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Abstract: Shiga toxin (Stx)–producing Escherichia coli (STEC) and its subgroup enterohemorrhagic
E. coli are important pathogens involved in diarrhea, which may be complicated by hemorrhagic colitis
and hemolytic uremic syndrome, the leading cause of acute renal failure in children. Early diagnosis
is essential for clinical management, as an antibiotic treatment in STEC infections is not recommended.
Previously obtained antibodies against Stx1 and Stx2 toxins were employed to evaluate the sensitivity
and specificity of the latex Agglutination test (LAT), lateral flow assay (LFA), and capture ELISA
(cEIA) for STEC detection. The LAT (mAb Stx1 plus mAb stx2) showed 99% sensitivity and 97%
specificity. Individually, Stx1 antibodies showed 95.5% and 94% sensitivity and a specificity of 97%
and 99% in the cEIA and LFA assay, respectively. Stx2 antibodies showed a sensitivity of 92% in both
assays and a specificity of 100% and 98% in the cEIA and LFA assay, respectively. These results allow
us to conclude that we have robust tools for the diagnosis of STEC infections.
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1. Introduction

Among the E. coli human pathogens, the Shiga toxin (Stx)–producing Escherichia coli (STEC) and
its subgroup enterohemorrhagic E. coli (EHEC) have gained importance in the three last decades due
to their involvement in diarrhea [1], that may be complicated by hemorrhagic colitis (HC) [2] and the
hemolytic uremic syndrome (HUS) [3,4], the foremost cause of acute renal failure in children [1] due to
action of the two major types of the phage-encoded Stxs, Stx1 and/or Stx2. HUS is associated more
commonly with strains that produce Stx2 alone or in combination with Stx1 rather than those that
produce Stx1 only [5,6]. Most cases of the STEC infection are acquired by consuming food of bovine
origin; however, other foodstuffs, water, environmental contact, and person-to-person transmission
are also important sources [7]. A large fraction of the reported STEC infections is due to E. coli
O157:H7, the most involved serotype in complicated cases, which often evolve into HUS [8]. However,
six serogroups (O26, O45, O103, O111, O121, and O145) account for many cases of non-O157 STEC
infections; furthermore the non-O157 serotypes [9,10].
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In the Latin American countries, human infections by STEC are endemic in Argentina and are
mainly linked to O157 strains. In other Latin American countries STEC (O157 and non-O157) causes
sporadic cases of diarrhea, bloody diarrhea, hemolytic anemia and HUS [11–17]. However, it is essential
to point out that the distribution of STEC/EHEC in the gastrointestinal tract of a wide variety of animals
indicates the zoonotic character of its infections. The role of different animal species as asymptomatic
carriers of STEC/EHEC has been extensively studied in the last years in Brazil. In addition to cattle,
which are their most common natural reservoir [18,19] the presence of these pathogens has been
identified in the feces of dairy buffaloes [20], sheep [21,22], pigs [23,24], birds [25,26], and fishes [27].
It is noteworthy that some relevant serotypes linked to human infections such as O103:H2 and O157:H7
have been recovered from the feces of sheep and cattle [18,28].

Thus, early diagnosis certainly is fundamental for clinical management of the etiological agent
involved in diarrhea; specifically for STEC infections, as the antibiotic treatment is not recommended,
since its use may induce the Shiga toxins release, thus allowing its dissemination [29]. Moreover,
the diagnosis may be indicative of a likely outbreak, followed by the required measures such as
implementation of control and detection of emerging strains [30], thus a key point for therapeutic
conduct and consequently to control the disease. The diagnosis of STEC in a routine laboratory is
difficult, and only specific virulence factors such as the presence of the Shiga toxin, which is common
to all STEC, allows differentiation from other E. coli [31].

Immunoserological methods have advantages for clinical laboratories because they significantly
reduce the time of analysis, have excellent sensitivity and specificity, and are easy to perform [32].
Despite the availability of commercial immunoassays, such as the ELISA immunoassay (EIA):
ProSpecT™ Shiga Toxin E. coli (Oxoid Ltd., Basingstoke, UK), Premier® EHEC (Meridian Bioscience,
Inc., Cincinnati, OH, USA), Ridascreen® Verotoxin test (R-Biopharm AG, Darmstadt, Germany);
Shiga toxin Check™ (TECHLAB, Inc., Blacksburg, VA, USA) and Shiga Toxins, EIA with Reflex
to E coli O157, Culture (Quest Diagnostics, Inc., Saint Louis, MO, USA); lateral flow assay (LFA):
Duopath®Verotoxins (Merck & Co., Inc. Palo Alto, CA, USA), ImmunoCard STAT!®EHEC (Meridian
Bioscience, Inc., Cincinnati, OH, USA), Ridascreen®Quick Verotoxin/O157 (R-Biopharm AG, Darmstadt,
Germany) and Shiga toxin Quick Check™ (TECHLAB, Inc., Blacksburg, VA, USA); immunomagnetic
separation, such as the RapidCheck®Confirm™STEC (Romer Labs Holding, Tulln, Austria) and
an optical immunoassay, such as the Biostar OIA Shigatoxin (Inverness Medical Professional
Diagnostics, Waltham, MA, USA). These commercial available assays are not implemented in
the routine of clinical laboratories of low and middle-income regions’ of developing countries
(https://datahelpdesk.worldbank.org/knowledgebase/articles/906519), thus encouraging the present
work, i.e., the desire of development of a screening test for the Shiga toxin detection for countries with
high incidence, endemic or low information on this infection. Thus, the key of our study is affordability,
i.e., to provide the health market, whether a private or public one, an option when analyzing the
cost benefit issue (bureaucracy, quality, time to obtain the product and final value). The main project
involves two steps: (a) Searching robust tools for the development of the test; (b) will focus on making
the use of feces directly, calculating costs and price in the market.

In the present study we limited the search for robust tools, thus essaying the generated polyclonal
(pAb) and monoclonal (mAb) antibodies against Stx1 and Stx2 [33–35] and the standardization of three
platforms using these antibodies in order to verify their performance. Therefore, these antibodies were
employed in an evaluation of the sensitivity and specificity of the immunoserological methods, LAT,
cEIA and LFA for detection of Shiga toxin-producing Escherichia coli using a collection of bacterial
isolates, of which 96 STEC presenting several serotypes and harboring different Stx subtypes and the
achieved results indicated that we have robust tools for the the diagnosis of STEC infections.

https://datahelpdesk.worldbank.org/knowledgebase/articles/906519
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2. Materials and Methods

2.1. Bacterial Isolates

We used in this study a collection of 96 Shiga toxin-producing E. coli (STEC) strains belonging to
different serotypes and stx subtypes (Table 1). We also included for the ELISA (EIA) cut-off definition
and specificity of the latex agglutination (LA) and lateral flow assay (LFA), 12 typical enteropathogenic
E. coli (tEPEC) [36,37], 11 atypical enteropathogenic E. coli (aEPEC) [38], 45 enterotoxigenic E. coli
(ETEC) [39,40], nine enteroaggregative E. coli (EAEC) [41], eight enteroinvasive E. coli (EIEC) [42],
14 diffusely-adherent E. coli (DAEC) [42], three fecal E. coli negative for DEC virulence factors
(NVF E. coli), four microbiota E. coli isolates and 19 Enterobacteriaceae isolates (Citrobacter freundii,
Edwardsiella tarda, Enterobacter cloacae, Klebsiella pneumoniae, K. oxitoca, Morganella morganii, Proteus
mirabilis, Providencia spp., Salmonella Agona, S. Enteritidis, S. Infantis, S. Newport, S. Typhimurium,
Serratia marcescens, Shigella boydii, S. flexneri, and S. sonnei) from our laboratory collection. The prototype
EHEC EDL933 [43] was included in the assay as a positive control for the Stx1/Stx2 producing strain.
To estimate the sample size for sensitivity and specificity of the diagnostic methods herein standardized
nomogram determination was done according to Malhotra and Indrayan [44] and Hajian-Tilak [45]
based on the studies of the diarrheagenic E. coli pathotypes infection prevalence [46,47].

Table 1. Shiga toxin-producing E. coli (STEC) strains immunoassay results.

Strain ID Serotype
Gene

Presence
stx1/stx2

stx
Subtype

cEIA
(Stx1)

cEIA
(Stx2)

LAT
(Stx1 + Stx2)

LFA
(Stx1)

LFA
(Stx2)

IAL6189 O24:H4 1 1a 1.149 0.000 + + −

IAL6206 O24:H4 1 1a 0.717 0.000 + + +
IAL6163 O26:H11 1 1a 0.810 0.000 + + −

IAL6162 O26:H11 1 1a 0.777 0.000 + + −

H30 O26:H11 1 1a 1.207 0.003 + + −

H19 O26:H11 1 1a 1.109 0.000 + + −

199 O26:H11 1 1a 0.892 0.000 + + −

3529 O26:H11 1 1a 0.772 0.000 + + −

EPM16 O26:H11 1 1a 1.019 0.006 + + −

BA4123 O26:H11 1 1a 0.853 0.000 + + −

D360-4-1 O26:H11 1 1a 0.832 0.000 + + −

1557-77 O26:H11 1 1a 2.416 0.061 + + −

CL5 O26:H12 1 1a 0.760 0.000 + + −

EPM5 O55:H19 1 1a 0.896 0.008 + + −

IAL6174 O71:H8 1 1a 0.767 0.000 + + −

IAL6290 O76:H19 1 1c 0.545 0.000 + + −

IAL6173 O91:H14 1 1a 0.288 0.013 + + −

IAL6186 O103:H− 1 1a 1.027 0.016 + + −

IAL6175 O111:H+ 1 1a 1.900 0.100 + + −

IAL6191 O111:H+ 1 1a 0.739 0.000 + + −

IAL6184 O111:H8 1 1a 0.857 0.007 + + −

IAL6177 O111:H8 1 1a 2.093 0.088 + + −

IAL6200 O111:H8 1 1a 0.741 0.000 + + −

EPM20 O111:H8 1 1a 0.539 0.000 + + −

IAL6183 O111:H8 1 1a 0.893 0.000 + + −

EPM23 O111:H8 1 1a 0.831 0.000 + + −

IAL6187 O111:H11 1 1a 0.783 0.011 + + −

IAL6178 O111:HNM 1 1a 0.354 0.000 + + −

EPM26 O111:HNM 1 1a 0.931 0.000 + + −

EPM27 O111:HNM 1 1a 1.053 0.000 + + −

EPM017 O112:H2 1 1c 0.610 0.000 + + −

EPM11 O118:H16 1 1a 0.869 0.000 + + −

IAL6196 O118:H16 1 1a 0.801 0.000 + + −
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Table 1. Cont.

Strain ID Serotype
Gene

Presence
stx1/stx2

stx
Subtype

cEIA
(Stx1)

cEIA
(Stx2)

LAT
(Stx1 + Stx2)

LFA
(Stx1)

LFA
(Stx2)

IAL6188 O118:H16 1 1a 0.566 0.009 + + −

IAL6171 O123:H− 1 1a 0.897 0.000 + + −

IAL6181 O123:H2 1 1a 1.857 0.098 + + −

IAL6180 O123:H2 1 1a 0.888 0.010 + + −

IAL6197 O123:HNM 1 1a 0.749 0.000 + + −

IAL6192 O153:H21 1 1a 0.733 0.000 + + −

82 O157:H7 1 1a 0.963 0.000 + + −

3299-85 O157:H7 1 1a 1.032 0.078 + + −

46240 O157:H7 1 1NT 1.188 0.000 + + −

3077-88 O157:H7 1 1a 1.281 0.076 + + −

C7-88 O157:H7 1 1a 1.312 0.006 + + −

EPM01 ONT:H8 1 1c 0.584 0.000 + − −

184332 OR:H19 1 1a 0.408 0.000 + + −

BA597 OR:NM 1 1a 1.312 0.000 + + −

IAL6176 O8:H19 2 2a + 2d 0.017 0.181 + − −

01-9582-01 O39:HR 2 2f 0.018 2.929 + − +
IALEc1054/05 O91:H21 2 2a + 2c 0.025 0.829 + − +

IAL6201 O100:H− 2 2e 0.028 0.602 + − +
EPM82 O112:H21 2 2c 0.020 0.747 + − +

IALEc226/04 O113:H21 2 2a 0.100 0.585 + − +
IALEc678/04 O113:H21 2 2a 0.024 2.858 + − +
IALEc603/04 O141:H49 2 2a 0.013 2.165 + − +

IAL6182 O153:H28 2 2NT 0.000 0.202 + − +
IALEc1167/05 O157:H− 2 2a + 2c + 2e 0.768 0.339 + + +
IALEc703/04 O157:H− 2 2a + 2d 0.017 0.737 + − +

IAL6193 O157:H7 2 2a + 2c 0.000 1.022 + − +
IAL6207 O157:H7 2 2a + 2c 0.000 0.621 + − +
IAL6179 O157:H7 2 2a + 2c 0.000 0.268 − − +
IAL6202 O157:H7 2 2a + 2c 0.054 0.764 + − +

EPM1 O157:H7 2 2a + 2c 0.092 2.847 + − +
EPM2 O157:H7 2 2a + 2c 0.014 0.776 + − +

EPM03 O172:NM 2 2a 0.000 0.637 + − +
IAL6199 O177:H− 2 2c 0.000 0.752 + − +
IAL6172 O178:H19 2 2c 0.102 0.810 + + +

IALEc170/04 ONT:H7 2 2a + 2f 0.463 0.000 + + −

EPM59 ONT:H16 2 2d 0.000 0.349 + − +
EPM022 ONT:H16 2 2b 0.012 0.058 + − −

IALEc157/05 ONT:H23 2 2c + 2d 0.027 0.332 + − +
IAL6195 ONT:H46 2 2a + 2d 0.000 0.489 + − +
BA1132 ONT:H49 2 2a + 2c + 2d 0.010 0.809 + − +
BA1189 ONT:H49 2 2a + 2d 0.016 0.792 + − +
IAL6198 OR:H− 2 2c 0.005 1.985 + − +
EPM79 O22:H16 1/2 1a + 2c + 2d 0.022 0.633 + − +

IALEc515/05 O43:H2 1/2 1NT + 2NT 0.558 0.176 + + +
BA3003 O48:H7 1/2 1a + 2a 0.651 0.638 + + +

IALEc169/04 O74:H25 1/2 1a + 2c 2.267 1.149 + + +
EPM036 O75:H8 1/2 1c + 2b 1.153 0.005 + + −

IAL6208 O75:H14 1/2 1c + 2NT 1.819 0.141 + + +
IALEc617/04 O84:HNM 1/2 1NT + 2NT 0.049 0.794 + − +

EPM50 O87:H16 1/2 1NT + 2b 0.008 0.071 + − +
EPM4 O93:H19 1/2 1a + 2d 2.538 0.703 + + +

EPM44 O98:H4 1/2 1a + 2NT 0.910 0.778 + + +
EPM53 O98:H17 1/2 1a + 2a + 2c 0.747 0.781 + + +
EPM55 O98:H17 1/2 1a + 2a + 2c 0.839 0.712 + + +
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Table 1. Cont.

Strain ID Serotype
Gene

Presence
stx1/stx2

stx
Subtype

cEIA
(Stx1)

cEIA
(Stx2)

LAT
(Stx1 + Stx2)

LFA
(Stx1)

LFA
(Stx2)

EPM9 O103:H2 1/2 1a + 2c 0.940 0.912 + + +
EPM66 O105:H18 1/2 1a + 2a + 2b 1.069 0.839 + + +

EPM055 O146:H21 1/2 1a + 2a + 2b 1.144 0.674 + + +
3104-88 O157:H7 1/2 1a + 2a 0.502 1.111 + + +
EDL933 O157:H7 1/2 1a + 2a 1.348 1.277 + + +
EPM45 O181:H4 1/2 1a + 2a 0.941 0.274 + + +

IALEc161/04 ONT:H18 1/2 1a + 2a + 2c 2.252 2.927 + + +
EPM81 ONT:H38 1/2 1NT + 2a 0.517 0.990 + + +

IALEc630/04 ONT:H46 1/2 1a + 2f 0.532 0.323 + + +

2.2. Bacterial Supernatant Preparation

Bacterial supernatants were obtained by sequential bacterial culture in the LB medium for 18 h
(1:100), followed by a further 4 h in the EC broth (1:10) containing ciprofloxacin (5 ng/mL) [33] and
then lysed with 20% Triton X-100 for capture ELISA (cEIA) and latex agglutination test (LAT) [48] or
200 µg/mL polymyxin sulfate B for lateral flow assay (LFA).

2.3. Antibodies

The antibodies employed herein were produced in previous work from our group. Stx1 and Stx2

polyclonal antibodies (pAbs) were raised in rabbits and characterized elsewhere [33,34]. The generation
and characterization of Stx1 and Stx2 monoclonal antibodies (mAbs) are also described elsewhere [35].

2.4. Capture ELISA Immunoassay (cEIA)

Microtiter plates (C96 Polysorp-NUNC) were incubated with 10 µg/mL of Stx1-pAb or 25 µg/mL
of Stx2-pAb in carbonate-bicarbonate-buffered, pH 9.6 at 37 ◦C for 2 h and then further at 4 ◦C for
16 h. Phosphate buffered saline (PBS) with bovine serum albumin (BSA) 1% was added as a blocking
agent and incubated for 1 h at 37 ◦C. The supernatant of bacterial cultures were incubated for 1 h at 37
◦C. Toxin bound to Stx1-pAb or Stx2-pAb was then detected with 5 µg/mL of Stx1-mAb or Stx2-mAb
followed by goat anti-mouse IgG peroxidase (Sigma-Aldrich, St Louis, MO, USA) diluted 1:5000 in
the blocking solution. Reactions were developed with 0.5 mg/mL O-phenylenediamine (OPD; Sigma
Aldrich Co, St Louis, MO, USA) plus 0.5-µL/mL hydrogen peroxide in 0.05 M citrate-phosphate buffer,
pH 5.0, in the dark at room temperature. The reactions were interrupted after 15 min by the addition
of 50 µL of 1 M HCl. The absorbance was measured at 492 nm in a Multiskan EX ELISA reader
(Labsystems, Milford, MA, USA). At each step, the volume added was 100 µL/well, except in the
washing and blocking steps, when the volume was 200 µL/well. Between incubations, the plates were
washed three times with PBS-Tween 0.05%. All experiments were carried out in duplicate, and results
correspond to three independent experiments.

2.5. Latex Agglutination Test (LAT)

The beads were coupled with 100 µg of Stx1 mAb for LAT-Stx1 or 100 µg of Stx2 mAb for
LAT-Stx2. For detection of Stx without subtype discrimination, the beads were coupled with Stx1 and
Stx2 mAbs (1:1). The principle used was the nucleophilic addition to aldehyde group with amines.
The glutaraldehyde was used as a spacer arm between the bead and mAbs. Briefly, the polybeads amino
microsphere in a 2.5% aqueous suspension (1 µm diameter–Polyscience, Warrington, PA, USA) were
washed three times with PBS and incubated with 8% glutaraldehyde in the PBS at room temperature
for 4 h [48]. Next, 50 µg of Stx1 and 50 µg of Stx2 mAbs were added and the mixture incubated at
room temperature for 16–18 h for coupling, followed by further incubation in the presence of 0.2 M
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ethanolamine and BSA. Both incubations were with gentle mixing at room temperature for 60 min.
Between incubations, the coated beads were washed and centrifuged (7200× g) for 6 min. After the
last washing procedure, the pellet was resuspended in the storage buffer (Polyscience, Warrington,
PA, USA) and kept at 4 ◦C.

For LAT, bacterial lysate were obtained by sequential bacterial growth in the LB medium for
18 h (1:100), followed by a further 4 h in the EC broth (1:10) containing ciprofloxacin (5 ng/mL) and
then, lysed with 20% Triton X-100 during 1 h and centrifuged (14,500× g) for 15 min. The assay was
performed on a slide glass using 20 µL of bacterial lysate and 20 µL of latex beads coupled to Stx1 plus
Stx2 mAbs, and checking for agglutination between 1–2 min of gentle mixing.

2.6. Lateral Flow Assay (LFA)

The Stx1 or Stx2 pAb rabbit sera were used as a capture antibody conjugated to colloidal gold
particles. The protocol for conjugation of the pAbs with colloidal gold was performed according to
Oliver (2010) [49], with some modifications. Briefly: 0.01% colloidal gold solution (20 nm diameter
particles) (BBInternational, Cardiff, England) was previously adjusted to pH 9.0 with 0.1 M potassium
carbonate solution (K2CO3). First, 1 mg of each of the pAb was resuspended in 1 mL of 0.2 M borate
buffer (0.2 M sodium borate, 0.15 M NaCl, pH 9.0) and dialyzed against 2 mM borate buffer (2 mM
sodium borate, 1.5 mM NaCl, pH 9.0) at room temperature for 2 h.

The amount of antibody required to stabilize colloidal gold was determined as follows: 100 µL
of colloidal gold was added in microtubes containing 10 µL of serially diluted previously dialyzed
pAb. After 10 min, 11 µL of 10% sodium chloride (NaCl) was added to each tube. The amount of
antibody sufficient to stabilize the gold was the dilution in which the solution did not change color,
i.e., an insufficient amount of antibody altered the coloration of the solution from red to blue [49].

After determination of the optimal ratio between the antibody and colloidal gold made in the
previous step, a total volume of 10 mL of solution was obtained, which was kept under stirring at room
temperature for 30 min. To block the reaction, a 10% BSA solution (10% BSA in 0.02 M borate buffer,
pH 9.0) was added in sufficient volume to the final concentration of 1%. After incubation at room
temperature for 30 min, the solution was centrifuged at 11,000× g for 20 min at room temperature and
the supernatant discarded. The pellet was then resuspended in 2 mL of a 2% BSA solution (2% BSA in
0.01 M borate buffer) and centrifuged at 11,000× g for 10 min at room temperature. Finally, the pellet
was resuspended in 1 mL of the storage buffer (3% BSA, 3% sucrose, 0.01 M sodium borate, and 0.05%
sodium azide, pH 7.5) and the pAbs conjugated to colloidal gold (pAb-Au) were stored at 4 ◦C. Finally,
600 µL of pAb-Au was applied at 30 cm in the dried glass fiber in a desiccator whose relative humidity
is 20% for 24 h.

The Stx1 (3 mg/mL) or Stx2 (4 mg/mL) mAbs were used for detection, and they were applied
directly to the nitrocellulose membrane (Millipore HF180 NM) as the test line. As a control line of the
LFA, the goat anti-rabbit IgG antibody was applied above the test line. The LFA tests were prepared
on a large scale on a semi-automatic platform, consisting of a Matrix 1600 Reagent Dispensing Module
(applies the antibodies in NM), Matrix 2210 Universal Laminator Module (mounts/overlaps all test
membranes), and Matrix 2360 Programmable Shear (cuts LFA test strips), all obtained from Kinematic
Automation, Inc. (Sonora, CA, USA). The strips were dried at room temperature in a desiccator whose
UR is 20% for 24 h. The treatment of the sample pad portion was made by buffer containing 1% BSA,
0.25% Tween-20, and sodium azide.

For LFA, the bacterial supernatant were obtained by sequential bacterial growth in the LB medium
for 18 h (1:100), followed by a further 4 h in the EC broth (1:10) containing ciprofloxacin (5 ng/mL) and
then, lysed with 200 µg/mL polymyxin sulfate B during 1 h and centrifuged (14,500× g) for 15 min.
Supernatant were kept at −20 ◦C until test analyzes.
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2.7. Stx Subtyping

Stx subtyping was performed by PCR using the primers and amplification conditions as previously
described [50].

2.8. Statistical Analyses

The Vero cell assay (VCA) was employed as the gold standard method for the Stx production [51].
Additionally, we differentiated the toxin subtype by PCR for stx1 and or stx2 in order to evaluate
the sensitivity and specificity of Stx1 or Stx2 antibodies. The absorbance values from the duplicates
of three independent experiments from Stx-positive and Stx-negative isolates after reaction with
Stx1 or Stx2 antibodies were analyzed by GraphPrism 5.01, using the Student’s t-test and two-way
ANOVA. The differences were considered statistically significant when p ≥ 0.05. The receiver operating
characteristic (ROC) curve was employed for determining the calculation of the ELISA’s cut-off as
well as providing the sensitivity and specificity report. Furthermore, the Cohen’s Kappa statistic was
employed to test the interrater reliability [52].

3. Results

3.1. Presence and Production of Stx1 and Stx2

The production of Stx was analyzed in the bacterial collection (221 isolates) employing the gold
standard Vero cell assay (VCA). The 96 STEC were confirmed as Stx producers, and the 125 other
enterobacterial strains were Stx negative. In addition, the stx subtype was defined by PCR in the
96 STEC strains, in which 47 were stx1 and 28 were stx2 and 21 presented both genes (Table 1).

3.2. Validation of Diagnostic Immunoassays

In order to test the bacterial supernatants for each different assay, bacterial cultures were prepared
differently. Thus, for capture ELISA (cEIA) and latex agglutination test (LAT) bacterial culture was
lysed with Triton X-100 or polymyxin sulfate B for the lateral flow assay (LFA), since the detergent
presence impaired the sample flow in LFA.

The bacterial collection mentioned above was analyzed using three different immunoassays
employing Stx1 and Stx2 polyclonal and monoclonal antibodies raised in-house [33–35] in order to
observe their performance in the screening assay (LAT and/or LFA) and/or confirmatory assay (cELISA).
These analyses allowed calculating the assay parameters as predictive value (PV) for the positive (PPV)
and negative (NPV) samples, the accuracy (A), the sensitivity (Se) and specificity (Sp). In addition,
the kappa concordance index (κ) was evaluated using the p value < 0.001.

The analysis of the Stx1 detection in 68 strains (positive samples) and 153 strains (negative samples)
by the three methods revealed for cEIA was PPV = 94%, NPV = 98%, A = 97%, Se = 95.5%, Sp = 97%
and κ = 0.957. For LAT: PPV of 82%, NPV of 97% and A of 92%, thus the Se and Sp was 94% and 91%,
respectively, and κ = 0.846. The parameters observed for LFA: 97% for PPV, 97% for NPV, 97% for A,
94% for Se, 99% for Sp and κ = 0.925 (Figure 1 and Figure 3).

Concerning the detection of Stx2 by 49 strains (positive samples) and 171 strains (negative samples)
by the three methods revealed for cEIA: PPV = 100%, NPV = 98%, A = 98%, Se = 92%, Sp = 100% and
κ = 0.933. These values for LAT: PPV of 81%, NPV of 99% and A of 94%, thus the Se and Sp was 96%
and 93.5%, respectively, and κ = 0.829. The parameters observed for LFA: 94% for PPV, 98% for NPV,
97% for A, 92% for Se, 98% for Sp and κ = 0.883 (Figures 2 and 3).
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Figure 2. Analysis of Stx2 detection by capture ELISA (cEIA), latex agglutination test (LAT) and lateral
flow assay (LFA). TP = true positive strains; TN = true negative strains; PPV = predictive positive
value; NPV = negative predictive value; A = accuracy; Se = sensitivity and Sp = specificity.

Comparing the values of the three immunoassays for Stx1 and Stx2, LAT employing mAbs
individually coupled to latex particles always showed lower predictive values than LFA and cEIA.
Thus, we decided to combine both monoclonal antibodies (Stx1 and Stx2) in order to detect Stx without
distinction between the toxin types. We achieved the following values: PPV of 96%, NPV of 99% and
A of 98%, thus the Se and Sp was 99% and 97%, respectively and κ = 0.945. Therefore, we observed
five false positives ((three strains of DAEC (190 and 203), one EAEC (BA1348) and one EIEC (167(48))
and one false negative, the test was not able to detect one O157:H7 strain (Figures 4 and 5).
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Figure 4. Venn diagram of latex agglutination test (LAT) employing Stx1 mAb combined with Stx2

mAb; PPV = positive predictive value; NPV = negative predictive value; A = accuracy; Se = sensitivity
and Sp= specificity. Blue = VCA results; Red = LAT results.

In the cEIA, the Stx1 Abs (mAb and pAb) were able to recognize the Stx1 producers, showing
95.5% of sensitivity and 97% of specificity and an A492nm of 0.195 cut off (Figure 6A) and Stx2 Abs
(mAb and pAb) were able to recognize the Stx2 producing strains, showing 92% of sensitivity and
100% of specificity and an A492nm of 0.1205 cut off (Figure 6B).
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Figure 6. Capture ELISA (cEIA) analysis: (A) Employing Stx1 pAb and mAb; (B) Employing Stx2 pAb
and mAb. The optical densities obtained for the isolates reacted with Stx1, or Stx2 pAb and mAb were
analyzed by GraphPrism 5.01, using the Student’s t-test and two-way ANOVA. The differences were
considered statistically significant when p ≤ 0.05.
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4. Discussion

Different protocols for detection of Shiga toxin-producing strains either in the feces of infected
patients or contaminated food have already been described for routine diagnosis [53–55]. Currently,
the PCR for stx has been employed in reference diagnosis centers and some laboratories of
upper-middle-income regions of developing countries using bacterial confluent growth zones or
sorbitol-fermenting and non-fermenting colonies taken from MacConkey sorbitol agar (SMAC
plates) [47,53]. Nevertheless, the gold standard for Stx detection is the evaluation of the cytotoxicity of
bacterial culture supernatants for eukaryotic cells (VCA) [3,51].

Thus encouraging the present work, i.e., the request of a development of a screening test for the
Shiga toxin detection for countries with high incidence, endemic or low information on this infection.
Thus, Stx1 and Stx2 pAbs and mAbs were generated in previous studies [33–35]; and different formats of
immunoassays, employing these antibodies were developed and standardized. Herein, we evaluated
the sensitivity and specificity of LAT, cEIA, and LFA employing VCA as gold standard.

An important point is which protocol should be used for toxin production and secretion. Usually,
Stx1 is secreted into the medium [56], whereas Stx2 has been shown to be either periplasmatic [56] or
liberated inside vesicles [57] therefore not secreted into the medium. In a former work of our group we
have established a protocol for in vitro cultivation by sequential bacterial culture in LB medium for
18 h (1:100), followed by a further 4 h in the EC broth (1:100), and in order to enhance toxins secretion
we added ciprofloxacin (5 ng/mL) [33]. Herein, we established a 1:10 dilution from the LB to the EC
broth, in turn; to better stimulate toxin production, since in 1:100 dilutions the very low-producers
strains were not detected. Another critical point we established is the different procedures for toxins
secretion according to the assay requirements. Thus, bacterial supernatants were prepared differently;
bacterial culture was lysed with Triton X-100 for cEIA and LAT or polymyxin sulfate B for LFA. Usually,
the commercial available tests also employ different procedures for toxin secretion, except for the
Ridascreen® Verotoxin test and Ridascreen® Quick Verotoxin/O157, that mention the use of mitomycin
C as an inductor for the formation of Shiga toxins, the others refer generically to the diluent.

The sensitivity and specificity of each tested assay reached percentages as the commercial ones
(pertaining the datasheet of each company), therefore encouraging results; concerning cEIA-Stx1 95.5
and 97%, respectively and cEIA-Stx2 92 and 100%, respectively, comparable to ProSpecT™ Shiga
Toxin E. coli (92.3 and 99.6%); Premier® EHEC (100 and 97.9%); Ridascreen® Verotoxin test (93.9 and
96.1%) and Shiga toxin check™ (97.1 and 99.7%). For LFA-Stx1 (94 and 99%) and LFA-Stx2 (92 and
98%) for sensitivity and specificity, respectively; comparable to Duopath®Verotoxins (100 and 99.6%);
ImmunoCard STAT!®EHEC (92.3 and 98.7%); Ridascreen® Quick Verotoxin/O157 (85 and 98.7%) and
Shiga toxin Quick Check™ Stx1 (100 and 99.5%) and Stx2 (95.7 and 99.9%).

Regarding the sensitivity and specificity of the latex agglutination assay, LAT-Stx1 (94 and 91%);
LAT-Stx2 (96 and 93.5%), respectively, but when both mAbs were combined these results reached
to 99 and 97%, respectively. Our results cannot be compared to those of the reverse passive latex
agglutination kits (VTEC-RPLA toxin detection and VTECRPLA “Seiken”, Japan) since they were
no longer commercially accessible. Early diagnosis of diarrhea is the key to therapeutic behavior,
accordingly, for a diagnostic assessment method we may employed RALT for EspB (97% sensitivity
and 98% specificity) [48] and LAT-Stx (99% sensitivity and 97% specificity), so we may define in a short
term if the diarrhea was due to EPEC/EHEC or STEC. Only one false negative occurred and five
false-positives, in fact, among them, one strain initially described as the adherent diffuse E. coli (DAEC)
by the daaC probe [42]. Herein it is a real positive, detected by PCR as Stx2e, but a non-producer Stx by
VCA. Moreover, no cross-reaction was observed neither with E. coli negative for the DEC virulence
factors nor with the microbiota strains and among the enterobacterial species.

Due to the feasibility of LFA, the LFA-Stx1 and LFA-Stx2 we consider that it can be used as a rapid
test, such as described elsewhere [58,59], since it did not require expensive equipment or trained
personnel to interpret the results. Unlike ELISA or PCR methods, colloidal gold technology can be
used for point-of-care applications and screening as they require the only assessment of red colored
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lines for the end-point detection. Both standardized methods are reproducible, fast, easy to perform,
showing high sensitivity in detecting Stx.

The same features were observed in cEIA, even detecting Stx in low-producing isolates, but, cEIA
can be used as a diagnostic helper or confirmatory since a spectrophotometer is necessary for the
absorbance’s reading. Currently, these assessment immunoassays are under technology transfer to
a Brazilian start-up in order to validate those employing fecal samples and the commercial availability
of them.

5. Conclusions

The standardized tests can be used not only in reference laboratories but also mainly in clinical
laboratories and hospitals, given the importance of diagnosis for appropriate patient treatment and
the prevention of outbreaks and contamination by STEC. The comparative analysis of cEIA, LAT and
LFA allows the conclusion that we have robust tools for STEC diagnosis infections. Assessing all our
data, including the rapidity of feedback to the patient, feasibility, and accuracy of the test, we can
also conclude that when the Stx1 and Stx2 mAbs were coupled, better performance was observed for
a screening test for the Shiga toxin detection.
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