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Alzheimer’s disease (AD) and glaucoma are two distinct multifactorial neurodegenerative
diseases, primarily affecting the elderly. Common pathophysiological mechanisms have
been elucidated in the past decades. First of all both diseases are progressive, with AD
leading to dementia and glaucoma inducing blindness. Pathologically, they all feature
synaptic dysfunction with changes of neuronal circuitry, progressive accumulation of
protein aggregates such as the beta amyloid (Aβ) and intracellular microtubule inclusions
containing hyperphosphorylated tau, which belongs to microtubule associated protein
family. During an early phase of degeneration, both diseases are characterized by
synaptic dysfunction and changes of mitogen-activated protein kinases (MAPK).
Common degenerative mechanisms underlying both diseases are discussed here, along
with recent results on the potential use of the visual system as a biomarker for diagnosis
and progression of AD. Common neuropathological changes and mechanisms in AD
and glaucoma have facilitated the transfer of therapeutic strategies between diseases.
In particular, we discuss past and present evidence for neuroprotective effects of brain-
derived neurotrophic factor (BDNF).
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative progressive disease of the elderly leading to
dementia. The world Alzheimer report (Alzheimer’s Disease International) of 2015 indicated that
46.8 million people worldwide are living with dementia; this number is expected to double every
20 years (Reitz and Mayeux, 2014). There are two forms of AD.

1. Early onset familial alzheimer disease (eFAD). Abnormalities of the amyloid precursor protein
(APP) that render it more amyloidogenic, or defects of processing normal APP cause genetic
forms of AD. The literature estimates that eFAD accounts for approximately 2% of all people
with dementia (approximately 3%–5% of all Alzheimer cases; Mayeux and Stern, 2012; Tanzi,
2012). In these patients, autosomal dominant AD usually develops before age 65 due to
mutations of the APP gene on chromosome 21 or the presenilin 1 and 2 genes (PSEN1 and
PSEN2) on chromosomes 14 and 1, respectively.

2. Sporadic AD (SAD, Late-Onset). SAD is very common in the elderly (approximately 70% of
patients with dementia are attributed to SAD; Reitz and Mayeux, 2014). The cause of SAD is
unknown. The vast majority of SAD is not genetically inherited although some genes such as the
APOE may act as a major risk factor (Liu et al., 2013).
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Vascular diseases such as hypertension and brain ischemia
(Pluta et al., 2013; Origlia et al., 2014), diabetes (Zhao et al., 2008;
Adzovic and Domenici, 2014), traumatic brain injury (Van Den
Heuvel et al., 2007) and mood disorders (Tsuno and Homma,
2009) represent risk factors for SAD; the most important
risk factor for SAD is aging. Neuropathological changes of
AD include classical hallmarks such as the senile plaques
formed by beta amyloid (Aβ), neurofibrillary tangles (NFTs)
and dystrophic neurites containing hyperphosphorylated tau
(Serrano-Pozo et al., 2011). Histopathological findings showed
that the entorhinal cortex and hippocampus are affected during
the earliest phases of AD (Braak and Braak, 1991, 1993). Recent
studies have highlighted an apparent dichotomy between the
progress of histopathological findings in different brain areas
and the occurrence of visual dysfunctions in AD (Moschos
et al., 2012; Sivak, 2013; Yamasaki et al., 2016). More than
60% of people with AD have a decline in one or more visual
function(s). AD causes vision impairment by affecting the eye
(Graw, 2015) and by deterioration of visual functions, from retina
to visual cortex. In particular, clinical studies support a link
between cognitive performance and visual dysfunction even at
an early stage of AD; the gradual loss of memory is frequently
accompanied by alteration of visuospatial function in animal
models and AD patients (Rizzo et al., 2000; Crow et al., 2003).
Recently, we showed an impairment of the visual responses
arising from the magnocellular streams of visual processing
(Sartucci et al., 2010), suggesting that large retinal ganglion cells
(RGCs) are primarily affected in AD. Often, retinal involvement
is an early occurrence in AD (Sivak, 2013) as also suggested
by results obtained by the use of ocular imaging techniques
such as the optical coherence tomography (Moschos et al.,
2012).

Glaucoma is a group of eye disorders, currently recognized
to be multifactorial and progressive, leading to reduction in
vision and eventual blindness. Usually glaucoma affects the
older population. Over 60 million people worldwide were
estimated to be affected with glaucoma, and bilateral blindness
from the disease was estimated to be present in 4.5 million
people with glaucoma (Quigley and Broman, 2006). Glaucoma
is characterized by the progressive degeneration of RGCs till
cell death, optic nerve (ON) atrophy, impairment of visual
function with visual field defects and finally, loss of neurons
in the lateral geniculate nucleus and primary visual cortex. A
generally accepted theory suggests an initial insult to the axons
of RGCs in the ON head region (Quigley, 2011). Several types
of glaucoma are known; these can be divided in primary and
secondary. Primary open-angle glaucoma (POAG) is considered
to be the most common subtype of glaucoma. There are two
main types of POAG: one that occurs with an intraocular
pressure (IOP) higher than normal and represents 60%–70%
of the total POAG (Coleman and Brigatti, 2001; Quigley and
Broman, 2006) and the other occurring with a normal or lower
IOP. Thus, ocular hypertension represents the major risk factor
for glaucoma onset and progression. In the presence of ocular
hypertension, there is no obvious damage to the RGCs and
ON or evidence of visual field changes. However, we recently
showed that retinal responses to patterned visual stimuli (pattern

electroretinogram, P-ERG) together with Brn3 (POU-domain
transcription factor) expressed in RGCs are altered during ocular
hypertension in a murine model of glaucoma (Domenici et al.,
2014). It is reasonable to think that ocular hypertension applies
some stress to RGCs and their circuitry during a phase preceding
the degeneration of RGCs and ON atrophy.

COMMON FEATURES BETWEEN AD AND
GLAUCOMA

Both diseases affect older populations and are neurodegenerative,
chronic and progressive leading to irreversible cell death. AD
and glaucoma are thought to share, at least in part, some
common features such as the Aβ accumulation/aggregation,
tau aggregation and hyperphosphorylation. Both diseases are
characterized by early changes of neuronal circuitry and
phosphorylation of mitogen-activated protein kinases (MAPK)
followed by inflammatory process, glial reaction, reactive
oxygen species production, oxidative stress and mitochondrial
abnormalities, propagation of neurodegenerative processes
leading to cell death. Both diseases are characterized by common
features such as synaptic dysfunction and neuronal cell death
at the level of the inner retina (Sartucci et al., 2010; Sivak,
2013). Taken together, all these observations suggest similar
degenerative mechanisms between AD and glaucoma. Glaucoma
is recognized as a disease frequently associated with AD and
aging (Martinez et al., 1982; Chandra et al., 1986; Tamura et al.,
2006; Tsolaki et al., 2011; Jefferis et al., 2013; Elyashiv et al.,
2014). Conflicting data have been reported among the different
studies carried out to compare AD frequency in glaucoma
patients (Kessing et al., 2007; Yochim et al., 2012). Thus, a clear
epidemiologic relationship between glaucoma and AD remains
elusive.

AMYLOID-DEPENDENT MECHANISMS IN
AD AND GLAUCOMA

Senile plaques in AD comprise aggregates of Aβ filaments,
dystrophic neurites and mitochondrial abnormalities (Hirai
et al., 2001; Serrano-Pozo et al., 2011). Aβ peptides start to
be generated in considerable amounts by the cleavage of APP
due to sequential activation of β- and presenilin catalytic site
of γ-secretases. Aβ can be found in different compositions of
monomers, oligomers, or fibrils (Stromer and Serpell, 2005);
in particular, increasing Aβ tends to form monomers which
aggregate into oligomers, prefibrillar assemblies (protofibrils)
and amyloid fibrils in a concentration-dependent manner. Toxic
Aβ peptides are formed by 36–43 amino acids; the 42 amino
acid peptide (Aβ42) is one of the most neurotoxic amyloidogenic
fragment and represents the chief component of senile plaques.
Increasing Aβ level tends to form oligomers of different length
and composition (Stromer and Serpell, 2005), which are toxic
for neuronal cells (Origlia et al., 2008). In particular, Aβ

oligomeric extracts from cerebral cortex of AD patients (Shankar
et al., 2008) and synthetic Aβ formed by dimers and trimers
(Origlia et al., 2008, 2009) are capable of inhibiting long term
synaptic plasticity in the form of long term potentiation (LTP),
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which is involved in learning/memory in hippocampus and
parahippocampal cortices (Nabavi et al., 2014); this represents
an early step in the disease progression. Oligomeric Aβ

inhibits LTP through phosphorylation of p38 MAPK (Criscuolo
et al., 2014). Increasing synthetic Aβ concentration affects
synaptic transmission, AMPA current (Origlia et al., 2010).
Thus, accumulation of extracellular Aβ is likely to result in
progressive synaptic dysfunctions and cognitive impairment
(Selkoe, 2002). Increasing Aβ induces phosphorylation of
MAPKs in neuronal and non-neuronal cells along with the
induction of pro-inflammatory cytokines, such as the IL-β
(Origlia et al., 2010). Activation of receptors such as the receptor
for advanced glycation end products (RAGE) by Aβ accounts for
progress of synaptic dysfunction, development of inflammatory
and, possibly, oxidative processes, leading cells to degenerate
(Origlia et al., 2010).

The death of the RGCs in glaucoma is preceded by a
remodeling of retinal circuitry, RGC dendritic arbor and
axonal atrophy (Jakobs et al., 2005). Although it is not yet
clear what initiates the death of RGCs in glaucoma, recent
experimental evidence indicates that functional alterations
caused by impairment of synapses (Della Santina et al., 2013)
precede the degeneration of RGCs. A possible interpretation
would be that the impairment of synapses is followed by
consequences for RGC viability. Similarly to AD, enhanced
retinal levels of soluble Aβ may act by impairing the synaptic
circuitry and retrograde trafficking of neurotrophic factors in the
ON axons (Poon et al., 2011; Gupta et al., 2014). Interestingly,
high IOP, which characterizes an early reversible phase of retinal
degeneration, leads to Aβ induction (McKinnon et al., 2002). The
hypothesis can be advanced that stressor stimuli such as the high
IOP in glaucoma may cause accumulation of Aβ in the retina,
contributing to synaptic progressive dysfunction in the inner
retina and impairment of visual responses. However, whether
low amounts of Aβ in the form of oligomers result in synaptic
toxicity with detriment of visual retinal responses during ocular
hypertension is still lacking. Concerning cell death, progressive
degeneration of RGCs is associated with increased production of
Aβ (McKinnon et al., 2002; Guo et al., 2007). Hence, it is assumed
that Aβ leads not only to neuronal cell impairment in AD but
also to retinal cell impairment and degeneration in glaucoma
in general. Yan et al. (1996) showed that the RAGE activated
by Aβ is able to induce neuronal toxicity; it is known that
oligomeric Aβ induces phosphorylation of p38 MAPK through
RAGE activation during an early phase of degeneration in AD
(Origlia et al., 2008). Interestingly, hyperphosphorylation of
p38 MAPK characterizes the degeneration of RGCs in glaucoma,
mainly during an early phase with high IOP and synaptic
dysfunction (Fabiani et al., 2016), whether RAGE is involved
in the mechanisms of glaucoma onset and progression is still
unanswered.

TAU-DEPENDENT MECHANISMS IN AD
AND GLAUCOMA
The tau protein is expressed from the gene known as microtubule
associated protein tau (MAPT) on chromosome 17. Tau is

highly expressed in neurons and is abundant in axons (Lee
et al., 2001). Tau facilitates assembly and the stabilization of
microtubule polymers (Cleveland et al., 1977; Caceres and
Kosik, 1990), modulating microtubule dynamics. Thus, under
physiological conditions tau is mainly expressed within neurons.
Hyperphosphorylated, insoluble and filamentous tau proteins
were shown to be the main component of NFTs, a pathological
hallmark of AD and other tauopathies (Lee et al., 2001). NFTs
accumulate inside the cells, disrupting the intracellular transport
system. Cytoskeletal changes are visible as dystrophic neurites,
pre-tangles, NFTs in the cell bodies of affected neurons in
AD (Iqbal et al., 1984). Interestingly, phosphorylation of tau
potentiates MAPK activation similarly to Aβ and tau is one
of p38 MAPK substrates (Corrêa and Eales, 2012). Studies on
cell viability have shown that misfolding of tau leads to the
aggregation of tau and the appearance of toxic tau species in
the extracellular space (Gómez-Ramos et al., 2006, 2008). The
endogenous intracellular tau may be released as aggregates to the
extracellular space upon neuron degeneration (Gómez-Ramos
et al., 2006). Extracellular tau could be toxic by increasing
intracellular calcium into neighboring neurons (Gómez-Ramos
et al., 2008). The presence of extracellular tau can be due to
other causes, for example exocytosis; the N-terminal region of
tau seems to be required for its secretion (Kim et al., 2010). Tau
can also be released into the extracellular space, as oligomers
(Saman et al., 2012). Indeed, neuronal toxicity may be caused
by tau aggregates, even small and soluble aggregates in the
form of oligomers, which have been identified in AD brains
(Sahara et al., 2008). Recently, it has been shown that oligomeric
extracellular tau is able to interact with cell receptors resulting
in synaptic dysfunction and signaling propagation that could
contribute to onset of neurodegeneration (Fá et al., 2016).
These observations point to the involvement of extracellular tau
aggregates as one of the main agent in the neuron-to-neuron
propagation of neurofibrillary pathology and progression of
toxicity in AD.

Tau was found to be expressed in RGCs and it is involved
in RGC axon development and survival (Lieven et al., 2007).
In an aged retina there is an increase in the number of
RGCs and photoreceptors expressing phosphorylated tau (Leger
et al., 2011). In POAG with ocular hypertension, decreased
total tau and increased phosphorylated tau was reported (Gupta
et al., 2008). Hyperphosphorylation and aggregation of tau
were associated in vivo with reduced axonal transport in
the ON of transgenic mice line expressing human P301S
tau transgene (Gasparini et al., 2011; Bull et al., 2012).
However, whether intracellular and/or extracellular tau plays
a role in glaucoma onset and progression is still an open
question.

NEW PERSPECTIVES ON THERAPEUTIC
APPROACH

Increasing lines of evidence suggest that aggregation and
accumulation of Aβ and Tau eventually leading to MAPK
phosphorylation represent common degenerative mechanisms in
both AD and glaucomatous retinal degeneration. Determining
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the degenerative mechanisms is crucial for development of new
therapeutics. The retina, which is affected in both diseases,
can be an important brain area where to investigate common
mechanisms also in view of new therapeutics. On this ground,
a neuroprotective approach based on neurotrophic factors can
be considered promising. Neuroprotection by neurotrophic
factors was initially investigated for neurodegenerative diseases
such as the AD. Evidence suggests that treatments with
neurotrophic factors such as the brain-derived neurotrophic
factor (BDNF), ciliary neurotrophic factor (CNTF), glial
cell line-derived neurotrophic factor (GDNF) increase the
survival of neurons in animal models of injury and disease
(Alqawlaq et al., 2012). BDNF, together with its receptor
tropomyosin receptor kinase B (TrkB), is highly expressed
in several brain areas under the control of neuronal activity
(Castrén et al., 1992; Pattabiraman et al., 2005). BDNF acts
by binding to the TrkB, activating downstream pathways
including the MAPK, phosphatidylinositol kinase (PI3K) and
phospholipase C-γ (PLC-γ) signaling cascades (Kaplan and
Miller, 2000). BDNF controls synaptic plasticity and cell
survival in the visual system (Liu et al., 2007; Schwartz
et al., 2011; Kimura et al., 2016). BDNF appears to provide
the highest level of protection by supporting both protective
and regenerative functions of RGCs in various models of
ON injury and disease (Peinado-Ramón et al., 1996; Weber
et al., 2008; Parrilla-Reverter et al., 2009). BDNF is locally
produced by retinal cells in the ganglion cell and inner
nuclear layers (Perez and Caminos, 1995); its TrkB receptor
is expressed in RGCs, amacrine and Müller cells (Perez and
Caminos, 1995; Cellerino and Kohler, 1997; Wahlin et al.,
2001).

BDNF level is reduced in the glaucomatous retina (Pease
et al., 2000; Quigley et al., 2000; Fabiani et al., 2016) as
well as in several brain areas of AD (Connor et al., 1997;
Michalski and Fahnestock, 2003; Peng et al., 2005), thus
contributing to advancing the hypothesis that a scarce availability
of BDNF renders neurons more vulnerable. In addition, BDNF
is considered a peripheral marker of neurodegeneration. BDNF
in the tears and/or blood is used for detection and assessment
of neurodegenerative processes in POAG (Ghaffariyeh et al.,
2009, 2011). The interpretation of the results obtained on
BDNF level in blood (serum/plasma) of AD patients is more
complex and contradictory (Komulainen et al., 2008; Faria
et al., 2014). The idea is that cognitive deficits in AD are
related to change of BDNF blood level as well as that of
other neurotrophic factors such as the nerve growth factor
and GDNF in blood (Budni et al., 2015). Interestingly,
Yasutake et al. (2006) showed that there is a decline in
blood BDNF once the disease has progressed to severe level.
Thus, BDNF level in blood represents a marker of cognitive
dysfunction and progress of neurodegeneration in AD and
other neurodegenerative diseases such as Parkinson’s disease
(Scalzo et al., 2010) and vascular dementia (Yasutake et al.,
2006).

BDNF is important for survival and plasticity of the RGCs
in models of ON injury and disease (Peinado-Ramón et al.,
1996; Weber et al., 2008; Parrilla-Reverter et al., 2009). BDNF

delivery into the entorhinal cortex and hippocampus is able
to ameliorate cognitive deficits in aging and experimental AD
models (Nagahara et al., 2009). Thus, the reported results
make BDNF a good candidate to drive full neuroprotective
and repair strategies in neurodegenerative diseases, including
glaucoma and AD. However, the therapeutic approach based
on BDNF is promising if the limits imposed by complex
pharmacokinetic of high molecular weight proteins (for example
BDNF low propensity to pass blood-brain and blood-ocular
barriers following systemic treatment) are definitely defeated.
Recently, we showed that BDNF topical eye treatment in the
form of collyrium was able to increase the retinal level of
BDNF up to rescue visual responses in a murine model of
glaucoma (Domenici et al., 2014). Moreover, the intranasal
delivery of proteins has recently emerged as a non-invasive
and effective method to target high molecular weight proteins
such as the BDNF to several brain areas (Alcalá-Barraza
et al., 2010; Dhuria et al., 2010). Thus, BDNF non-invasive
treatments represent a promising feasible therapeutic strategy
to preserve neuronal function and diminish cell vulnerability
in neurodegenerative diseases such as the AD and glaucoma.
Although at present it is unclear how BDNF concentrations
vary in vivo the use of high BDNF doses should be
avoided to circumvent potential undesired effects such as
the proconvulsant effects (Heinrich et al., 2011; Gu et al.,
2015) and neovascularization (Lam et al., 2011). Additional
therapeutic strategies based on BDNF have been used; these
consist of gene delivery (Nagahara et al., 2013), transplantation
of BDNF-expressing cell grafts (Kurozumi et al., 2005), TrkB
agonists (Hu et al., 2010; Devi and Ohno, 2012; Gu et al.,
2015).

CONCLUSION

We reported that several common disease features appear in
the AD and glaucoma. Based on common disease features that
have been described here, several opportunities exist to develop
common therapeutic strategies. A successful example involves
neuroprotection by BDNF.
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