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Abstract: Bacteria evolve rapidly in response to the
environment they encounter. Some environmental chang-
es are experienced numerous times by bacteria from the
same population, providing an opportunity to dissect the
genetic basis of adaptive evolution. Here I discuss two
examples in which the patterns of rapid change provide
insight into medically important bacterial phenotypes,
namely immune escape by Neisseria meningitidis and host
specificity of Campylobacter jejuni. Genomic analysis of
populations of bacteria from these species holds great
promise but requires appropriate concepts and statistical
tools.

Bacteria lack a natural reproductive system, comparable to

meiosis in eukaryotes, that segregates genes randomly. Instead,

they evolve progressively through mostly small genetic changes, a

proportion of which have noteworthy phenotypic effects. Some

phenotypes are intrinsically difficult to study in the laboratory:

virulence in humans or adaptation to particular ecological niches,

for example. For these traits in particular, a promising avenue for

scientific investigation is to identify the genetic changes that have

provided the basis for their evolution in natural populations.

Most human phenotypes are hard to study in vitro and,

consequently, methods for relating differences amongst humans to

natural genetic variation are well developed. Association studies

were proposed as an effective way of identifying genes with small

phenotypic effects more than a decade ago [1] and, although

initially controversial [2], the recent development of arrays for

genotyping hundreds of thousands of single nucleotide polymor-

phisms (SNPs) scattered across the whole genome has allowed the

approach to be successfully applied to many different human

diseases and other phenotypes [3]. This success should inspire the

development of equivalent protocols within bacteriology.

One challenge in developing generally applicable protocols for

mapping phenotypic traits in bacteria is that processes by which

microevolution occurs vary tremendously between species. For

example, the human pathogen Mycobacterium tuberculosis, the causal

agent of tuberculosis (TB), diverged recently from an obscure

organism occasionally isolated from humans in Africa called

Mycobacterium canetti [4]. M. tuberculosis shows very little variation

and there is no evidence of strains acquiring DNA by import from

other M. tuberculosis strains or indeed from any other organism, so

that individuals are clones of each other, distinguished only by rare

mutations or other small changes. By contrast, individual

Helicobacter pylori, a cause of gastric cancer, acquire DNA from

other members of the species at an extremely high rate.

Consequently, as well as varying in gene content [5], strains

isolated from different host individuals in the same ethnic group

typically differ from each other at approximately 3% of

nucleotides in core genes, and this diversity segregates nearly

randomly [6]. The majority of bacterial species fall between these

extremes, with their genomes showing signs of both clonal descent

and DNA import from other strains.

In this essay, I will argue that the clonal mode of reproduction

shared by all bacteria and Archaea, in which replication occurs by

binary fission, in fact provides an extremely powerful context for

association studies. These studies will require both appropriate

technologies for genotyping and evolutionary analysis and

judiciously chosen strain collections. I will here concentrate on

two examples in which placing evolutionary changes in their

clonal context provides the power to relate phenotype to genotype.

Population-scale genome sequencing promises to allow a full and

unbiased catalogue of variation within the same clonal context.

This reconstruction will facilitate identification of loci that show

correlations with phenotype or anomalous patterns that indicate

natural selection, with minimal assumptions about the mecha-

nisms by which phenotypes change.

Example 1: Immune Escape during Clonal Spread
of Neisseria meningitidis

Neisseria meningitidis lives in the human nasopharynx and is best

known for its role in meningitis and other forms of meningococcal

disease. N. meningitidis is a major cause of morbidity and mortality

in childhood in industrialised countries and is responsible for

epidemics, principally in Africa and Asia. Many lineages persist

stably within human populations, causing little disease. There are

a handful of ‘‘hyperinvasive’’ lineages, however, that have a

distinct epidemiology, spreading rapidly from location to location

and causing clusters of disease cases but not persisting in any one

place.

Mark Achtman and colleagues examined variation within a

single hyperinvasive lineage of N. meningitidis, designated subgroup

III, over a period of three decades [7]. The strains within subgroup

III showed little diversity in most of their housekeeping and other

genes surveyed. A few loci were identified that did show variation,

however, allowing clonal relationships to be partially reconstruct-
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ed. This reconstruction demonstrated that there were strong

bottlenecks during geographical spread, with a single ancestor for

each major wave of infection. It also showed that, notwithstanding

the low overall level of variation, certain genes encoding specific

antigens changed repeatedly in different countries and pandemic

waves.

The most remarkable variation was found in the transferrin-

binding protein B gene (tbpB), which encodes a protein responsible

for iron uptake that is expressed on the surface of the bacterium.

This gene had evolved on three occasions by nonsynonymous

point mutations that altered the structure of the protein and on 21

occasions by import of different versions of the protein from a

variety of sources, including from N. lactamica, a closely related and

entirely noninvasive species that also colonizes humans (Figure 1).

The import events vary: analysis of similar tbpB changes in a

closely related lineage showed that between 2 kb and 10 kb of

sequence was transferred, which often altered the sequence of the

flanking genes as well as tbpB [8]. In each case, however, an effect

of the imported DNA was to change the externally exposed part of

the protein from the usual version (called the family 4 version) to

one of two antigenically highly distinct versions (family 1 and

family 3).

The fact that functionally equivalent changes to tbpB are

achieved by heterogeneous genetic events shows that the large

number of imports is not caused by a recombination mechanism

that is specific to the locus. Instead it reflects the amplifying effect

of natural selection within the large number of bacteria that

circulate during epidemics. Imports happen at a low rate

throughout the genome, but those that cause an antigenic change

at the tbpB locus have a selective advantage, meaning that they are

observed at a much higher rate than imports elsewhere in the

genome.

High diversity at a particular antigen locus is usually explained

by invoking a mechanism called negative frequency-dependent

selection [9]. Hosts who have been exposed to a particular variant

develop immune responses against this variant. Bacteria with

antigenically distinct variants escape this response, giving them an

advantage in colonizing that host. At the population level, this

selection should lead to the persistence of multiple variants. Yet,

despite this selection for rare variants within individual epidemics,

the antigenic diversity of subgroup III did not increase

progressively over time but was instead reset at the beginning of

each new epidemic, which was started by a strain with a family 4

allele.

The continuous generation of subgroup III strains with family 1

and 3 tbpB alleles is better explained by a mechanism called

source–sink dynamics [10]. The source consists of an environment

within which transmission of the bacterium is self-sustaining. Sinks

consist of environments that bacteria can colonize effectively

(perhaps by undergoing genetic modification) but from which

onward transmission is ineffective. Here, the sink environment

consists of individuals with acquired immunity to subgroup III

strains that carry family 4 alleles, while the source is the remainder

of the human population. The fact that the variant genotypes

capable of colonizing the sink do not spread geographically but

instead are repeatedly regenerated locally suggests that that these

strains have reduced overall transmission fitness in naı̈ve hosts,

which comprise the majority of individuals in populations where

an epidemic has not occurred recently.

Two other examples of sink environments are the lungs of

immunocompromised patients for Pseudomonas aeruginosa, and the

human urinary tract for Escherichia coli [10]; as for the N. meningitidis

example, specific genetic changes have been identified that adapt

strains of these bacteria to those environments but at the expense

of overall transmission fitness, with the result that infections occur

generally sporadically.

Example 2: Host Specificity in Campylobacter jejuni

Campylobacter jejuni is a gram-negative bacterium commonly

found in animal feces. It is often associated with poultry and

naturally colonises the GI tract of many bird species. C. jejuni is one

of the most common causes of human gastroenteritis in the world.

Infection caused by Campylobacter species can be severely

debilitating but is rarely life-threatening. Human infection is

sporadic and, although poorly prepared food is often thought to be

implicated, it is generally difficult to track the source. There has

therefore been a substantial effort to isolate bacteria from a wide

variety of reservoirs and to genotype them using multilocus

sequence typing (MLST), which involves obtaining the DNA

Figure 1. Acquisition of new tbpB genes by subgroup III Neisseria meningitidis during epidemic spread. Colours indicate the family of
each tbpB allele, with red corresponding to family 4, green corresponding to family 1, and blue corresponding to family 3. The bars highlight the time
frame, most common tbpB type, and geographical extent of each epidemic (in 1987, pilgrims from the Hajj pilgrimage briefly distributed the lineage
worldwide). The circles correspond to variant genotypes. Small circles indicating that the variant allele was found in only one strain; large circles
indicate it was found in between two and four strains.
doi:10.1371/journal.pgen.1000627.g001
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sequence for each isolate at a standardized panel of genes (seven

for Campylobacter) that are chosen because they have an essential

function and are present in the vast majority of isolates in the

species [11].

The C. jejuni strains acquired by chickens are distinct from those

of the wild birds around them, even when the poultry are kept

outdoors [12]. Within farm animals, certain lineages are found

with very different frequencies in chickens and cattle, whereas

several genotypes are found at high frequency in both (strains with

the MLST type ST-21, for example) [13]. Strains from different

farm animals are more similar to each other than they are to

strains found, for example, in starlings (a native European bird

that is also common in may other countries, including the US)

[14].

The digestive system of chickens differs from that of cattle in

multiple aspects, and their body temperature is several degrees

higher than that of cattle. This raises the question of how some

lineages are able to compete successfully in both hosts.

Mechanisms facilitating rapid phenotypic adaptation include: (1)

inbuilt regulatory mechanisms that allow individual bacteria to

alter gene expression in response to new environments [15], (2)

‘‘contingency loci’’ that mutate rapidly, creating phenotypic

variation amongst bacteria that are otherwise genetically identical

[16], and (3) import of DNA from other strains that are already

adapted to the current environment.

A first step toward understanding the evolution of host

specificity is to establish whether it is possible to predict the host

origin of strains based on their genome sequence. One approach

to doing this uses phylogenetic relationships. For example, the

program AdaptML (http://almlab.mit.edu/ALME/Software/

Software.html) attempts to assign branches of the phylogenetic

tree to preferred habitats based on where the strains on that

branch were isolated [17]. For C. jejuni, habitat can, for example,

be equated to host species. The observation of a group of

phylogenetically related strains in a single host species might reflect

the common ancestor of those strains acquiring the traits required

to survive in that species.

Since C. jejuni recombines frequently, the genome composition

of each strain is determined by the sources from which it has

imported DNA, as well by which strains it is phylogenetically

related to. For example, ST-21, together with its variants, is a

lineage analogous to subgroup III of N. meningitidis. Like subgroup

III, the lineage has imported DNA from other strains on numerous

occasions during its spread, with the result that many isolates have

variant genotypes that differ from ST-21 at one or two of the seven

MLST fragments. By convention, these strains are grouped with

ST-21 into the ST-21 clonal complex.

ST-21 itself has been found at high frequency in several

agricultural species and elsewhere. Therefore, if a new strain is

found to be ST-21, this provides little information on where it

might have originated. However, for the variants of ST-21, Noel

McCarthy and colleagues obtained significantly better than

random assignment by predicting hosts based on the frequency

with which the variant allele was found in chicken or cattle [13]. A

useful signal of host-of-origin is thus provided by the DNA that

each isolate has acquired (Figure 2). Furthermore, the high rate of

recombination within particular hosts represents a mechanism by

which complex adaptations to a particular host species can be

acquired quickly subsequent to a host switch.

The Power of Bacterial Genomics

Studies in bacteria have two major advantages over those in

humans or other mammals when it comes to relating phenotype to

genotype based on natural variation. The first is the magnifying

effect of natural selection in enormous bacterial populations. This

selection acts to rapidly increase the frequency of genotypes that

give small fitness advantages in a particular environment, even if

these genotypes are generated only rarely. Adaptation in bacteria

is likely to be more frequent and to leave more distinctive genetic

signatures than in species such as humans where signals of

adaptation to local environments have proved to be remarkably

subtle [18]. The second is the fact that evolution occurs in the

context of progressively changing clonal backgrounds. This

property can make it possible to identify strains that have

extremely similar genomes but nevertheless differ phenotypically

[19]. These strains represent the natural equivalent of an isogenic

line and can allow precise inferences about the effects of natural

variation and how different changes interact with each other.

In order to fully exploit the advantages of bacteria for detecting

phenotypic associations, it is necessary to develop a conceptual

and analytical framework within which rapid evolutionary change

can be interpreted. One such framework is source–sink dynamics

[10]. The Neisseria example illustrates the power of microevolu-

tionary analysis in a source–sink ecological context to identify first

the sink (hosts with immune responses to tbpB family 4 alleles) and

second the loci under an immediate selective pressure to change

within that sink (the tbpB gene).

Source–sink dynamics cannot be applied to investigate host

specificity within Campylobacter, because individual host species,

e.g., chicken, cattle, and individual species of wild birds, each

harbour large, viable populations of bacteria with high rates of

within-species transmission and do not represent sinks. Neverthe-

less, there is a key similarity between the Neisseria and Campylobacter

Figure 2. A schematic illustration of the evolution of the C.
jejuni ST-21 clonal complex in cattle and chickens. The common
ancestor of the complex occurred in chickens (red). During evolution,
the lineage occasionally switched to a cattle host (indicated by a blue
branch) and sometimes back to chicken. The bacteria acquired DNA by
homologous recombination from other C. jejuni in the same host. Since
recombination is assumed to occur from donors within the same host,
the gene pool is determined by the genomic composition of the strains
that colonize each host. The gene pools are illustrated for two separate
loci (right and left facing arrows) in chickens and cattle. The gene pools
contain alleles whose frequencies occur at much higher frequency in
one host than another (shown in colour) and others that did not (shown
in black). The former are informative about the host in which the
recombination event occurred, while the latter are not. The recombi-
nation event labelled a introduces the left facing black arrow gene from
the cattle gene pool and is phylogenetically informative because it
defines a lineage that is largely restricted to cattle. The five
recombination events labelled b are not phylogenetically informative,
since they only affect a single strain in the sample. These events are
nevertheless informative because they introduce alleles that are
characteristic of the host species. The event labelled c is both
phylogenetically informative and characteristic of host. The event
labelled d is noninformative.
doi:10.1371/journal.pgen.1000627.g002
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examples, namely that the strains are repeatedly challenged by an

environment that is novel in the recent history of the strain. In the

Neisseria example, this challenge is repeatedly met by genetic

changes at particular antigenic loci, which consequently have

extremely atypical patterns of variation. In Campylobacter this

challenge is met in the context of a high rate of import of DNA

across the genome from other Campylobacter strains that already

colonize the new host.

The availability of full genome sequences promises to enhance

our understanding of the bacterial responses to new environments

in a number of ways. First, phylogenetic relationships will be better

resolved. In the Neisseria example, a well-resolved tree will

elucidate patterns of transmission within epidemics and, for

example, whether tbpB imports take place at the later stages of

each wave and if strains with such imports ever reacquire family 4

alleles and seed later epidemics. In the Campylobacter example this

will allow estimates of the number of occasions that the ST-21

lineage has jumped between host-species and establish whether

there are sublineages that are becoming progressively more

adapted to single-host transmission.

Second, genomics will provide a complete catalogue of loci

whose pattern of descent is atypical of the genome as a whole and

therefore either associated with a particular phenotype or

putatively affected by selection. In the Neisseria example, an

elevated rate of change at particular loci and consistency in the

nature of those changes would provide signs of selection. In the

Campylobacter example, loci that are imported at very high

frequency and/or that are highly differentiated between host

species may be involved in adaptation to a new host. An isolate-by-

isolate analysis of the patterns of import should establish whether

the multi-host lifestyle of ST-21 and, by extension, of C. jejuni as a

whole is facilitated by import of DNA from locally adapted strains.

Third, genomics will allow detection of epistasis between loci.

Epistasis occurs when the fitness effects of alleles at one gene are

modified by the genotype at one or more additional genes. In

outbreeding diploids, such as mammals, each allele has its fitness

tested on a new genetic background in every generation, with the

result that epistasis does not leave a distinctive signature in the

frequency of particular combinations of alleles unless the loci are

closely linked on the same chromosome or selection is very strong.

In bacteria, combinations of alleles remain together for many

generations wherever they occur in the genome, providing ample

opportunity for epistasis to bring particular combinations of alleles

to high frequency. For example, subgroup III strains that have

imported variant tbpB alleles can potentially enhance their fitness

by importing other parts of the genome that adapt other strains in

the Neisseria population to having high fitness when carrying family

1 or family 3 alleles. These parts of the genome could be detected

by identifying parallel changes that have occurred on the 21

occasions that a variant tbpB allele was imported during the spread

of subgroup III strains. Fitness interactions establish functional

relationships between loci and represent a central part of the

evolutionary landscape, for example triggering the origin of species

[20]. Genome sequencing of bacteria should provide key insights

on the nature of these interactions in natural populations.

In C. jejuni and other zoonoses, genomic analyses will facilitate a

qualitative advance in our understanding of the epidemiology,

ecology, and molecular biology of host switches. These develop-

ments will allow accurate delineation of the sources of human

infection and an understanding of the factors promoting successful

and pathogenic colonization of humans. In N. meningitidis and

similar bacteria, we will gain a much better understanding of the

genetic differences between invasive and noninvasive strains and

the particular adaptive strategies that cause lineages to become

invasive. These advances will together allow the design of targeted

interventions that reduce the burden of human disease.

Challenges for the Future

Advances in sequencing technology mean that it is becoming

economically feasible to obtain complete or nearly complete

genome sequences for large samples of bacteria. To better exploit

this technology to understand bacterial phenotypes, the field

should emulate the research program of human genetics and (1)

develop statistical tools that use sequence variation to infer

mechanisms of evolution [21] and patterns of genetic relationship

[22]; (2) collect and sequence samples of isolates in which bacteria

that differ in phenotypes of interest are matched as far as possible

in time and space [23]; and (3) design statistical tools for detecting

phenotypic associations [24] and natural selection [25] by

identifying patterns of relationship at particular loci that are

atypical of the genome as a whole.
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