. Cryo-EM structure of the 2019nCoV spike in the prefusion conformation. Science. 2020; 367(6483):1260–1263. Epub 2020/02/19. https://doi.org/https://doi.org/10.1126/science.abb2507 PMID: 32075877.
- Sui J, Li W, Murakami A, Tamin A, Matthews LJ, Wong SK et al. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci U S A. 2004; 101(8):2536–41. <u>https://doi.org/https://doi.org/10.1073/pnas.</u> 0307140101 PMID: 14983044.
- Leung DT, Tam FC, Ma CH, Chan PK, Cheung JL, Niu H et al. Antibody response of patients with severe acute respiratory syndrome (SARS) targets the viral nucleocapsid. J Infect Dis. 2004; 190 (2):379–86. Epub 2004/06/16. https://doi.org/https://doi.org/10.1086/422040 PMID: 15216476.
- Tripp RA, Haynes LM, Moore D, Anderson B, Tamin A, Harcourt BH et al. Monoclonal antibodies to SARS-associated coronavirus (SARS-CoV): identification of neutralizing and antibodies reactive to S, N, M and E viral proteins. J Virol Methods. 2005; 128(1–2):21–8. https://doi.org/https://doi.org/10.1016/ j.jviromet.2005.03.021 PMID: 15885812.
- Liu W, Liu L, Kou G, Zheng Y, Ding Y, Ni W et al. Evaluation of Nucleocapsid and Spike Protein-Based Enzyme-Linked Immunosorbent Assays for Detecting Antibodies against SARS-CoV-2. J Clin Microbiol. 2020; 58(6):e00461–20. https://doi.org/10.1128/JCM.00461-20 PMID: 32229605.
- Van Elslande J, Decru B, Jonckheere S, Van Wijngaerden E, Houben E, Vandecandelaere P et al. Antibody response against SARS-CoV-2 spike protein and nucleoprotein evaluated by four automated immunoassays and three ELISAs. Clin Microbiol Infect. 2020; 26(11):1557.e1–1557.e7. Epub 2020/07/ 31. https://doi.org/https://doi.org/10.1016/j.cmi.2020.07.038 PMID: 32745595.
- Rikhtegaran Tehrani Z, Saadat S, Saleh E, Ouyang X, Constantine N, DeVico AL et al. Performance of nucleocapsid and spike-based SARS-CoV-2 serologic assays. PLoS One. 2020; 15(11):e0237828. https://doi.org/https://doi.org/10.1371/journal.pone.0237828 PMID: 33137138.
- Yuan M, Wu NC, Zhu X, Lee CD, So RTY, Lv H et al. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science. 2020; 368(6491):630–633. Epub 2020/04/ 03. https://doi.org/https://doi.org/10.1126/science.abb7269 PMID: 32245784.
- 11. Tian X, Li C, Huang A, Xia S, Lu S, Shi Z et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect. 2020; 9(1):382–385. https://doi.org/https://doi.org/10.1080/22221751.2020.1729069 PMID: 32065055.
- Wang C, Li W, Drabek D, Okba NMA, van Haperen R, Osterhaus ADME et al. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun. 2020; 11(1):2251. <u>https://doi.org/https://doi.org/10.1038/s41467-020-16256-y PMID</u>: 32366817.
- Haveri A, Smura T, Kuivanen S, Österlund P, Hepojoki J, Ikonen N et al. Serological and molecular findings during SARS-CoV-2 infection: the first case study in Finland, January to February 2020. Euro Surveill. 2020; 25(11):2000266. https://doi.org/https://doi.org/10.2807/1560-7917.ES.2020.25.11.2000266 PMID: 32209163.
- Burbelo PD, Riedo FX, Morishima C, Rawlings S, Smith D, Das S et al. Sensitivity in Detection of Antibodies to Nucleocapsid and Spike Proteins of Severe Acute Respiratory Syndrome Coronavirus 2 in Patients With Coronavirus Disease 2019. J Infect Dis. 2020; 222(2):206–213. https://doi.org/https://doi. org/10.1093/infdis/jiaa273 PMID: 32427334.
- Zheng M, Song L. Novel antibody epitopes dominate the antigenicity of spike glycoprotein in SARS-CoV-2 compared to SARS-CoV. Cell Mol Immunol. 2020; 17(5):536–538. Epub 2020/03/4. <u>https://doi.org/10.1038/s41423-020-0385-z PMID: 32132669</u>.
- Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020; 181(7):1489–1501.e15. Epub 2020/05/20. https://doi.org/https://doi.org/10.1016/j.cell. 2020.05.015 PMID: 32473127.
- Peng Y, Mentzer AJ, Liu G, Yao X, Yin Z, Dong D et al. Oxford Immunology Network Covid-19 Response T cell Consortium; ISARIC4C Investigators, Cornall RJ, Conlon CP, Klenerman P, Screaton GR, Mongkolsapaya J, McMichael A et al. Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat Immunol. 2020; 21(11):1336– 1345. Epub 2020/09/4. https://doi.org/https://doi.org/10.1038/s41590-020-0782-6 PMID: 32887977.
- Braun J, Loyal L, Frentsch M, Wendisch D, Georg P, Kurth F et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature. 2020; 587(7833):270–274. Epub 2020/07/29. https://doi.org/https://doi.org/10.1038/s41586-020-2598-9 PMID: 32726801.

- Voysey M., Costa Clemens S. A., Madhi S. A., Weckx L. Y., Folegatti P. M., Aley PK et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet. 2021; 397 (10277), 881–891. https://doi.org/https://doi.org/10.1016/S0140-6736(21)00432-3 Epub 2021/02/19. PMID: 33617777.
- Emary KRW, Golubchik T, Aley PK, Ariani CV, Angus B, Bibi S et al. COVID-19 Genomics UK consortium; AMPHEUS Project; Oxford COVID-19 Vaccine Trial Group. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet. 2021; 397(10282):1351–1362. Epub 2021/03/30. https://doi.org/10.1016/S0140-6736(21)00628-0 PMID: 33798499.
- Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R et al. COVE Study Group. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021; 384(5):403–416. Epub 2020/10/ 30. https://doi.org/https://doi.org/10.1056/NEJMoa2035389 PMID: 33378609.
- Anderson EJ, Rouphael NG, Widge AT, Jackson LA, Roberts PC, Makhene et al. Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults. N Engl J Med. 2020; 383(25):2427– 2438. Epub 2020/09/29. https://doi.org/https://doi.org/10.1056/NEJMoa2028436 PMID: 32991794.
- 23. Sadoff J, Le Gars M, Shukarev G, Heerwegh D, Truyers C, de Groot AM et al. Interim Results of a Phase 1-2a Trial of Ad26.COV2.S Covid-19 Vaccine. N Engl J Med. 2021; 384(19):1824–1835. Epub 2021/01/13. https://doi.org/https://doi.org/10.1056/NEJMoa2034201 PMID: 33440088.
- 24. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020; 383(27):2603–2615. Epub 2020/12/10. https://doi.org/https://doi.org/10.1056/NEJMoa2034577 PMID: 33301246.
- Al Kaabi N, Zhang Y, Xia S, Yang Y, Al Qahtani MM, Abdulrazzaq N et al. Effect of 2 Inactivated SARS-CoV-2 Vaccines on Symptomatic COVID-19 Infection in Adults: A Randomized Clinical Trial. JAMA. 2021; 326(1):35–45. https://doi.org/https://doi.org/10.1001/jama.2021.8565 PMID: 34037666.
- 26. Zhang Y, Zeng G, Pan H, Li C, Hu Y, Chu K et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis. 2021; 21(2):181–192. Epub 2020/11/17. <u>https://doi.org/https://doi.org/10.1016/S1473-3099(20)30843-4</u> PMID: 33217362.
- Crooke SN, Ovsyannikova IG, Kennedy RB, Poland GA. Immunoinformatic identification of B cell and T cell epitopes in the SARS-CoV-2 proteome. Sci Rep. 2020; 10(1):14179. <u>https://doi.org/https://doi.org/ 10.1038/s41598-020-70864-8 PMID: 32843695.</u>
- Kar T, Narsaria U, Basak S, Deb D, Castiglione F, Mueller DM et al. A candidate multi-epitope vaccine against SARS-CoV-2. Sci Rep. 2020; 10(1):10895. https://doi.org/https://doi.org/10.1038/s41598-020-67749-1 PMID: 32616763.
- Rakib A, Sami SA, Mimi NJ, Chowdhury MM, Eva TA, Nainu F et al. Immunoinformatics-guided design of an epitope-based vaccine against severe acute respiratory syndrome coronavirus 2 spike glycoprotein. Comput Biol Med. 2020; 124:103967. Epub 2020/08/13. https://doi.org/https://doi.org/10.1016/j. compbiomed.2020.103967 PMID: 32828069.
- Oliveira SC, de Magalhães MTQ, Homan EJ. Immunoinformatic Analysis of SARS-CoV-2 Nucleocapsid Protein and Identification of COVID-19 Vaccine Targets. Front Immunol. 2020; 11:587615. https://doi. org/https://doi.org/10.3389/fimmu.2020.587615 PMID: 33193414.
- Naz A, Shahid F, Butt TT, Awan FM, Ali A, Malik A. Designing Multi-Epitope Vaccines to Combat Emerging Coronavirus Disease 2019 (COVID-19) by Employing Immuno-Informatics Approach. Front Immunol. 2020; 11:1663. https://doi.org/10.3389/fimmu.2020.01663 PMID: 32754160.
- 32. Lin L, Ting S, Yufei H, Wendong L, Yubo F, Jing Z. Epitope-based peptide vaccines predicted against novel coronavirus disease caused by SARS-CoV-2. Virus Res. 2020; 288:198082. Epub 2020/07/01. https://doi.org/https://doi.org/10.1016/j.virusres.2020.198082 PMID: 32621841.
- Baruah V, Bose S. Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of 2019-nCoV. J Med Virol. 2020; 92(5):495–500. Epub 2020/03/03. https://doi.org/https:// doi.org/10.1002/jmv.25698 PMID: 32022276.
- Wang D, Mai J, Zhou W, Yu W, Zhan Y, Wang N et al. Immunoinformatic Analysis of T- and B-Cell Epitopes for SARS-CoV-2 Vaccine Design. Vaccines (Basel). 2020; 8(3):355. <u>https://doi.org/https://doi.org/10.3390/vaccines8030355</u> PMID: 32635180.
- Ashik AI, Hasan M, Tasnim AT, Chowdhury MB, Hossain T, Ahmed S. An immunoinformatics study on the spike protein of SARS-CoV-2 revealing potential epitopes as vaccine candidates. Heliyon. 2020; 6 (9):e04865. Epub 2020/09/04. <u>https://doi.org/https://doi.org/10.1016/j.heliyon.2020.e04865</u> PMID: 32923731.
- Grifoni A, Sidney J, Zhang Y, Scheuermann RH, Peters B, Sette A. A Sequence Homology and Bioinformatic Approach Can Predict Candidate Targets for Immune Responses to SARS-CoV-2. Cell Host

Microbe. 2020; 27(4):671–680.e2. Epub 2020/03/16. https://doi.org/https://doi.org/10.1016/j.chom. 2020.03.002 PMID: 32183941.

- Lon JR, Bai Y, Zhong B, Cai F, Du H. Prediction and evolution of B cell epitopes of surface protein in SARS-CoV-2. Virol J. 2020; 17(1):165. <u>https://doi.org/https://doi.org/10.1186/s12985-020-01437-4</u> PMID: 33121513.
- Das BK, Chakraborty D. Epitope-Based Potential Vaccine Candidate for Humoral and Cell-Mediated Immunity to Combat Severe Acute Respiratory Syndrome Coronavirus 2 Pandemic. J Phys Chem Lett. 2020; 11(22):9920–9930. Epub 2020/11/11. https://doi.org/https://doi.org/10.1021/acs.jpclett.0c02846 PMID: 33174418.
- Ansari HR, Raghava GP. Identification of conformational B-cell Epitopes in an antigen from its primary sequence. Immunome Res. 2010; 6:6. https://doi.org/https://doi.org/10.1186/1745-7580-6-6 PMID: 20961417.
- 40. Wu Q, Zhang Y, Lü H, Wang J, He X, Liu Y et al. The E protein is a multifunctional membrane protein of SARS-CoV. Genomics Proteomics Bioinformatics. 2003; 1(2):131–44. <u>https://doi.org/https://doi.org/10.1016/s1672-0229(03)01017-9 PMID: 15626343</u>.
- Jespersen MC, Peters B, Nielsen M, Marcatili P. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 2017; 45(W1):W24–W29. https://doi. org/https://doi.org/10.1093/nar/gkx346 PMID: 28472356.
- Saha S, Raghava GPS. BcePred: Prediction of continuous B-cell epitopes in antigenic sequences using physico-chemical properties. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). 2004; 3239:197–204. <u>https://doi.org/https://doi.org/10.1007/978-3-540-30220-9_16</u>
- Saha S, Raghava GP. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins. 2006; 65(1):40–8. https://doi.org/https://doi.org/10.1002/prot.21078 PMID: 16894596.
- Liang S, Zheng D, Standley DM, Yao B, Zacharias M, Zhang C. EPSVR and EPMeta: prediction of antigenic epitopes using support vector regression and multiple server results. BMC Bioinformatics. 2010; 11:381. https://doi.org/https://doi.org/10.1186/1471-2105-11-381 PMID: 20637083.
- Kringelum JV, Lundegaard C, Lund O, Nielsen M. Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS Comput Biol. 2012; 8(12):e1002829. Epub 2012/12/ 27. https://doi.org/https://doi.org/10.1371/journal.pcbi.1002829 PMID: 23300419.
- Ponomarenko J, Bui HH, Li W, Fusseder N, Bourne PE, Sette A et al. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics. 2008; 9:514. <u>https://doi.org/https://doi.org/10.1186/1471-2105-9-514 PMID: 19055730</u>.
- Muñoz V, Serrano L. Elucidating the folding problem of helical peptides using empirical parameters. III. Temperature and pH dependence. J Mol Biol. 1995; 245(3):297–308. https://doi.org/https://doi.org/10. 1006/jmbi.1994.0024 PMID: 7844818.
- Paul S, Sidney J, Sette A, Peters B. TepiTool: A Pipeline for Computational Prediction of T Cell Epitope Candidates. Curr Protoc Immunol. 2016; 114:18.19.1–18.19.24. <u>https://doi.org/https://doi.org/10.1002/</u> cpim.12 PMID: 27479659.
- 49. Tenzer S, Peters B, Bulik S, Schoor O, Lemmel C, Schatz MM et al. Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cell Mol Life Sci. 2005; 62(9):1025–37. <u>https://doi.org/https://doi.org/10.1007/s00018-005-4528-2</u> PMID: 15868101.
- Giguère S, Drouin A, Lacoste A, Marchand M, Corbeil J, Laviolette F. MHC-NP: predicting peptides naturally processed by the MHC. J Immunol Methods. 2013; 400–401:30–6. Epub 2013/10/18. <u>https://doi.org/10.1016/j.jim.2013.10.003</u> PMID: 24144535.
- Reynisson B, Barra C, Kaabinejadian S, Hildebrand WH, Peters B, Nielsen M. Improved Prediction of MHC II Antigen Presentation through Integration and Motif Deconvolution of Mass Spectrometry MHC Eluted Ligand Data. J Proteome Res. 2020; 19(6):2304–2315. Epub 2020/04/30. https://doi.org/https:// doi.org/10.1021/acs.jproteome.9b00874 PMID: 32308001.
- Sette A, Sidney J. Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism. Immunogenetics. 1999; 50(3–4):201–12. <u>https://doi.org/https://doi.org/10.1007/</u> s002510050594 PMID: 10602880.
- Bui HH, Sidney J, Dinh K, Southwood S, Newman MJ, Sette A. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics. 2006; 7:153. <u>https://doi.org/https://doi.org/10.1186/1471-2105-7-153 PMID: 16545123</u>.
- 54. Dhanda SK, Vir P, Raghava GP. Designing of interferon-gamma inducing MHC class-II binders. Biol Direct. 2013; 8:30. https://doi.org/https://doi.org/10.1186/1745-6150-8-30 PMID: 24304645.

- Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics. 2007; 8:4. <u>https://doi.org/https://doi.org/10.1186/1471-2105-8-4</u> PMID: 17207271.
- Dimitrov I, Flower DR, Doytchinova I. AllerTOP-a server for in silico prediction of allergens. BMC Bioinformatics. 2013; 14 Suppl 6(6):S4. Epub 2013/04/17. <u>https://doi.org/https://doi.org/10.1186/1471-2105-14-S6-S4 PMID</u>: 23735058.
- Bui HH, Sidney J, Li W, Fusseder N, Sette A. Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC Bioinformatics. 2007; 8:361. https://doi.org/https://doi.org/10.1186/1471-2105-8-361 PMID: 17897458.
- Devi YD, Devi A, Gogoi H, Dehingia B, Doley R, Buragohain AK et al. Exploring rotavirus proteome to identify potential B- and T-cell epitope using computational immunoinformatics. Heliyon. 2020; 6(12): e05760. https://doi.org/https://doi.org/10.1016/j.heliyon.2020.e05760 PMID: 33426322.
- Rapin N, Lund O, Bernaschi M, Castiglione F. Computational immunology meets bioinformatics: the use of prediction tools for molecular binding in the simulation of the immune system. PLoS One. 2010; 5 (4):e9862. https://doi.org/https://doi.org/10.1371/journal.pone.0009862 PMID: 20419125.
- Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 2010; 5(4):725–38. Epub 2010/03/25. https://doi.org/https://doi.org/10. 1038/nprot.2010.5 PMID: 20360767.
- Zhang BZ, Hu YF, Chen LL, Yau T, Tong YG, Hu JC et al. Mining of epitopes on spike protein of SARS-CoV-2 from COVID-19 patients. Cell Res. 2020; 30(8):702–704. Epub 2020/07/01. https://doi.org/ https://doi.org/10.1038/s41422-020-0366-x PMID: 32612199.
- 62. Wu Y, Wang F, Shen C, Peng W, Li D, Zhao C et al. A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science. 2020; 368(6496):1274–1278. Epub 2020/05/13. https://doi.org/https://doi.org/10.1126/science.abc2241 PMID: 32404477.
- Li Y, Lai DY, Zhang HN, Jiang HW, Tian X, Ma ML et al. Linear epitopes of SARS-CoV-2 spike protein elicit neutralizing antibodies in COVID-19 patients. Cell Mol Immunol. 2020; 17(10):1095–1097. Epub 2020/09/07. https://doi.org/https://doi.org/10.1038/s41423-020-00523-5 PMID: 32895485.
- 64. Poh CM, Carissimo G, Wang B, Amrun SN, Lee CY, Chee RS et al. Two linear epitopes on the SARS-CoV-2 spike protein that elicit neutralising antibodies in COVID-19 patients. Nat Commun. 2020; 11 (1):2806. https://doi.org/https://doi.org/10.1038/s41467-020-16638-2 PMID: 32483236.
- Ni L, Ye F, Cheng ML, Feng Y, Deng YQ, Zhao H et al. Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals. Immunity. 2020; 52(6):971–977.e3. Epub 2020/05/03. https://doi.org/https://doi.org/10.1016/j.immuni.2020.04.023 PMID: 32413330.
- 66. Le Bert N, Tan AT, Kunasegaran K, Tham CYL, Hafezi M, Chia A et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature. 2020; 584(7821):457–462. Epub 2020/07/15. https://doi.org/https://doi.org/10.1038/s41586-020-2550-z PMID: 32668444.
- Pickett BE, Sadat EL, Zhang Y, Noronha JM, Squires RB, Hunt V et al. ViPR: an open bioinformatics database and analysis resource for virology research. Nucleic Acids Res. 2012; 40(Database issue): D593–8. Epub 2011/10/17. https://doi.org/https://doi.org/10.1093/nar/gkr859 PMID: 22006842.
- Amanat F, Stadlbauer D, Strohmeier S, Nguyen THO, Chromikova V, McMahon M et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat Med. 2020; 26(7):1033–1036. Epub 2020/05/12. https://doi.org/https://doi.org/10.1038/s41591-020-0913-5 PMID: 32398876.
- Perera RA, Mok CK, Tsang OT, Lv H, Ko RL, Wu NC et al. Serological assays for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), March 2020. Euro Surveill. 2020; 25(16):2000421. https://doi.org/10.2807/1560-7917.ES.2020.25.16.2000421 PMID: 32347204.
- 70. Premkumar L, Segovia-Chumbez B, Jadi R, Martinez DR, Raut R, Markmann A et al. The receptor binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Sci Immunol. 2020; 5(48):eabc8413. <u>https://doi.org/https://doi.org/10.1126/</u> sciimmunol.abc8413 PMID: 32527802.
- Ramachandran GN, Ramakrishnan C, Sasisekharan V. Stereochemistry of polypeptide chain configurations. J Mol Biol. 1963; 7:95–9. https://doi.org/https://doi.org/10.1016/s0022-2836(63)80023-6 PMID: 13990617.
- 72. Flaxman A., Marchevsky N. G., Jenkin D., Aboagye J., Aley P. K., Angus B et al. Reactogenicity and immunogenicity after a late second dose or a third dose of ChAdOx1 nCoV-19 in the UK: a substudy of two randomised controlled trials (COV001 and COV002). Lancet. 2021; 398(10304), 981–990. <u>https://doi.org/10.1016/S0140-6736(21)01699-8 PMID: 34480858</u>.
- 73. Paris C., Perrin S., Hamonic S., Bourget B., Roué C., Brassard O. et al. Effectiveness of mRNA-BNT162b2, mRNA-1273, and ChAdOx1 nCoV-19 vaccines against COVID-19 in healthcare workers: an observational study using surveillance data. Clin Microbiol Infect. 2021: S1198-743X(21)00379–7. https://doi.org/https://doi.org/10.1016/j.cmi.2021.06.043 PMID: 34265462.

- 74. Yang X, Dai T, Zhou X, Qian H, Guo R, Lei L et al. Naturally activated adaptive immunity in COVID-19 patients. J Cell Mol Med. 2020; 24(21):12457–12463. Epub 2020/09/25. https://doi.org/10.1111/jcmm.15771 PMID: 32975374.
- 75. Zheng HY, Zhang M, Yang CX, Zhang N, Wang XC, Yang XP et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020; 17(5):541–543. Epub 2020/03/17. <u>https://doi.org/https://doi.org/10. 1038/s41423-020-0401-3 PMID: 32203186.</u>
- 76. Shi R, Shan C, Duan X, Chen Z, Liu P, Song J et al. A human neutralizing antibody targets the receptorbinding site of SARS-CoV-2. Nature. 2020; 584(7819):120–124. Epub 2020/05/26. <u>https://doi.org/ https://doi.org/10.1038/s41586-020-2381-y PMID: 32454512.</u>
- 77. Pinto D, Park YJ, Beltramello M, Walls AC, Tortorici MA, Bianchi S et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature. 2020; 583(7815):290–295. Epub 2020/ 05/18. https://doi.org/https://doi.org/10.1038/s41586-020-2349-y PMID: 32422645.
- Okba NMA, Müller MA, Li W, Wang C, GeurtsvanKessel CH, Corman VM et al. Severe Acute Respiratory Syndrome Coronavirus 2-Specific Antibody Responses in Coronavirus Disease Patients. Emerg Infect Dis. 2020; 26(7):1478–1488. Epub 2020/06/21. https://doi.org/https://doi.org/10.3201/eid2607. 200841 PMID: 32267220.
- 79. Grzelak L, Temmam S, Planchais C, Demeret C, Tondeur L, Huon C et al. A comparison of four serological assays for detecting anti-SARS-CoV-2 antibodies in human serum samples from different populations. Sci Transl Med. 2020; 12(559):eabc3103. Epub 2020/08/17. https://doi.org/https://doi.org/10. 1126/scitranslmed.abc3103 PMID: 32817357.
- Wang J, Wen J, Li J, Yin J, Zhu Q, Wang H et al. Assessment of immunoreactive synthetic peptides from the structural proteins of severe acute respiratory syndrome coronavirus. Clin Chem. 2003; 49 (12):1989–96. https://doi.org/https://doi.org/10.1373/clinchem.2003.023184 PMID: 14633869.
- Liu SJ, Leng CH, Lien SP, Chi HY, Huang CY, Lin CL et al. Immunological characterizations of the nucleocapsid protein based SARS vaccine candidates. Vaccine. 2006; 24(16):3100–8. Epub 2006/02/ 08. https://doi.org/https://doi.org/10.1016/j.vaccine.2006.01.058 PMID: 16494977.
- Wang H, Wu X, Zhang X, Hou X, Liang T, Wang D et al. SARS-CoV-2 Proteome Microarray for Mapping COVID-19 Antibody Interactions at Amino Acid Resolution. ACS Cent Sci. 2020; 6(12):2238–2249. Epub 2020/10/21. https://doi.org/https://doi.org/10.1021/acscentsci.0c00742 PMID: 33372199.
- Ju B, Zhang Q, Ge J, Wang R, Sun J, Ge X et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature. 2020; 584(7819):115–119. Epub 2020/05/26. <u>https://doi.org/https://doi.org/10. 1038/s41586-020-2380-z PMID: 32454513</u>.
- Habel JR, Nguyen THO, van de Sandt CE, Juno JA, Chaurasia P, Wragg K et al. Suboptimal SARS-CoV-2-specific CD8+ T cell response associated with the prominent HLA-A*02:01 phenotype. Proc Natl Acad Sci U S A. 2020; 117(39):24384–24391. Epub 2020/09/10. <u>https://doi.org/https://doi.org/10.1073/pnas.2015486117 PMID: 32913053</u>.
- Nelde A, Bilich T, Heitmann JS, Maringer Y, Salih HR, Roerden M et al. SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition. Nat Immunol. 2021; 22(1):74–85. Epub 2020/09/30. https://doi.org/https://doi.org/10.1038/s41590-020-00808-x PMID: 32999467.
- 86. Vali B, Tohn R, Cohen MJ, Sakhdari A, Sheth PM, Yue FY et al. Characterization of cross-reactive CD8 + T-cell recognition of HLA-A2-restricted HIV-Gag (SLYNTVATL) and HCV-NS5b (ALYDVVSKL) epitopes in individuals infected with human immunodeficiency and hepatitis C viruses. J Virol. 2011; 85 (1):254–63. Epub 2010/10/27. https://doi.org/https://doi.org/10.1128/JVI.01743-10 PMID: 20980521.
- Su LF, Kidd BA, Han A, Kotzin JJ, Davis MM. Virus-specific CD4(+) memory-phenotype T cells are abundant in unexposed adults. Immunity. 2013; 38(2):373–83. Epub 2013/02/07. https://doi.org/https:// doi.org/10.1016/j.immuni.2012.10.021 PMID: 23395677.
- Friberg H, Burns L, Woda M, Kalayanarooj S, Endy TP, Stephens HA et al. Memory CD8+ T cells from naturally acquired primary dengue virus infection are highly cross-reactive. Immunol Cell Biol. 2011; 89 (1):122–9. Epub 2010/04/27. https://doi.org/https://doi.org/10.1038/icb.2010.61 PMID: 20421879.
- Zhao D, Han K, Huang X, Zhang L, Wang H, Liu N et al. Screening and identification of B-cell epitopes within envelope protein of tembusu virus. Virol J. 2018; 15(1):142. <u>https://doi.org/https://doi.org/10. 1186/s12985-018-1052-1</u> PMID: 30223850.
- Martins VT, Lage DP, Duarte MC, Carvalho AM, Costa LE, Mendes TA, et al. A recombinant fusion protein displaying murine and human MHC class I- and II-specific epitopes protects against Leishmania amazonensis infection. Cell Immunol. 2017; 313:32–42. Epub 2016/12/28. <u>https://doi.org/https://doi.org/10.1016/j.cellimm.2016.12.008</u> PMID: 28049560.