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ABSTRACT

Cancer immunotherapy targeting co-inhibitory path-
ways by checkpoint blockade shows remarkable ef-
ficacy in a variety of cancer types. However, only a
minority of patients respond to treatment due to the
stochastic heterogeneity of tumor microenvironment
(TME). Recent advances in single-cell RNA-seq tech-
nologies enabled comprehensive characterization of
the immune system heterogeneity in tumors but
posed computational challenges on integrating and
utilizing the massive published datasets to inform
immunotherapy. Here, we present Tumor Immune
Single Cell Hub (TISCH, http://tisch.comp-genomics.
org), a large-scale curated database that integrates
single-cell transcriptomic profiles of nearly 2 million
cells from 76 high-quality tumor datasets across 27
cancer types. All the data were uniformly processed
with a standardized workflow, including quality con-
trol, batch effect removal, clustering, cell-type anno-
tation, malignant cell classification, differential ex-
pression analysis and functional enrichment analy-
sis. TISCH provides interactive gene expression vi-
sualization across multiple datasets at the single-cell
level or cluster level, allowing systematic compari-
son between different cell-types, patients, tissue ori-
gins, treatment and response groups, and even dif-
ferent cancer-types. In summary, TISCH provides a

user-friendly interface for systematically visualizing,
searching and downloading gene expression atlas in
the TME from multiple cancer types, enabling fast,
flexible and comprehensive exploration of the TME.

INTRODUCTION

Cancer is a leading cause of death worldwide (1). In re-
cent years, cancer immunotherapy has emerged as one of
the most promising therapeutic strategies and demonstrated
remarkable efficacy in tumor elimination and control (2).
One major obstacle for immunotherapy is that only a small
fraction of patients can benefit from the treatment due to
the highly complex and heterogeneous tumor microenviron-
ment (TME; 3). Therefore, it is vital to investigate the de-
tailed cell-type compositions and characterize gene expres-
sion dynamics in TME, which could potentially improve the
utility of cancer immunotherapy.

Single-cell RNA sequencing (scRNA-seq) has been in-
creasingly adopted to investigate cell phenotypes, states,
functions and crosstalk in the TME (4). It provides an un-
precedented resolution to decipher the heterogeneous pop-
ulations in TME, allowing identification of novel cell-types
and discovery of unknown associations (5). For example,
Zheng et al. characterized the infiltrated T cells of liver can-
cer using scRNA-seq and identified LAYN as a marker for
expanded tumor Treg and exhausted CD8 T-cells (6). Guo
et al. discovered a ‘pre-exhausted’ stage of T cells and bi-
modal distribution of TNFRSF9 in Tregs from non-small-
cell lung cancer (NSCLC), suggesting previously unknown
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heterogeneity of the tumor infiltrated T-cells (7). A recent
study performed on melanoma patients treated with check-
point therapy showed that patients with high TCF7+CD8+

T cells are associated with favorable clinical outcomes af-
ter treatment (8). These studies proved that single-cell tran-
scriptomics enabled cancer biologists and oncologists to un-
derstand the TME heterogeneity better and provided novel
clinical implications. However, the rapidly accumulated tu-
mor scRNA-seq data have also posed significant computa-
tional challenges for data integration and reuse.

There have been efforts to systematically collect and cu-
rate single-cell datasets, such as CancerSEA, scRNASe-
qDB, SCPortalen, PanglaoDB and JingleBells (9–13). Only
CancerSEA is cancer-related, although it solely focuses on
cancer cells without considering immune or stromal cells
in the TME. Moreover, most of these databases contain a
limited number of cells. CancerSEA (9) explores the func-
tional heterogeneity of only 41 900 cancer cells, and SC-
Portalen (11) only has 67 146 cells combining human and
mouse datasets. Large scale repositories, such as Single Cell
Portal from the Broad Institute (14) and Single Cell Expres-
sion Atlas from European Bioinformatics Institute (EMBL-
EBL; 15), provide greater numbers of datasets. Still, they are
not cancer-focused and have limited and often inconsistent
cell-type annotations across datasets. So far, there are still
no comprehensive, intuitive, and convenient web resources
with user-friendly interactive features for researchers to ex-
plore public tumor scRNA-seq datasets.

Here, we present Tumor Immune Single Cell Hub
(TISCH), a comprehensive and curated web resource aim-
ing to decipher the complex components of the TME at
single-cell resolution. TISCH builds a scRNA-seq atlas
of 76 high-quality tumor datasets across 27 cancer types,
which were mainly collected from Gene Expression Om-
nibus (GEO; 16) and ArrayExpress (17). Three additional
PBMC datasets from healthy donors were included to
provide baseline expression levels for immune cells. The
TISCH atlas comprises nearly 2 million cells, of which 378K
were malignant cells, and 1566K were non-malignant cells.
These datasets were uniformly processed with a standard-
ized workflow, including quality control, batch effect re-
moval, clustering, differential expression analysis, curated
multi-level cell-type annotation, malignant cell classifica-
tion and functional enrichment analysis. TISCH provides
a user-friendly interface to support interactive exploration
and visualization of each dataset or across multiple datasets
at both single-cell and annotated cluster levels. The contin-
ued maintenance and update of TISCH promise to be of
great utility to the immuno-oncology community.

MATERIALS AND METHODS

Data collection and meta information curation

We developed a text-mining-based data parsing workflow
and collected tumor scRNA-seq datasets of human from
GEO (16) and ArrayExpress (17). We searched the single-
cell-related keywords such as ‘single cell RNA sequencing’
or ‘scRNAseq’ or ‘single cell’ or ‘single-cell’, as well as
the technology-related keywords like ‘microfluidics’, ‘10X
Genomics’ and ‘SMARTseq’, and the tumor-related key-
words such as ‘tumor’ or ‘cancer’ or ‘carcinoma’ in the

description page of GEO or ArrayExpress. Each dataset
was then manually confirmed and curated. A total of
118 cancer-related scRNA-seq datasets were obtained ini-
tially and were further filtered to keep the datasets with
>1000 high-quality cells. To expand the utility of TISCH,
we also included the scRNA-seq datasets of mice treated
with immunotherapy and three scRNA-seq datasets of hu-
man peripheral blood mononuclear cells (PBMC) from
10X Genomics. Overall, the TISCH database contains 76
high-quality tumor datasets across 27 cancer types and
three PBMC datasets (Supplementary Table S1). We down-
loaded the expression matrix of the raw count, TPM or
FPKM (if available) for each dataset. We collected sam-
ple information from databases or the original studies,
such as the patient ID, tissue origin, treatment condi-
tion, response groups and the original cell-type annota-
tion. Notably, we processed each cancer type separately
if a dataset contained multiple cancer types. The source
code for processing all the collected scRNA-seq datasets
are deposited at the Github repository (https://github.com/
DongqingSun96/TISCH/tree/master/code)

Data quality control

We applied a standardized analysis workflow based on
MAESTRO v1.1.0 (18) for processing all the collected
datasets, including quality control, batch effect removal, cell
clustering, differential expression analysis, cell-type annota-
tion, malignant cell classification and gene set enrichment
analysis (GSEA; Figure 2). The raw count, TPM or FPKM
table was used as input for the standardized workflow. The
quality of cells was determined by two metrics: the number
of total counts (UMI) per cell (library size) and the num-
ber of detected genes per cell. Low-quality cells were filtered
out if the library size was <1000, or the number of detected
genes was <500 (Supplementary Figure S1A).

Batch effect evaluation and correction

To systematically evaluate the batch effects for each dataset,
we employed an entropy-based metric (19,20) to quantify
the mixing of the data across batches. In most datasets, sam-
ples from different patients are usually affected by batch
effects. We constructed a k-NN (k = 30) graph based on
the Euclidean distance between cells in the UMAP coordi-
nates for each dataset with more than one patient. For each
cell j, we computed the distribution of patients in its nearest
neighbors. The measure of the mixing between patients Hj
is defined as:

Hj = −
T∑

t = 1

pt
j log2 pt

j

where pt
j is the percentage of cells from patient t in the

30 nearest neighbors of cell j and T is the number of pa-
tients. High entropy means that the most similar cells in one
cell’s neighborhood are from different patients. By contrast,
low entropy means that the most similar cells are from the
same patient, indicating the existence of a potential batch
effect. However, it should be noticed that for the datasets,
which mainly contain malignant cells, the low entropy could

https://github.com/DongqingSun96/TISCH/tree/master/code
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arise from the heterogeneity of malignant cell expression be-
tween different tumors (21). We thus separated the collected
datasets into three groups. (i) For datasets mainly contain-
ing malignant cells (malignant % > 75%), there is no need
to remove the batch between different patients as it reflects
the difference between distinct tumors. (ii) For datasets with
a median entropy lower than 0.7, we corrected the batch ef-
fect using Seurat v3.1.2 (22; Supplementary Figure S1B,C).
The median entropies were shifted towards higher values
after batch effect removal, indicating the potential batch
effects were significantly corrected. (iii) Datasets with a
median entropy higher than 0.7 were considered less af-
fected by the batch effect (Supplementary Figure S1B). We
evaluated the batch effects based on sample tissue origins
for datasets without patient information or with only one
patient. Only two datasets CRC GSE120909 mouse aPD1
and NET GSE140312 have potential batch effects from tis-
sue origins. The batch effects were also removed by Seurat
v3.1.2, as described.

Cell clustering and differential gene analysis

For each dataset, the MAESTRO workflow identified the
top 2000 variable features and employed PCA for dimen-
sion reduction, KNN, and Louvain algorithm for identify-
ing clusters (23,24). To better capture the cellular difference
and variabilities for datasets with different cell numbers,
we adjusted the number of principal components and the
resolution for graph-based clustering, which were both in-
creased with the cell number (Supplementary Table S2). The
uniform manifold approximation and projection (UMAP)
were utilized to reduce the dimension further and visualize
the clustering results (25). We applied the Wilcoxon test to
identify differentially expressed (DE) genes of each cluster
compared to all other cells based on the log-transformed
fold change (|logFC| > = 0.25) and false discovery rate
(FDR < 1e-05).

Cell-type annotation

The clusters of malignant cells were determined by combin-
ing three approaches. First, we took the cell-type annota-
tions provided by the original studies. Second, we checked
the malignant cell makers’ expression distribution from the
initial research, such as epithelial markers, EMT genes, if
available (26). Third, we ran InferCNV v1.2.1 (27) to pre-
dict cell malignancy based on the predicted copy number
variation and separated the cells into malignant and non-
malignant clusters (Supplementary Figure S1D). Among
the collected datasets, 38 datasets include malignant cells, of
which 10 datasets were annotated with the original cell type
annotation, 25 datasets were annotated based on malignant
gene signatures, and 3 datasets were annotated by inferCNV
(AEL GSE142213, ALL GSE132509, MM GSE141299).
For the other normal clusters, we automatically annotated
the cell clusters with a marker-based annotation method
employed in MAESTRO using the DE genes between clus-
ters. The marker genes of each cell type were collected from
the published resources (28–30) and curated manually (Sup-
plementary Tables S3 and S4). We calculated the average
logFC of the marker genes for each cell type in each clus-
ter and took it as a cell-type score Sc. Each cluster will be

assigned a specific cell type Cj, which has the highest score
among all input cell-type signatures.

Sc =
m∑

i=1

logFCi

log2 m
(1)

Cj = arg max
c∈M

Sc (2)

Where M is the set of all collected cell types, m is the num-
ber of marker genes for a certain cell type c in M. logFCi is
the logFC of marker gene i in cell type c, which is derived
based on the differential gene analysis for each cluster. We
used a parameter cutoff for max

c∈M
Sc to optimize the capacity

of the marker-based cell-type annotation and set the default
value to 0.6 based on nine datasets with original cell-type
annotation. The automatic cell-type annotation C∗

j is pre-
dicted as:

C∗
j =

{
Cj

(
i f Cj ≥ 0.6

)
Others (i f Cj < 0.6) (3)

We retained 18 common cell types at the major-lineage
level, such as B cells (B), CD8+ T cells (CD8T), conven-
tional CD4+ T cells (CD4Tconv; Supplementary Figure
S2A and Supplementary Table S3). To gain more detailed
insights into immune cell heterogeneity, we further col-
lected and curated the sub-lineage signatures (Supplemen-
tary Table S4) and generated minor-lineage level annota-
tion. For example, typical CD8+ T cells at the major-lineage
level could be further separated into naı̈ve CD8+ T cells
(CD8Tn), central memory CD8+ T cells (CD8Tcm), effec-
tor memory CD8+ T cells (CD8Tem) and effector CD8+

T cells (CD8Teff). After automatic cell-type annotation,
we performed manual corrections to all the annotated cell
types by combining them with original annotation and ma-
lignant cell identification in the previous step. Based on the
major-lineage level annotations and malignant cell identity,
all the cells were classified into three types, malignant cells,
immune cells and stromal cells, which was defined as malig-
nancy level annotation. For each dataset, we also provided a
dot plot for marker gene expression across all the cell-types
to confirm the accuracy of the cell-type annotation (Sup-
plementary Figure S2B).

Functional enrichment analysis

To characterize the functions of distinct cell-type popula-
tions, we performed gene set enrichment analysis (31,32)
according to the rank of genes based on the fold-change
from the differential analysis. We totally collected 16 626
gene-sets for GSEA, including 186 Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways (33), 50 hallmark
pathways, 10 192 Gene Ontology terms (BP: 7530; CC: 999;
MF: 1663), 4872 immunologic signatures, 189 oncogenic
signatures and 1137 transcriptional factor targets from the
Molecular Signatures Database (MSigDB v7.1; 34). Signif-
icant up-regulated, and down-regulated pathways (FDR ≤
0.05) in each cluster were identified and visualized to enable
the functional enrichment analysis between different clus-
ters. In addition, we also performed functional enrichment
analysis of each cell-type between pre- and post-treatment,
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or responder and non-responder for the datasets with treat-
ment information. Notably, we performed hierarchical clus-
tering on the enriched GO terms due to the high similarity
across ontology terms. The term with the longest paths to
the root within a GO subtree will be considered as a repre-
sentative term and labeled in the heatmap (35). This analy-
sis was fulfilled by GSEA v4.0.3 for Linux, and figures were
generated by the ComplexHeatmap R package v1.99.5 (36).
In addition to performing GSEA at the cluster level, we also
employed Single-Cell Signature Explorer (37) to calculate
gene-set enrichment scores at the single-cell level. Only the
visualizations on hallmark pathways are available in TISCH
due to the limited computational resource.

Gene conversion

To generate the consistent gene symbol across differ-
ent genome assemblies and species, we converted genes
of each human and mouse dataset into GRCh38.p13
and GRCm38.p6, respectively. Besides, we converted the
GRCm38 mouse homologous genes to GRCh38 human
genes using ‘getLDS’ function of biomaRT package v2.42.0
(38), which enables the gene search across different species
in TISCH. For those genes with one-to-many relations be-
tween species, only one homology mapping was retained
randomly.

Gene visualization across cancer types and cell types

In the Gene module, we converted both raw count and
FPKM to the TPM matrix to ensure the expression level
is relatively comparable between different datasets. The ex-
pression level Ei, j of a gene i in the cell j was quantified as
log2( T PMi, j

10 + 1). TPM values were divided by 10 to lower
the impact of varying dropout rates between genes (21,39).

In addition, datasets with a large number of cells
(>10 000) will usually consume high memory and take long
response time to generate expression visualization figures
across multiple datasets. To ensure the quick response for
users when searching a gene across multiple cancer types
and cell types, we applied a sub-sampling procedure for 49
datasets with >10 000 cells. For each gene, we sorted the
cells according to the expression level of the gene in each
cluster with >200 cells. Every ten cells were assigned into a
bin and the median of the ten cells was calculated to repre-
sent the expression level of the bin. For clusters with <200
cells, all the cells were kept directly. Each point in the gene
expression violin plot represents a bin, and the distribution
of bins was shown between different cell-types and datasets.
This method collapsed large datasets into almost one-tenth
of the original ones, significantly improving the speed of
read-in and generating the violin plots for gene expression
visualization in the Gene module.

Web portal for the database

Based on the uniformly processed scRNA-seq datasets, we
build the TISCH web portal to present the analysis re-
sults in a user-friendly way. All the processed and anno-
tated datasets can be searched, visualized and downloaded
from the web portal. The front-end display is achieved

through HTML and CSS, and the back-end data are or-
ganized and queried by the MySQL database management
system v8.0.20. The interaction between the front-end and
back-end is enabled through JavaScript and Python. All
the charts in TISCH are generated by Highcharts v8.1.2
and in-house Python and R scripts. TISCH database is de-
ployed with the Apache2 HTTP server and is freely available
at http://tisch.comp-genomics.org without any registration
or login. All the functions of TISCH have been tested in
Google Chrome and Apple Safari browsers.

RESULTS

Dataset summary in TISCH

The current TISCH database contains 2 045 746 cells from
79 datasets ranging 27 cancer types, with 378 392 malignant
cells and 1 667 354 non-malignant cells. There are 76 tumor-
related datasets in TISCH, including 17 tumor datasets
with immunotherapy treatment (12 human datasets and five
mouse datasets; Figure 1). Three additional PBMC datasets
from healthy donors are also included to provide baseline
expression levels for immune cells. On average, each dataset
has 26 455 cells, with one largest dataset from NSCLC have
over 200K cells (Supplementary Table S1). In total, TISCH
covered 68 287 genes for human datasets and 18 789 genes
for mouse datasets, with an average of 18 411 genes covered
per dataset.

Utility of TISCH

TISCH presents all the analysis results, including cluster-
ing, differential gene identification, cell-type annotation
and GSEA, in a user-friendly interface for public access-
ing. TISCH provides two modules for users to visualize the
datasets (Figure 2). The Dataset module supports the de-
tailed exploration of an individual dataset. In addition, it
also supports multiple gene expression visualizations across
multiple datasets at the single-cell level. The Gene mod-
ule allows single gene visualization across multiple different
scRNA-seq datasets at the cell-type level.

Single-dataset exploration. In the Dataset module, TISCH
supports the advanced search for datasets of interest to ex-
plore the cell-type composition, gene expression distribu-
tion, functional status of each cell-type and comparison be-
tween different tissue origins or treatment groups. If users
focus on one specific cancer type, they can click the cor-
responding tissue icon on the Home page to query related
datasets. In the forwarding Dataset page, users can further
narrow down the query results according to other criteria,
such as species, treatment and included cell-types. TISCH
will return the datasets satisfying the criteria with relevant
study information, including the number of patients and
cells, technology platform, treatment, stage and the related
publication.

For each scRNA-seq dataset, the pre-analyzed results of
the dataset will be shown in four different tabs, including the
overview, gene, GSEA and download tabs. In the overview
tab (Figure 3A), two UMAP plots with cells colored by the
cell clusters and cell-type annotations will be displayed on
the top. TISCH allows users to choose cell-type annotations

http://tisch.comp-genomics.org
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Figure 1. Summary of TISCH datasets. TISCH includes 79 high-quality single-cell datasets, covering nearly 2 million cells across 27 cancer types. Datasets
on human and mouse tumors are indicated as green and orange in the inner circle, respectively. Datasets with immunotherapy are labeled in red. The
number of cells for each dataset is shown inside the parenthesis.

from three levels, malignancy level, major-lineage level and
minor-lineage level (Supplementary Figure S2A; see ´Ma-
terials and Methods’ section). Besides, other meta informa-
tion, such as patient information, tissue origin, treatment
condition and cell-type annotation from the original study
can also be displayed if available. To confirm cell-type an-
notation accuracy, TISCH provides a dot plot to show the
marker gene expression level for all the annotated cell types
(Supplementary Figure S2B). Users could optionally click
the right UMAP plot to visualize the expression of cell-
type-specific markers for each dataset. In the middle of the
overview page, TISCH displays a pie plot to show the to-

tal number of cells in each cell-type and a bar plot to show
the cell-type proportion across patients (Figure 3A). The
two plots can provide an intuitive overview of the cell-type
and patient statistics for each dataset. On the bottom of
the overview page, the top differentially expressed genes for
each cluster are provided for users to discover each cell-
type’s potential markers. TISCH also allows users to search
for interested genes and see their relative logFC in different
cell-types.

In the gene tab (Figure 3B), TISCH provides a gene visu-
alization function to search and compare multiple genes of
interest simultaneously in the current dataset. UMAP plots
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Figure 2. Overview of the TISCH workflow and features. TISCH automatically parsed and curated tumor single-cell RNA-seq datasets from GEO or
Array Express databases. All datasets were then uniformly processed with a standardized workflow, including quality control, batch effect removal, cell
clustering, differential expression analysis, and cell type annotation at multiple levels. Each dataset in TISCH is displayed with relevant study information,
including species, treatment, the number of patients and cells, technology platform, stage and related study. In the Dataset module, TISCH provides two
functions: single-dataset exploration and multiple-dataset comparison. In the Gene module, TISCH allows single gene expression visualization across
multiple datasets and cell types. TISCH also supports the downloading of expression matrices, DE gene tables and meta-information for each dataset.

that reflect the expression level of input genes at the single-
cell resolution will be returned, enabling the exploration
of the co-expression or mutually exclusive relationship be-
tween different genes. Besides, a violin plot will be displayed
to show the distribution of the interested gene expression
in different cell types. TISCH allows users to compare the
expression of genes between different groups, such as tis-
sue origins, treatment conditions or response groups if the
meta-information is available (Figure 3B and Supplemen-
tary Figure S3D). The statistical significance between dif-
ferent groups was evaluated using the Mann–Whitney test
for two groups or the Kruskal–Wallis test for three or more
groups (Figure 3B). In addition to individual gene input,
TISCH supports gene list upload so that users can explore
the expression pattern of their interested gene signatures at
both single-cell and cell-type level. Genes in the uploaded
signature list will be collapsed by the mean or median of
expression, which depends on users’ choices.

In the GSEA tab (Figure 3C), the pre-calculated GSEA
results are available for users to characterize the functional
differences between different cell types. We collected 16 626
gene sets from MSigDB (34), covering KEGG, hallmark,
GO, immunological signatures, oncogenic signatures and

transcriptional factor targets. Heatmaps will be shown to
display the enriched up- or down-regulated pathways iden-
tified based on differential genes in each cluster. For the
datasets with treatment information, TISCH also provides
GSEA results for comparing functional pathways between
different treatment conditions or treatment responses for
each cell type. In addition, we integrated Single-Cell Sig-
nature Explorer (37) for computing GSEA pathway enrich-
ment score at single-cell resolution. Users can optionally se-
lect a hallmark pathway of interest to visualize the single-
cell-specific enrichment.

Besides the online search and visualization for each
dataset, TISCH provides an easy way to download the data,
including expression profiles, DE genes and related meta-
information. The single-cell-level expression matrices are
stored in compressed HDF5 format for a fast and flexible
download. The top differential genes of each cluster dis-
played in the overview tab can also be downloaded. More-
over, TISCH provides three levels of cell-type annotations
and curated meta-information at the single-cell resolution
for downloading. All the figures shown on the web page can
also be downloaded in high resolution. Users can utilize the
downloaded data for further customized exploration.
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Figure 3. Dataset module of TISCH. (A) The overview tab of the BLCA GSE145281 aPDL1 dataset. Two UMAP plots with cells colored by cluster ID
(left) and cell type (right) are displayed on the top of the tab. The pie plot and the bar plot show the cell number distribution of each cell type and the
cell type proportion of each patient, respectively. The table below shows DE genes in each cluster. (B) The gene tab of the single-dataset module where
expression of genes of interest can be visualized at single-cell and cell-type resolution. Two UMAP plots are to show the cell distribution of treatment
response groups (left) and the expression of CXCL8 (right). The violin plot visualizes a comparison of CXCL8 expression between ‘Responder’ (orange)
and ‘Non-responder’ (green) across cell types. The significance of the difference between the two groups in each cell type is evaluated through the Mann-
Whitney U test and adjusted through Benjamini–Hochberg correction. ‘N.S.’ represents q (adjusted P-value) > 0.05, ‘*’ represents 0.01 < q ≤ 0.05, ‘**’
represents 0.001 < q ≤ 0.01, and ‘***’ represents q ≤ 0.001. (C) GSEA results of a single dataset. The enriched up- or down-regulated hallmark pathways
in each cluster are visualized in heatmaps. (D) Multiple-dataset module, in which users can compare the gene expression across datasets at single-cell
resolution. An example is presented to display the expression of LAYN and CCR8 at single-cell resolution in LIHC GSE98638 and NSCLC GSE99254.
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To demonstrate an example of exploring the single-
dataset module, we queried by cancer type ‘BLCA
(Bladder Urothelial Carcinoma)’ and focused on the
BLCA GSE145281 aPDL1 dataset with anti-PDL1 treat-
ment for further analysis. Studies have shown that the
difference in patient’s TME may lead to a distinct im-
munotherapeutic outcome (8,40), we thus compared the
different abundance of the cell-type population between
responder and non-responder groups. We observed that
a higher proportion of monocytes or macrophages are
present in the TME, with apparently more monocytes or
macrophages in non-responders (Figure 3A, B). A pre-
vious study indicates that CXCL8, a major mediator of
the inflammatory response, is highly expressed in myeloid
cells than lymphoid cells, as well as in non-responders
than responders (40). We confirmed this conclusion on
BLCA GSE145281 aPDL1 dataset (Figure 3B). Interest-
ingly, a similar trend of highly expressed CXCL8 in myeloid
cells of non-responders was also observed in an indepen-
dent melanoma cohort SKCM GSE120575 aPD1aCTLA4
(8; Supplementary Figure S3A–D). Hence, this single-
dataset module enables quick and interactive gene expres-
sion visualization between different cell-types and treat-
ment conditions.

Multiple-dataset comparison. In addition to single-dataset
visualization, TISCH can also facilitate a comparative anal-
ysis of multiple datasets at single-cell resolution to ex-
plore the potential expression heterogeneity or homogene-
ity across multiple cohorts. Users can select multiple genes
from multiple datasets and simultaneously compare the
cell-type distribution and gene expression patterns (Figure
3D). Similar to single-dataset exploration, TISCH also al-
lows the uploading of gene lists to visualize the averaged
expression distribution of candidate gene signatures.

Here, we use an example to demonstrate the us-
age of the multiple-dataset module. It has been re-
ported that LAYN and CCR8 are highly expressed in
tumor-infiltrating Treg cells from colon cancer, non-
small cell lung cancer and liver cancer (6,41). We ob-
served the consistently high expression of LAYN and
CCR8 in Treg cells from four independent datasets
(LIHC GSE98638, NSCLC GSE99254, CRC GSE108989
and CRC GSE146771 Smartseq2; 6,7,20,28), suggesting
the tumor homogeneity in terms of cell phenotype signa-
tures (Figure 3D and Supplementary Figure S4). Besides
the Treg cells, LAYN is also expressed in a subset of ex-
hausted CD8T cells (Figure 3D and Supplementary Fig-
ure S4). As LAYN has been linked to immune suppressive
function of tumor-infiltrating Treg and exhausted CD8T
cells, this indicates the exhausted CD8T cells in the TME
are highly heterogeneous and maybe in different exhaus-
tion stage (6). Collectively, the comparative analysis of user-
defined features across multiple datasets at single-cell reso-
lution will provide a more detailed and comprehensive in-
sight into the cell-type compositions and gene expression
relationships in the TME.

Gene search across datasets. Although the Dataset mod-
ule provides a detailed expression distribution for single or
multiple datasets, it is often required to quickly locate which

cell-type expresses the gene of interest across multiple tu-
mor cohorts and different cancer types. In the Gene mod-
ule, TISCH provides two ways of visualizing the gene ex-
pression from multiple cohorts (Figure 4A). The heatmap
displays the input gene expression at the cell-type averaged
level (Figure 4B). Simultaneously, the grid violin plot re-
flects the expression distribution of the input gene at single-
cell or 10-cell-binned resolution (Figure 4C).

In the previous multiple-dataset module, we have already
shown that CCR8 exhibits cell-type-specific expression in
Treg cells from the colon, non-small cell lung and liver can-
cer TMEs. It is not clear whether CCR8 is expressed in other
cell types or different cancer types. From the Gene mod-
ule analysis, it is explicitly observed that CCR8 also shows
highly specific expression in Treg cells for multiple other
cancer types, such as melanoma, kidney and squamous cell
carcinoma (Figure 4B). In addition, we observed a bimodal
distribution of CCR8 expression in tumor-infiltrating Tregs
cells from multiple cohorts, which is either due to the high
drop-out rate of the scRNA-seq dataset, or caused by the
heterogeneity within the Treg cells (Figure 4C). Therefore,
the Gene module not only empowers the quick location of
a specific gene expression pattern across different cell-types,
but also helps researchers build a holistic picture of gene ex-
pression atlas among different cohorts and cancer-types.

DISCUSSION

Cancer immunotherapy has brought a paradigm shift to
cancer treatment in recent years. Numerous scRNA-seq
datasets have been generated to decipher the complex
cell-type compositions and expression heterogeneity in the
TME. However, a well-curated, uniformly processed and
annotated data portal for TME scRNA-seq data reuse is
still not available. In this context, we present TISCH as
a comprehensive single-cell web portal for cancer biolo-
gists to investigate and visualize single-cell gene expression
in the TME. TISCH shows several advantages compared
to the existing single-cell tumor resources. First, TISCH
is the most comprehensive TME single-cell data portal
to our knowledge, including single-cell transcriptome at-
las of around 2 million cells from 27 cancer types. The di-
verse cell types and cancer types present in TISCH enable
users to systematically and holistically investigate the TME
heterogeneity. Second, all the TISCH datasets were uni-
formly processed, annotated, and manually curated, which
removes the barriers for cross-study comparisons and ben-
efits the data-reuse. Finally, with the meta-information
provided, TISCH allows comparisons between different
patients, immunotherapy treatment groups and response
groups, showing potential clinical indications for cancer
therapy.

In summary, TISCH is a useful repository for TME
single-cell transcriptomic data. It provides a user-friendly
web resource for interactive gene expression visualization of
cellular differences across multiple datasets at the single-cell
resolution. TISCH will be a valuable resource for cancer bi-
ologists and immuno-oncologists to study gene regulation
and immune signaling in the TME, identify novel drug tar-
gets and provide insights on therapy response. In the fu-
ture, we will continue to pay efforts to improve TISCH. We



D1428 Nucleic Acids Research, 2021, Vol. 49, Database issue

A B

C

Figure 4. Gene module of TISCH. (A) CCR8 gene searches across all cancer types and species. (B) The heatmap shows the expression of CCR8 in different
cell types across all datasets with Treg cells. The color indicates the expression level of the gene. (C) The grid violin plot reflects the distribution of gene
expression in different cell types across all datasets with Treg cells.

will maintain the web resources regularly to integrate new
datasets. We will also provide novel functions in TISCH,
such as inferring gene–gene co-expression and cell–cell in-
teractions based on expression correlations at the single-cell
level. As the increasing numbers of public TME scRNA-
seq data are available, we anticipate continued development
and maintenance of the TISCH web resource will benefit
the broader cancer research community.
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