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Abstract  

The emergency use authorization of two COVID-19 mRNA vaccines in less than a year since the emergence 

of SARS-CoV-2 represents a landmark in vaccinology1,2. Yet, how mRNA vaccines stimulate the immune 

system to elicit protective immune responses is unknown. Here we used a systems biological approach to 

comprehensively profile the innate and adaptive immune responses of 56 healthy volunteers vaccinated 

with the Pfizer-BioNTech mRNA vaccine. Vaccination resulted in robust production of neutralizing 

antibodies (nAbs) against the parent strain and a variant of concern, B.1.351, and significant increases in 

antigen-specific polyfunctional CD4 and CD8 T cells after the second dose. There was also a robust innate 

response induced within the first 2 days of the booster vaccination, compared to the first dose. Specifically, 

there were strongly enhanced: (i) frequency of CD14+CD16+ inflammatory monocytes; (ii) concentration 

of IFN-g in the plasma, which correlated with enhanced pSTAT3 and pSTAT1 levels in monocytes and T 

cells; and (iii) transcriptional signatures of innate responses characteristic of antiviral responses, within 2 

days following booster vaccination, compared to the primary response. Consistent with these observations, 

single-cell transcriptomics analysis of 242,479 leukocytes demonstrated a ~100-fold increase in the 

frequency of a myeloid cell cluster containing monocytes and dendritic cells, enriched in interferon-

response transcription factors (TFs) and reduced in AP-1 TFs, only after the second immunization. Finally, 

we identified distinct molecular pathways of innate activation that correlate with CD8 T cell and nAb 

responses, and identify an early monocyte-related signature that was associated with the breadth of the nAb 

response against the B1.351 variant strain. Collectively, these data provide insights into the cellular and 

molecular responses induced by mRNA vaccines and demonstrate their capacity to prime the immune 

system to mount a more potent innate immune response following booster immunization. 
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Main 

The Pfizer-BioNTech mRNA vaccine, BNT162b2, has been administered to millions of people worldwide, 

and demonstrated a 95% efficacy in preventing severe COVID-19 disease1. Yet, although the antibody and 

T cell responses induced by this vaccine have been characterized in humans2,3, little is known about the 

innate immune responses stimulated by this vaccine, or by mRNA vaccines in general. Systems based 

approaches provide a platform to comprehensively investigate the molecular and cellular networks driving 

innate and adaptive immune responses to vaccines and infections4-6. Here, we used systems tools to analyze 

immune responses in 56 healthy volunteers who received two doses of the BNT162b2 vaccine. The 

demographics and self-reported symptoms of all volunteers are shown in Extended Data Tables 1 and 2. 

Of note, a large proportion of volunteers reported having various mild side-effects such as muscle aches, 

fatigue, headache and chills after secondary vaccination (Extended Data Table 2). 

 

Antigen-specific antibody and T cell responses 

We measured binding and neutralizing antibody (nAb) responses in sera collected at baseline, day 21 and 

day 42 post vaccination. All but three individuals showed detectable binding antibody (bAb) and nAb 

responses after the first dose, which was further boosted by ~5-fold and ~10-fold, respectively, after the 

secondary immunization (Fig. 1a, b). There was no significant difference in the magnitude of bAb or nAb 

responses between males and females (Fig. 1a, b). However, there was a modest inverse correlation of nAb 

responses with age (Extended Data Fig. 1a). Furthermore, bAb responses strongly correlated with nAb 

responses (Extended Data Fig. 1b). Four volunteers had a prior confirmed SARS-CoV-2 infection, of 

which three had undetectable baseline bAb and nAb responses (filled black circles in Fig. 1a, b). However, 

two of them and the fourth volunteer who showed detectable baseline titers increased >30-fold higher than 

the GMT (Geometric Mean Titers) of the rest of the volunteers after one immunization, and did not increase 

further after the boost, consistent with recent observations7. Notably, one participant who had a mild-

moderate COVID-19 eight months prior to vaccination responded poorly even after two doses. We also 

measured nAb response against the variant of concern (VOC) B.1.351 using a live-virus neutralization 

assay in a subset of 30 participants. Consistent with previous studies8, there was an nAb response against 

B.1.351, with a marked (~10-fold) reduction in comparison to the WA1 parent strain (Fig. 1c). The cross-

neutralization potential, measured as a ratio of nAb response between B.1.351 and WA1 strains, also 

showed a modest but statistically insignificant negative association with age (Extended Data Fig. 1c).  

Vaccination also stimulated Spike-specific CD4 and CD8 T cell responses, more readily detectable 

7 days after the secondary immunization (Fig. 1d, f). Consistent with the previous study3, the CD4 T cell 
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responses were primarily Th1-type expressing IL-2, IFN-g or TNF-a although there were low levels of IL-

4 induction (Fig. 1e).  On the other hand, IFN- g and TNF-a were the dominant responses in CD8 T cells 

with 25 of the 31 participants responding with IFN- g response atleast 3 times higher than the baseline (Fig. 

1f, g). Of note, three individuals with no known exposure to SARS-CoV-2 or clinical symptoms associated 

with COVID-19 demonstrated ~0.2% of Spike-specific CD8 T cell responses at the baseline consistent with 

previous studies indicating that 10% of healthy individuals have cross-reactive CD8 T cell responses9. 

There was no significant correlation between T cell response and age or nAbs against the parent or B.1.351 

strains (Extended Data Fig. 1b - d). 

 

BNT162b2 vaccination does not cause new onset autoantibodies or anti-cytokine antibodies (ACA).  

Multiple studies have demonstrated the presence of serum autoantibodies10 11,12 13 14 and ACA5 15 in patients 

infected with SARS-CoV-2, as well as development of new-onset antibodies in a subset of hospitalized 

COVID-19 patients16. We screened serum samples from 31 participants and compared mean fluorescence 

intensity (MFI) of IgG autoantibodies and ACA on days 0, 21, and 42 using a 55-plex antigen array and a 

58-plex cytokine array. We included prototype serum samples from 17 patients with autoimmune and 

immunodeficiency disorders as positive controls. Five vaccinated subjects had preexisting autoantibodies 

(three suggestive of autoimmune thyroiditis, one low level PDC-E2+ associated with primary biliary 

cirrhosis, and one subject positive for connective tissue disease antigens RPP25 (Th/To), PM/Scl75, and 

SSB (La), (Extended Data Fig. 2). Anti-cytokine antibodies were largely absent or were observed at low 

MFI (Extended Data Fig. 3). Two subjects, including one who was also TPO+, had anti-IL-21 

autoantibodies, and two additional subjects had anti-IL-1 antibodies (Extended Data Fig. 4, 5). 

Importantly, in subjects with pre-existing autoantibodies or ACA, none had adverse events, nor did levels 

of pre-existing autoantibodies or ACA change in response to vaccination. New-onset autoantibodies or 

ACA were not observed in any of the vaccinated subjects (Extended Data Fig. 2, 3).  

 

Innate immune responses to mRNA vaccination 

While previous studies have analyzed adaptive immune responses to BNT162b2 vaccination3,17, little is 

known about the innate immune responses induced by BNT162b2. To analyze innate immune responses, 

we first assessed whole blood samples of 27 individuals collected across multiple time points after 

vaccination using a 38-parameter mass cytometry (Cytometry by Time of Flight, CyTOF) panel containing 

an assortment of cytokines and phospho signaling markers (Extended Data Table 3). Unsupervised 
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clustering identified 14 major cell types (Fig. 2a and Extended Data Fig. 6a) which were further subtyped 

manually (Extended Data Fig. 6b). The frequency of intermediate monocytes (CD14+CD16+ monocytes), 

key orchestrators of innate immunity, significantly increased 2 days after the first immunization. Strikingly, 

the frequencies were substantially higher on day 23, 2 days post-secondary vaccination, compared to the 

frequencies at day 2 post primary vaccination (Fig. 2b, and Extended Data Fig. 6c). There was no 

correlation with age (Extended Data Fig. 6d). In addition, the CyTOF analysis revealed greatly enhanced 

phosphoSTAT3 (pSTAT3) and phosphoSTAT1 (pSTAT1) in multiple cell types on day 1 after secondary 

immunization, relative to their modestly increased expression on day 1 post primary immunization (Fig. 

2c, d). These data suggested that the BNT162b2 mRNA vaccination induced a heightened innate immune 

response following secondary immunization, relative to the response after the primary immunization. 

 To further investigate this phenomenon, we measured 92 different cytokines in plasma collected at 

various time points from 31 vaccinees using the Olink platform. Of the 67 cytokines that were detected 

within the dynamic range of the assay, the concentration of two cytokines, IFN-g and CXCL-10, were 

significantly increased on days 1 and 2 after primary immunization (Fig. 2e, left panel). Similar to the 

observations on intermediate monocytes and pSTAT3 signaling, the concentrations of these cytokines were 

increased even further after the secondary immunization (Fig. 2e, right panel). IFN-g in particular rose 11.3-

fold between day 1 and 22 (Fig. 2f). CXCL-10, on the other hand, peaked on day 2 suggesting a response 

driven by IFN- g (Extended Data Fig. 6d). Interestingly, the anti-inflammatory cytokine IL-10 also showed 

a similar pattern of response to that of IFN- g although this trend did not reach statistical significance 

(Extended Data Fig. 6e). We also measured type I IFN (IFN-a and IFN-b) using ELISA, which were 

below detection limit (<2 pg/ml) at any time point after vaccination. Furthermore, there was a strong 

correlation between plasma IFN-g levels and pSTAT1/3 expression levels across several cell types (Fig. 

2g, h). Of note, the concentration of cytokines returned to baseline levels by day 28 (i.e., 7 days post-

secondary vaccination), suggesting origin from an innate immune cell type. Collectively, these data 

demonstrate that vaccination with BNT162b2 stimulates low levels of innate immune responses after 

primary immunization, which strikingly increase after the secondary immunization. 

 

Transcriptional signatures induced by vaccination 

We next investigated the transcriptomic changes induced by BNT162b2 vaccination. We performed bulk 

mRNA sequencing of 185 samples obtained from 31 participants across 7 time points. Six of 185 samples 

did not pass quality control and were removed from the analysis (Extended Data Fig. 7a, b). Strikingly, 

secondary immunization generated a much greater transcriptional response compared to primary 
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immunization, with nearly a four-fold increase of DEGs found at day 22 compared to day 1 (Figure 3a). 

This was consistent with the increased markers of innate immunity demonstrated after secondary 

immunization by both CyTOF and Olink (Figure 2b-h). 

In order to explore the specific transcriptional pathways altered in response to mRNA-based 

vaccination, we performed gene set enrichment analysis (GSEA)18 using a set of previously defined blood 

transcriptional modules (BTMs)19 at each post-vaccination timepoint. Both doses of BNT162b2 induced 

upregulation of antiviral and interferon response modules, including M75, M127 and M111.0 (Figure 3b). 

However, booster immunization led to a significantly broader innate response. In addition to induction of 

antiviral pathways, the boost dose led to increases in dendritic cell activation and upregulation of TLR 

signaling, monocyte, and neutrophil modules on days 22-23, which were previously decreased post-prime 

(Figure 3c). We compared fold changes of the genes within these modules and found that many antiviral 

genes showed a greater increase following the boost dose (Figure 3d), and other inflammatory genes 

switched from downregulation to upregulation between prime and boost (Figure 3e). These results were 

consistent regardless of the baseline timepoint used (Extended Data Fig. 7c, d). A complete list of enriched 

BTMs is presented in Supplementary Table 1. 

As mortality to COVID-19 is highest among the elderly and older populations are known to mount 

inferior responses to many vaccines20,21, an important question we sought to address was whether or not 

there were age-associated differences in response to mRNA vaccination. We correlated the per-person fold 

changes of each gene with participant age and used GSEA to identify age-dependent response pathways. 

On day 22, we observed that younger subjects tended to have greater changes in monocyte, inflammatory 

response, and platelet-related expression, whereas older subjects had increased response in B and T cell 

modules (Figure 3f).  

Finally, given that our serum cytokine analysis revealed that IFN-g responses were also 

significantly higher following booster immunization, we asked whether there was any association between 

the level of IFN-g and the increased innate responses following the boost. Indeed, both interferon response 

and other inflammatory modules were significantly enriched by GSEA when using genes ranked by 

correlation with IFN-g on day 22 (Figure 3g). Furthermore, the average fold changes of these modules also 

correlated with IFN-g (Figure 3h), suggesting that IFN-g may play an important role in driving enhanced 

innate and antiviral expression post-boost. 

 

Single-cell transcriptional response to BNT162b2 vaccination  
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We used cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) to determine the 

cellular origin of the enhanced antiviral and inflammatory gene signatures, and to more broadly characterize 

transcriptional signatures induced by vaccination at the single-cell level. To this end, we analyzed 45 PBMC 

samples from 6 individuals across seven time points (days 0, 1, 2, 7, 21, 22, 28 and 42). We used an “enrich-

mix” strategy in which we enriched dendritic cells (DCs) and mixed with total PBMCs at a ratio of 1:2 to 

capture minor populations such as plasmacytoid dendritic cells (pDCs) sufficiently in the CITE-seq4. After 

preprocessing and quality control, we obtained 242,479 high quality transcriptomes, which were segregated 

into 18 cell clusters (Fig. 4a, Extended Data Fig. 8a, b). Strikingly, one cluster C8 (annotated C8_CD14+ 

BDCA1+ PD-L1+), expressing CD14, VNN, CD1C, FCGRIA, and CD274 and other myeloid markers at 

gene and/or protein level, emerged on day 22, 1-day after secondary vaccination (Fig. 4b). These cells also 

expressed several ISGs including IFI30, IFITM3, WARS and GBP1, and constituted only ~0.01% of the 

Lin- HLA-DR+ population on day 1 after primary immunization but increased almost 100X to ~1% one day 

after secondary immunization (Fig. 4c). Notably, the emergence of C8 correlated with plasma IFN-g levels 

measured by Olink or an independent ELISA assay (performed because data of 2 participants were 

unavailable in Olink due to technical reasons), with the participant  2053 demonstrating a delayed increase 

in IFN-g as well as C8 on day 28 (Extended Data Fig. 8c, d). Furthermore, iterative removal of each cluster 

from a pseudobulk score showed that C8 contributed to IFN and monocyte BTMs observed in the bulk 

transcriptomics data (Extended Data Fig. 8e). To further delineate the cellular composition of C8, we re-

embedded C8 with UMAP, using harmony to correct for participant-specific biases. Using Louvain 

clustering, we resolved seven distinct clusters within the original C8 cluster (Fig. 4d). The cluster C8 proved 

to a heterogeneous mix of classical monocytes (C8_0, C8_1 and C8_3), cDC2 (C8_2) and intermediate 

monocytes (C8_4) as evidenced by the proximity to the original clusters measured by Euclidean distance 

(Fig. 4e). More interestingly, two sub clusters, C8_1 and C8_2, expressed significantly higher ISGs 

compared to their parent clusters (Fig. 4f). Additionally, they showed a reduced expression of AP-1 

transcription factors FOS and JUN. Wimmers et al. recently described an epigenetically-remodeled 

monocyte population emerging in humans 21 days post vaccination with one dose of H5N1/AS03, and 

peaking 21 days post vaccination with two doses. The chromatin accessibility profile of these monocytes 

demonstrated an enhanced accessibility of ISGs and IRF/STAT transcription factors and reduced 

accessibility of AP-1 transcription factors, and more importantly, showed heightened resistance to infection 

with blood-borne viruses22. We asked if C8 represents an analogous cell type at the transcriptional level. 

We found that the C8 has a relatively higher expression of TFs IRF1, STAT1, STAT2, STAT3, IRF8 and 

reduced levels of AP-1 TFs FOS, JUNB, JUND and ATF3, the same TFs that defined the monocyte 

population in the previous study (Fig. 4g). We also confirmed this using an extended set of genes for which 

the chromatin accessibility profile was higher 21 days after H5N1/AS03 vaccination (Fig. 4h).  
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 Next, we set out to identify transcriptional changes induced by vaccination more broadly within 

each cell type. Given that we observed a higher level of pSTAT1/3 in multiple cell types using CyTOF and 

a higher magnitude of IFN response after secondary immunization by bulk RNAseq, we asked if there is 

an enhanced IFN response in multiple cell types or it is primarily driven by the emergence of cluster C8. 

Interestingly, the IFN signature was induced in all cell types present on day 1 and day 22, and the higher 

magnitude of response on day 22 was more evident (Fig. 5a). The decrease in NK cell signatures on day 

22 in bulk RNAseq was another intriguing feature observed in the bulk RNAseq. We have previously shown 

that the NK cells decrease in frequency following TIV vaccination, especially in young adults23. In line 

with this, we observed a significant reduction in the frequency of NK cells on day 22 in the CyTOF dataset 

(Fig. 5b). However, the genes in the NK cell modules were also significantly downregulated within NK 

cells present on day 22 (Fig. 5c). Conversely, the NK cells on day 22 had a higher activation status and 

higher levels of AP-1 transcription factors known to be driven by IL-2-mediated activation of NK cells24 

(Fig. 5d).  

 

Comparison of transcriptional responses with other vaccines 

As mRNA vaccines have only recently received approval for use in humans, the degree to which these 

vaccines induce similar or distinct immune responses compared to other vaccine types, such as inactivated 

or live attenuated vaccines, is unknown. To address this, we utilized a set of previously published vaccine 

trials from our group as well as several publicly available datasets to perform a comparative analysis with 

Pfizer-BioNTech BNT162b2 (see Extended Data Table. 4 for a summary of included vaccine datasets). 

In order to compare the relative similarity in transcriptional responses between vaccines, we generated 

similarity matrices through pairwise correlations of mean gene fold changes between vaccines at days 1 

and 7 post-vaccination. While the day 1 response to the prime dose of BNT162b2 showed little overlap 

with other vaccines, the day 1 boost response was broadly similar to a group of vaccines containing either 

potent adjuvants (H5N1+AS03), live viral vectors (Ebola and HIV), or inducing a recall response 

(inactivated influenza) (Fig. 6a). Meanwhile, day 7 responses to both the prime and boost dose exhibited 

very weak correlation both between themselves and with other vaccines, suggesting little commonality in 

induced transcriptional signatures (Fig. 6b). 

To identify the specific pathways induced by BNT162b2 that were unique or shared with other 

vaccines, we performed BTM-level GSEA on each vaccine dataset using genes ranked by pre- versus post-

vaccination t-statistic at each timepoint. We found that on day 1, the boost dose induced a robust innate 

response including upregulation of modules involved in antigen presentation, dendritic cell and monocyte 

activation, interferon signaling, and inflammatory responses, all of which were commonly induced by the 
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Ebola and HIV live viral vector vaccines, seasonal influenza vaccine, and both doses of H5N1+AS03 (Fig. 

4c). Conversely, the prime dose produced a much narrower response, only activating a limited set of 

interferon signaling modules. Instead, on day 7 the inverse trend occurred, with the boost dose having 

almost no commonly enriched modules but the prime dose sharing a cell cycle-related transcriptional 

signature with many vaccines (Extended Data Fig. 9a). However, in most other vaccines, the cell cycle 

signature is also associated with upregulation of B cell and plasma cell modules, reflecting the emergence 

and expansion of antibody-secreting cells19,23. This induction of B cell and plasma cell modules was absent 

in the BNT162b2 prime dose day 7 response (Extended Data Fig. 9b). Given that BNT162b2 successfully 

promoted a robust antibody response (Fig. 1), the lack of any detectable plasma cell or B cell signature on 

day 7, particularly post-boost, was surprising and unlike other vaccine responses that we are aware of. I. It 

is possible that the kinetics of the plasma cell response to this vaccine are more delayed and this signature 

was therefore not captured at the day 7 timepoint.  

 

Transcriptional correlates of antibody and T cell responses 

As cellular and humoral immunity are the chief functional components mediating protection from infection, 

a key question is whether early transcriptional signatures exist that are associated with either the antibody 

or T cell responses following vaccination with mRNA vaccines. We therefore used GSEA to identify 

transcriptional modules whose expression at various timepoints post-vaccination was correlated with either 

the day 42 nAb or day 28 CD8+ IFN-g+ T cell response (Fig. 7a). In general, there was little overlap 

between signatures associated with the nAb and IFN-g CD8 T cell response, suggesting that there are 

distinct molecular pathways leading to cellular and antibody responses to BNT162b2. On day 22 (1-day 

post-boost), there was a striking divergence in signatures, with monocyte-related modules correlated with 

nAb responses while interferon and antiviral signatures highly associated with the later day 28 IFN-g CD8 

T cell response (Fig. 7b). Surprisingly, plasma cell and cell cycle modules, which have previously been 

identified at day 7 as robust signatures of antibody response to other vaccines such as inactivated influenza 

vaccine23, were not associated at day 7 following either the prime or boost dose with the day 42 nAb titers. 

 The continued evolution of SARS-CoV-2 variants is a serious concern for the success of ongoing 

vaccination efforts. Therefore, we evaluated whether there are innate correlates of the cross-neutralization 

potential induced by vaccination. To this end, we defined a cross-neutralization index, using a ratio of 

variant to WA1 nAb titers, and used an enrichment approach to identify correlates of cross-neutralization. 

Monocyte and neutrophil BTMs as well as TLR and innate immune pathways were highly associated with 

cross-neutralization index (Fig. 7c) suggesting a central role for myeloid cells in the effective immunity 

induced by mRNA vaccination. More interestingly, the frequency of classical monocytes at peak, 2 days 
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post-secondary vaccination, as measured by CyTOF, strongly correlated with cross-neutralization index 

(Fig. 7d). To further evaluate this, we determined a gene score that defines C3, the classical monocyte 

cluster in the CITE-seq data, and asked if this gene score in the bulk RNAseq also correlates with cross-

neutralization. Clearly, there was a strong correlation (Fig. 7e). Collectively, these data demonstrate that 

while IFN signatures are associated with the CD8 T cell responses, monocyte and neutrophil gene 

signatures and TLR signaling BTMs strongly correlate with an nAb response against the WA1 as well as 

the B.1.351 strain. 

In summary, our study describes a systems-based analysis that provides novel insights into the 

innate and adaptive immune responses to the Pfizer-BioNTech mRNA vaccine. We used a multiomics 

approach to define early transcriptional correlates of T cell and antibody responses. The data also 

demonstrate an enhanced innate immune response following secondary immunization indicating an innate 

memory-like response25,26. The mechanisms underlying the enhanced secondary innate response, and 

whether or not T and B cells provide feedback to stimulate an enhanced innate response, warrant further 

investigation. Importantly, our analysis of transcriptional signatures of BNT162b2 vaccination relative to 

those induced by six other vaccines provides a useful benchmark to contextualize mRNA vaccines with 

other vaccine types including live-viral vectors, recombinant viruses, adjuvanted and unadjuvanted subunit 

vaccines.  
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Figure legends 

Fig. 1.  BNT162b2 vaccination induces robust antibody and T cell responses 

a - b, SARS-CoV-2 S-specific IgG titers in sera measured by ELISA (a) and authentic virus nAb titers 

measured by FRNT assay (b) at time points indicated on X-axis. The numbers within the plots represent 

GMT. c, Authentic virus nAb responses against the wild-type Washington (WA1) or B.1.351 variant of 

concern measured in sera collected on day 42. The numbers within the plots represent fold change between 

WA1 and B.1.351 strains. The statistical differences between groups were calculated using two-sided 

Mann-Whitney rank-sum test. Each dot represents a participant (N = 56).  d, f, Spike-specific CD4 (d) and 

CD8 (f) T cell responses measured in blood at time points indicated on the X-axis. The statistical difference 

between time points within each group is calculated using two-sided Wilcoxon matched-pairs signed-rank 

test (*p < 0.05, **p < 0.01, ***p < 0.001 and **** p < 0.0001). Each dot represents a participant. We 

analyzed 31 participants at baseline, days 7, 21 and 28 and five participants at day 42. e, g, Polyfunctional 

profiles of CD4 (e)  and CD8 (g) T cells. The pie charts represent the proportion of CD4 (e) and CD8 (g) T 

cells expressing one, two or three cytokines as shown in the legend. Blue and red dots indicate female and 

male participants, respectively. 

 

Fig. 2.  Innate immune responses induced by BNT162b2 vaccination. 

a, Representation of CyTOF-identified cell clusters in whole blood (or Lin- (CD3- CD20- CD66b-) HLA-

DR+ cells visualized by UMAP in two-dimensional space. b, Frequency of inflammatory monocytes (CD3- 

CD20- CD66b- CD56- HLA-DR+ CD14+ CD16+) as a proportion of live CD45+ cells at time points indicated 

on X-axis. c, A heatmap representing fold change (FC) of pSTAT3 and pSTAT1 levels in comparison to 

baseline in cell types indicated on Y-axis. These changes were statistically significant between the increase 

on day 1 after primary, and day 1 after secondary immunizations, as measured using two-sided Mann-

Whitney rank-sum test (p < 0.05). d, FC in pSTAT3 levels in the indicated cell types on day 1 and day 22, 

compared to primary and secondary baselines, respectively. e, Volcano plots showing plasma cytokines 

significantly increased after primary (left panel) and secondary (right panel) vaccinations. f, Plasma IFN-g 

levels after vaccination measured by Olink multiplex cytokine platform. g, Heatmap representation of two-

sided Spearman’s correlation between increase in plasma IFN-g on day 1 post-secondary vaccination and 

pSTAT3 or pSTAT1 levels in different cell types. The p-values were corrected for multiple testing. h, 

Scatter plots showing spearman’s correlation between pSTAT3 levels in CD4 T cells (left panel) and 
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inflammatory monocytes (right panel) and plasma IFN-g levels. In b and f, the statistically significant 

differences between the peak and baseline time points were measured using two-sided Wilcoxon matched-

pairs signed-rank test. The difference peak time points were measuring using two-sided Mann-Whitney 

rank-sum test (*p < 0.05, **p < 0.01, ***p < 0.001 and **** p < 0.0001). Blue and red dots indicate female 

and male participants, respectively. 

 

Fig. 3.  Transcriptional signatures induced by BNT162b2 vaccination. 

a, Number of genes differentially expressed (absolute log2 fold-change > 0.2 and Wald p < 0.01) at each 

timepoint. Days 1, 2, and 7 were compared against day 0; days 22, 23, and 28 were compared against day 

21. Number of upregulated and downregulated genes are shown in orange and green, respectively. b - c, 

Interferon (b) or innate (c) BTMs that were significantly enriched (false discovery rate [FDR] < 0.05, 

absolute normalized enrichment score [NES] > 2) after vaccination. GSEA was used to identify increased 

(red) or decreased (blue) enrichment of BTMs within gene lists ranked by Wald statistic between pre- and 

post-vaccination at each timepoint, using the baselines described in (a). d - e, Temporal expression patterns 

of genes within modules M111.0 (d) or M16 (e). Black lines represent the median fold change of all genes. 

f, BTMs on day 22 significantly associated with age. g, BTMs on day 22 significantly associated with the 

increase in IFN-g. GSEA was used to identify enrichment of BTMs within gene lists ranked by correlation 

with participant age (f) or IFN-g day 22/21-fold change (g). Modules shown are those with NES > 2 and 

FDR < 0.05. h - i, Scatter plots showing the Pearson correlation of the mean day 22/21-fold change of genes 

in interferon modules M127, M75, M150, M111.1 and M68 (h) or module M16 (i) with IFN-g. 

 

Fig. 4.  Single-cell transcriptional response to BNT162b2 vaccination. 

a, UMAP representation of cell types identified by single-cell transcriptional profiling of 242,479 PBMCs. 

b, Feature plots across time points showing cluster C8 in red and all the other cell types in grey. c, Frequency 

of cluster C8 as a proportion of Lin- HLA-DR+ cell clusters (C3, C4, C7, C8, C11 and C13) in PBMCs 

identified by single-cell transcriptional profiling. d, UMAP representation of subclusters within C8 resolved 

using Louvain clustering. e, Heatmap showing Euclidean distance between subclusters within C8 and the 

rest of the cell types identified by single-cell profiling. f, Differentially expressed genes (DEGs) were 

determined between C8_2 or C8_1 and their closest cell clusters. The genes were ranked by FC between 

C8 and their parental clusters and plotted. Genes in red, green and blue fonts represent genes upregulated, 
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unchanged or downregulated in C8 subcluster compared to its closest parental cluster. g, Heatmap showing 

scaled expression of key interferon-response and AP-1 transcription factors determined in the previous 

study by Wimmers, et al. 2021 in myeloid cell clusters in this study. h, Heatmap showing an extended set 

of genes that showed enhanced accessibility and increased expression on day 21/22 following H5N1/AS03 

vaccination and activation markers in myeloid cell clusters. Blue and red dots indicate female and male 

participants, respectively. 

 

Fig. 5.  Broad transcriptional changes following BNT162b2 vaccination 

a, Significantly enriched interferon BTMs (false discovery rate [FDR] < 0.05, absolute normalized 

enrichment score [NES] > 2) across clusters over time. Days 1 and 7 were compared against day 0; days 22 

and 28 were compared against day 21. GSEA was used to identify increased (red) or decreased (blue) 

enrichment of interferon BTMs. b, Frequency of NK cells as a proportion of live CD45+ cells in whole at 

time points indicated on X-axis. The statistical differences between time points were analyzed using two-

sided Wilcoxon ranked-pairs.  Blue and red dots indicate female and male participants, respectively. c, 

Significantly enriched NK cell modules (FDR < 0.05, absolute NES > 2) within the NK cell cluster. 

Timepoint comparisons and GSEA procedure were the same as in a. d, Log2 fold change of top 50 DEGs 

between NK cells from day 22 samples versus day 1 samples. 

 

Fig. 6.  Comparison of transcriptional responses with other vaccines 

a, Correlation matrix of vaccines on day 1. Spearman correlation was computed using mean fold changes 

over all genes between each pair of vaccines. Circle size and color represents the correlation coefficient. b, 

Correlation matrix of vaccines on day 7. c, Circos plot of the overlap across vaccines in enriched BTMs on 

day 1. GSEA was performed on genes ranked by day 1 versus baseline t-statistic in each vaccine. Each 

segment of the circle represents one vaccine, and each point in a segment represents a single BTM. Bars in 

outer circle represent the NES of significantly enriched BTMs (FDR<0.05). Lines connect BTMs with a 

significant positive enrichment shared between vaccines. Inner circle boxes and line colors represent the 

functional groups of the BTMs. 

 

Fig. 7.  Transcriptional correlates of nAb and T cell responses 
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a, BTMs associated with the nAb or CD8 IFNg T cell response to BNT162b2. GSEA was run using BTMs 

on gene lists ranked by correlation with either day 42 nAb titers or day 28 antigen-specific CD8+ IFN-g+ 

T cell frequencies. Modules shown are those with NES > 2 and FDR < 0.05. b, Correlation of genes in 

M75, an antiviral BTM, on day 22 with the day 42 nAb response (top) or day 28 antigen-specific CD8+ 

IFN-g+ T cell frequencies (bottom). Color represents the Pearson correlation coefficient. c, BTMs 

correlated with cross-neutralization index, ratio of B.1.351:WA1 nAb titers, analyzed as in (a). Modules 

shown are those with NES > 2 and FDR < 0.05. d, Frequency of classical monocytes (Lin- HLA-DR+ CD14+ 

CD16- cells) in whole blood samples analyzed by CyTOF. e - f, Scatter plots of two-sided Spearman’s 

correlation between cross-neutralization index and peak (day 23) classical monocyte frequency (e) or a 

gene score created in the bulk RNAseq data using the cluster-defining genes of the classical monocyte 

cluster, C3, in CITE-seq. 
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Extended Data Table 1. Participant demographics 

Variable Total N = 56 
N (%) 

Age (median [range]) 36 (19-79) 
Sex  

Female 28 (50) 
Male 28 (50) 

Race  
White 27 (48.2) 
Asian 22 (39.3) 
Black 4 (7.1) 
Native American 1 (1.8) 
Other 2 (3.6) 

Ethnicity  
Not of Hispanic, Latinx, or Spanish origin 54 (96.4) 
Hispanic, Latinx, Spanish origin 2 (3.6) 

Comorbidities  
Lung disease 8 (14.2) 
Diabetes mellitus 2 (3.6) 
Hypertension 1 (1.8) 
Cardiovascular 2 (3.6) 
Liver disease 0 (0) 
Renal diseases 1 (1.8) 
Cancer 1 (1.8) 
Hematological disorder 1 (1.8) 
Pregnancy 0 (0) 
Neurological 4 (7.1) 
HIV 0 (0) 
Solid organ transplant recipient 0 (0) 
Bone marrow transplant recipient 0 (0) 
Hyperlipidemia 1 (1.8) 
Gastrointestinal 4 (7.1) 
Psychiatric 1 (1.8) 
Genitourinary disorder 3 (5.3) 
Hypersensitivity 6 (10.7) 
Autoimmune disorder 4 (7.1) 

Confirmed SARS-CoV-2 infection 4 (7.1) 
Time from SARS-CoV-2 infection to baseline 
visit in days (median [range]) 

180 (48-270) 
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Extended Data Table 2. Vaccine side effects and symptoms 

Variable Total N=56 
N (%) 

Variable Total N=56 
N (%) 

p-value 

First Dose  Second Dose   
None 
Fever 
Site tenderness 
Site swelling 
Site redness 
Muscle aches 
Fatigue 
Headache 

11 (19.6) 
2 (3.6) 

39 (69.6) 
6 (10.7) 
4 (7.1) 

15 (26.8) 
15 (26.8) 
10 (17.9) 

None 
Fever 
Site Tenderness 
Site Swelling 
Site Redness 
Muscle aches 
Fatigue 
Headache 

5 (8.9) 
7 (12.5) 
40 (71.4) 
16 (28.6) 
14 (25) 

29 (51.8) 
21 (37.5) 
17 (30.4) 

0.177 
0.154 
0.881 
0.029 
0.018 
0.015 
0.28 
0.167 

Chills 2 (3.6) Chills 10 (17.9) 0.03 
Joint pain 1 (1.8) Joint Pain 4 (7.1) 0.349 
Nausea 1 (1.8) Nausea 2 (3.6) 0.49 
Difficulty breathing 1 (1.8) Difficulty Breathing 1 (1.8) 1 
Hives 0 (0) Hives 1 (1.8) 0.993 
Swelling 0 (0) Swelling 2 (3.6) 0.468 
Tachycardia 0 (0) Tachycardia 1 (1.8) 0.993 
Rash 0 (0) Rash 2 (3.6) 0.468 
Dizziness 2 (3.6) Dizziness 5 (8.9) 0.317 
Sweating 2 (3.6) Sweating 1 (1.8) 1 
Brain fog 1 (1.8) Brain Fog 0 (0) 0.993 
Loss of appetite 1 (1.8) Loss of appetite 0 (0) 0.993 
Rhinitis 1 (1.8) Rhinitis 0 (0) 0.993 
Paresthesia 1 (1.8) Paresthesia 1 (1.8) 1 
Diarrhea 1 (1.8) Diarrhea 0 (0) 0.993 
Vertigo 0 (0) Vertigo 1 (1.8) 0.993 

Site of injection  Site of injection   
Right arm 5 (8.9) Right arm 8 (14.3)  
Left arm 51 (91.1) Left arm 48 (85.7)  
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Extended Data Table 3. CyTOF panel 
  

Conjugate Target 
89Y CD66b 

113In CD57 
141Pr HLA-DR 
142Nd CD19 
143Nd CD127 
144Nd IL4 
145Nd CD4 
146Nd IgD 
147Sm CD20 
148Nd CD34 
149Sm pSTAT6 
150Nd pStat5 (Y694) 
151Eu CD123 (IL-3R) 
152Sm Siglec-9 
153Eu pStat1 (Y701) 
154Sm H3K27ac 
155Gd CD27 
156Gd CD45 
157Gd CD25 
158Gd pStat3 (Y705) 
159Tb CD11c 
160Gd CD14 
161Dy Ki67 
162Dy CD69 
163Dy TCRgd 
164Dy Arginase-1 
165Ho pCREB (S133) 
166Er CD16 
167Er CD38 
168Er CD8a 
169Tm CD45RA 
170Er CD3 
171Yb Granzyme-B 
172Yb CD15 
174Yb IFN-g 
175Lu pS6 
176Yb CD56 
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Extended Data Table 4. Vaccine meta-analysis datasets 

Vaccine Pathogen Vaccine Type Adjuvant/ 
Vector 

Timepoints 
used 

N GEO/ 
ImmPort 

BNT162b2 SARS-CoV-2 mRNA mRNA-
LNP 

0,1,7, 
21,22,28 

31  

IIV Seasonal 
Influenza 

Inactivated None 0,1,7 19 GSE78813/ 
SDY56 

VZV Varicella zoster Live 
attenuated 

VZV 0,1,7 31 GSE79396/ 
SDY984 

YF17D Yellow fever Live 
attenuated 

YF17D 0,1,7 25 GSE13486/ 
SDY1264 

rVSV-ZEBOV Ebola Recombinant 
viral vector 

VSV 0,1,7 7 GSE97590/ 
SDY1373 

MRKAd5/HIV HIV Recombinant 
viral vector 

Ad5 0,1,7 10 GSE22768/ 
SDY1291 

H5N1+AS03 H5N1 
Influenza 

Inactivated AS03 0,1,7, 
21,22,28 

33 GSE102012 

MPSV4 Meningococcus Polysaccharide None 0,7 13 GSE52245/ 
SDY1260 

MCV4 Meningococcus Conjugate None 0,7 17 GSE52245/ 
SDY1260 
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Extended Data Fig. 1 
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Correlation between antibody, T cell responses and age. 

a – c, Correlation between nAb responses and age (a), binding antibody and nAb titers (b), age and cross-

neutralization index, ratio between nAb responses against B.1.351 to WA1 strains. d, Correlation between 

Spike-specific CD4 (left panel) and CD8 (right panel) T cell frequencies and nAb responses. e, Correlation 

between CD4 T cell frequencies, IFN-g+ (left panel) or polyfunctional CD4 T cells expressing IL-2, IFN-g 

and TNF-a (right panel). f, Correlation of Spike-specific CD4 (left panel) and CD8 (right panel) T cell 

responses with age. All correlations are two-sided Spearman’s correlation.   
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Extended Data Fig. 2 

 

 
 
Autoantibodies in vaccinated subjects.  

Heatmap depicting serum IgG antibodies discovered using a 55-plex bead-based protein array containing 

the indicated autoantigens (Y-axis). Autoantigens are grouped based on disease (e.g., scleroderma, myositis 

and overlap syndromes such as mixed connective tissue disease (MCTD), SLE/Sjögren’s, and 

gastrointestinal and endocrine disorders), DNA-associated antigens, and antigens associated with tissue 

inflammation or stress responses. Vaccinated subjects are shown in the left panel (n=30 subjects, on day 0, 

day 21, and day 42 and n=1 on day 0 and day 21), and eight prototype autoimmune disorders are shown on 

the (right panel). Colors correspond to the MFI values shown at far right.   

  



 35 

Extended Data Fig. 3 

 
Anti-cytokine antibodies in vaccinated subjects.   

Heatmap using a 58-plex array of cytokines, chemokines, growth factors, and receptors. Cytokines are 

grouped on the y-axis by category (interferons, interleukins, and other cytokines/growth factors/receptors), 

while serum samples are shown on the x-axis. Vaccinated subjects are shown in the left panel (n=30 

subjects, on day 0, day 21, and day 42 and n=1 on day 0 and day 21). Prototype samples from patients with 

immunodeficiency disorders are shown in the right panel and include three patients with Atypical 

Mycobacterial Infections (AMI), three patients with Pulmonary Alveolar Proteinosis (PAP), and three 

patients with Autoimmune Polyendocrine Syndrome Type 1 (APS1).  Colors correspond to the MFI values 

shown at far right.    
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Extended Data Fig. 4 
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Pre-existing autoantibodies do not change in vaccinated subjects. Bar plots are shown for representative 

patients with high baseline MFI autoantibodies for select antigens (a-f).  a. Anti-RPP25 (Th/To);  b. Anti-

PM/Scl-75;  c.  Anti-SSB/La;  d. Anti-PDC-E2;  e.  Anti-Thyroperoxidase, TPO;  f. Anti-Thyroglobulin, 

TG.    
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Extended Data Fig. 5 
 

Pre-existing ACA do not change in vaccinated subjects. Bar plots are shown for representative patients 

with high baseline MFI ACA. Group bars represent antigens for baseline (black), D21 (grey), and D42 

(white) timepoints.   a. Subject 2012 ACA measurements;  b. Subject 2043 ACA measurements;  c. Subject 

2052 ACA measurements;  d. Subject 2053 ACA measurements.  
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Extended Data Fig. 6 

 
Innate immune responses to BNT162b2 vaccination.  

a, Heatmap showing expression of markers in the different cell clusters identified in the CyTOF dataset. b, 

Gating strategy identifying immune cell populations by the CyTOF panel. c, Mass cytometry plots showing 

CD14/CD16 expression of Lin- HLA-DR+ population. d, Scatter plot showing two-sided Spearman’s 

correlation between frequency of CD14+ CD16+ intermediate monocytes on day 23 and age. e – f, Plasma 
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levels of CXCL-10 (d) and IL-10 (e) determined by Olink. The statistical differences were analyzed using 

two-sided Wilcoxon matched-pairs signed-rank test or two-sided Mann-Whitney rank-sum test (*p < 0.05, 

**p < 0.01, ***p < 0.001 and ****p < 0.0001). Blue and red dots indicate female and male participants, 

respectively. 
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Extended Data Fig. 7 

 

Transcriptomic signatures induced by BNT162b2 vaccination. 

a, PCA analysis of bulk RNAseq samples. b, RLE analysis of bulk RNAseq data. c, Number of genes 

differentially expressed (absolute log2 fold-change > 0.2 and Wald p < 0.01) at each timepoint. All time 

points were compared to universal baseline, day 0. Number of upregulated and downregulated genes are 

shown in orange and green, respectively. d, BTMs that were significantly enriched (false discovery rate 

[FDR] < 0.05, absolute normalized enrichment score [NES] > 2) after vaccination. GSEA was used to 

identify increased (red) or decreased (blue) enrichment of BTMs within gene lists ranked by Wald statistic 

between pre- and post-vaccination at each timepoint. e - f, Temporal expression patterns of genes within 

modules M75 (e) or M11 (f). Black lines represent the median fold change of gene expression across 

participants. 
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Extended Data Fig. 8 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
CITE-seq analysis of PBMCs. 
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a - b, Fraction of cells in each cluster of CITE-seq data classified by subject (a) or time point (b), determined 

from all single cells that passed quality control. c, Frequency of C8 as a proportion of Lin- HLA-DR+ 

population or plasma IFN-g levels as measured in Olink. d, Spearman’s correlation between plasma IFN-g 

levels measured by ELISA and C8 frequency. e, Pseudobulk gene expression score showing the 

contribution from each cluster. 
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Extended Data Fig. 9 

 

Extended Data Fig. 9.  Comparison of transcriptional responses with other vaccines 

a, Circos plot of the overlap across vaccines in enriched BTMs on day 7. GSEA was run on genes ranked 

by day 7 versus baseline t-statistic in each vaccine. Each segment of the circle represents one vaccine, and 

each point in a segment represents a single BTM. Bars in outer circle represent the NES of significantly 

enriched BTMs (FDR<0.05). Lines connect BTMs with a significant positive enrichment shared between 

vaccines. Inner circle boxes and line colors represent the functional groups of the BTMs. b, Heatmap of 

cell cycle, B cell, and plasma cell BTMs on day 7. Cell cycle, B cell, and plasma cell BTMs that were 

significantly enriched (FDR<0.05) on day 7 after either dose of BNT162b2 are shown. Color represents 

significant NES. 
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Methods 

Human subjects and experimentation 

Fifty-six healthy volunteers were recruited for the study under informed consent. The study was approved 

by Stanford University Institutional Review Board (IRB 8269) and was conducted within full compliance 

of Good Clinical Practice as per the Code of Federal Regulations. The demographics of all participants 

were provided in Extended Data Table 1. 

 

Anti-S binding ELISA 

SARS-CoV-2 Spike protein was purchased from Sino Biologicals. 96-well high binding plates were coated 

with 100 ng of S protein diluted at a concentration of 2 µg/ml in PBS. Next morning, the plates were washed 

once, blocked with 3% non-fat milk in PBS containing 0.1% Tween 20 (PBST) for 1 h at room temperature. 

Sera samples serially diluted in 1% non-fat milk containing PBST was added to the plates and incubated at 

37ºC for 1 h. The plates were washed 3X with PBST, horseradish peroxidase conjugated goat anti-monkey 

IgG (g-chain specific, Alpha Diagnostics, 1:4,000 dilution), in PBS-T containing 1% non-fat milk was 

added and incubated for 1 hour at RT. Wells were washed 3x with PBST before addition of 3,3',5,5'-

Tetramethylbenzidine (TMB) substrate solution. The reaction was stopped after 12 minutes by addition of 

0.16 M sulfuric or 1 M hydrochloric acid. The optical density (OD) at 450 nanometers was measured with 

a Biorad microplate reader.  

 

Focus Reduction Neutralization Titer assay   

Neutralization assays with authentic SARS-CoV-2 virus were performed as previously described27. Sera 

samples were serially diluted (three-fold) in serum-free Dulbecco’s modified Eagle’s medium (DMEM) in 

duplicate wells and incubated with 100–200 FFU infectious clone derived SARS-CoV-2-mNG virus28  at 

37 °C for 1 h. The Ab-virus mixture was added to VeroE6 cell (C1008, ATCC, #CRL-1586) monolayers 

seeded in 96-well blackout plates and incubated at 37 °C for 1 h. Post-incubation, the inoculum was 

removed and replaced with pre-warmed complete DMEM containing 0.85% methylcellulose. Plates were 

incubated at 37 °C for 24 h. After 24 h, methylcellulose overlay was removed, cells were washed twice with 

PBS and fixed with 2% paraformaldehyde in PBS for 30 min at room temperature. Following fixation, 
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plates were washed twice with PBS and foci were visualized on a fluorescence ELISPOT reader (CTL 

ImmunoSpot S6 Universal Analyzer) and enumerated using Viridot29. The neutralization titers were 

calculated as follows: 1 - (ratio of the mean number of foci in the presence of sera and foci at the highest 

dilution of respective sera sample). Each specimen was tested in two independent assays performed at 

different times. The FRNT-mNG50 titers were interpolated using a 4-parameter nonlinear regression in 

GraphPad Prism 8.4.3. Samples with an FRNT-mNG50 value that was below the limit of detection were 

plotted at 10. For these samples, this value was used in fold reduction calculations.  

 

Focus Reduction Neutralization Titer assay against the variants of concern 

The wildtype infectious clone SARS-CoV-2 (icSARS-CoV-2), derived from the 2019-

nCoV/USA_WA1/2020 strain, was propagated in VeroE6 cells (ATCC) and sequenced28. The RSA 

B.1.351 variant was isolated as previously described30. Our laboratory plaque-isolated the virus on VeroE6 

cells followed by a single round of propagation on VeroE6 cells (MOI 0.05), aliquoted to generate a 

working stock and sequenced. Viral titers were determined by focus-forming assay on VeroE6 cells. Viral 

stocks were stored at -80°C until use. 

FRNT assays were performed as previously described for the WT FRNT assay. The assay with 

each variant was performed simultaneously with WT controls. The samples were diluted at 3-fold in 8 serial 

dilutions using DMEM in duplicates with an initial dilution of 1:10 in a total volume of 60 μl. Serially 

diluted samples were incubated with an equal volume of SARS-CoV-2, WT or the variant, (100-200 foci 

per well) at 37° C for 1 hour in a round-bottomed 96-well culture plate. The Ab-virus mixture was then 

added to Vero cells and incubated at 37° C for 1 hour. Post-incubation, the Ab-virus mixture was removed 

and 100 µl of prewarmed 0.85% overlay was added to each well. Plates were incubated at 37°C for 24 

hours. After 24 hours, methylcellulose overlay was removed, and cells were washed three times with PBS. 

Cells were then fixed with 2% paraformaldehyde in PBS (Electron Microscopy Sciences) for 30 minutes. 

Following fixation, plates were washed twice with PBS and 100 µl of permeabilization buffer (0.1% BSA, 

Saponin in PBS), was added to the fixed Vero cells for 20 minutes. Cells were incubated with an anti-

SARS-CoV spike primary Ab directly conjugated to biotin (CR3022-biotin) for 1 hour at room temperature. 

Next, the cells were washed three times in PBS and avidin-HRP was added for 1 hour at room temperature 

followed by three washes in PBS. Foci were visualized using TrueBlue HRP substrate (KPL, # 5510-0050) 

and imaged on an ELISPOT reader (CTL). 
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Intracellular cytokine staining assay 

Antigen-specific T cell responses were measured using the ICS assay as described previously31. Live frozen 

PBMCs were revived, counted and resuspended at a density of 2 million live cells/ml in complete RPMI 

(RPMI supplemented with 10% FBS and antibiotics). The cells were rested overnight at 37°C in CO2 

incubator. Next morning, the cells were counted again, resuspended at a density of 15 million/ml in 

complete RPMI and 100 µl of cell suspension containing 1.5 million cells was added to each well of a 96-

well round-bottomed tissue culture plate. Each sample was treated with two conditions, no stimulation, and 

a peptide pool spanning the S protein at a concentration of 1 µg/ml of each peptide in the presence of 1 

µg/ml of anti-CD28 (clone CD28.2, BD Biosciences) and anti-CD49d (clone 9F10, BD Biosciences) as 

well as anti-CXCR3 and anti-CXCR5. The peptides were custom synthesized to 90% purity using 

GenScript, a commercial vendor.  All samples contained 0.5% v/v DMSO in total volume of 200 µl per 

well. The samples were incubated at 37°C in CO2 incubators for 2 h before addition of 10 µg/ml Brefeldin-

A. The cells were incubated for an additional 4 h. The cells were washed with PBS and stained with Zombie 

UV fixable viability dye (Biolegend). The cells were washed with PBS containing 5% FCS, before the 

addition of surface Ab cocktail. The cells were stained for 20 min at 4°C in 100 µl volume. Subsequently, 

the cells were washed, fixed and permeabilized with cytofix/cytoperm buffer (BD Biosciences) for 20 

minutes. The permeabilized cells were stained with ICS antibodies for 20 min at room temperature in 1X-

perm/wash buffer (BD Biosciences). Cells were then washed twice with perm/wash buffer and once with 

staining buffer before acquisition using the BD Symphony Flow Cytometer and the associated BD FACS 

Diva software. All flow cytometry data were analyzed using Flowjo software v10 (TreeStar Inc.). 

 

 

Bead-based antigen arrays.   

We used an existing bead-based autoantigen array, and a cytokine array with expanded content that was 

based on our recent COVID-19 studies16. A complete list of all antigens, vendors, and catalogue numbers 

can be found in Supplementary Tables 2 and 3. The “COVID-19 Autoantigen Array” included 55 

commercial protein antigens associated with connective tissue diseases (CTDs) (Supplementary Table 2). 

The “COVID-19 Cytokine Array” comprised 58 proteins including cytokines, chemokines, growth factors, 

acute phase proteins, and cell surface proteins (Supplementary Table 3). Antigens were coupled to 

carboxylated magnetic beads (MagPlex-C, Luminex Corp.) such that each antigen was linked to beads with 

unique barcodes, as previously described16,32,33. Prototype human plasma samples derived from participants 
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with autoimmune diseases with known reactivity patterns were purchased from ImmunoVision or were 

obtained from Stanford rheumatology clinics and had been characterized previously16. APS-1, PAP, or AMI 

serum samples were used for validation of ACA16. Serum samples were tested at 1:100 dilution in 0.05% 

PBS-Tween supplemented with 1% (w/v) bovine serum albumin (BSA). Bound antibody was detected 

using R-phycoerythrin (R-PE) conjugated Fcγ-specific goat anti-human IgG F(ab')2 fragment (Jackson 

ImmunoResearch) prior to analysis using a FlexMap3DTM instrument (Luminex Corp.). A minimum of 100 

events per bead ID were counted, and samples were studied in duplicate. Binding events were displayed as 

Mean Fluorescence Intensity (MFI). All data analysis and statistics were performed using R and various R 

packages34. For normalization, average MFI values for “bare bead” IDs were subtracted from average MFI 

values for antigen-conjugated bead IDs.  

 

CyTOF analysis of whole blood samples 

Fresh whole blood samples collected in sodium citrate cell preparation tubes (CPT) were fixed in proteomic 

stabilizer buffer. 270 μl of whole blood samples were mixed with 420 μl of PROT1 stabilizer (Smart tube 

Inc, San Carlos, CA), mixed and incubated at room temperature for 12 min and frozen at -80°C until 

processing. Fixed frozen cells were thawed by gentle resuspension in CSM (PBS supplemented with 2% 

BSA, 2 mM EDTA, and 0.1% sodium azide), washed twice with CSM. After thawing the stabilized blood 

samples, they were added to 1X Thaw-Lyse buffer (Smart Tube), incubated 10 min at RT, then centrifuged 

and resuspended again in Thaw-Lyse buffer.  After another 10 min at RT, they were centrifuged and washed 

in 1 ml CSM.  They were then permeabilized, barcoded and stained with pre-titrated intracellular antibody 

cocktail for 30 min at room temperature. Cells were then washed with CSM, stained with iridium-containing 

DNA intercalator (Fluidigm), washed with MilliQ water and acquired on Helios mass cytometer (Fluidigm) 

in MilliQ water supplemented with 1x EQ four element calibration beads (Fluidigm). 

 The FCS files were bead-normalized before data export. The data were processed for debarcoding in 

Flowjo software v10 (TreeStar Inc.). Briefly, the bead-normalized file was used to gate single cells based 

on DNA content and event length using FlowJo. The single cells were reimported and debarcoded using 

Helios software version 7.0.5189. The debarcoded samples were analyzed using FlowJo or R version 

1.2.1335 for downstream tSNE analysis and visualization. 

 

CyTOF data analysis 
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High-dimensional analysis of phospho-CyTOF data was performed using an R based pipeline described 

in35. Briefly, the raw fcs files were imported into R and the data were transformed to normalize marker 

intensities using arcsinh with a cofactor of 5. For visualization, another transformation was applied that 

scales the expression of all values between 0 and 1 using percentiles as the boundary. Cell clustering was 

performed with 4,000 cells randomly selected from each sample using FlowSom and 

ConsensusClusterPlus. The transformed matrix was used as an input for FlowSom and cells were separated 

into 20 clusters. To obtain reproducible results (avoid random start), a seed was set for each clustering. The 

20 clusters were manually annotated based on the lineage marker expression and were merged to produce 

the final clusters. The clusters were visualized in two-dimensional space using UMAP. The abundance of 

cell populations was determined using Plotabundance function. In parallel, the data were manually gated to 

identify 25 immune cell subpopulations that were not well-distinguished in UMAP and used for all 

quantitation purposes. 

 

Plasma protein profiling using multiplex Olink panel 

We measured cytokines in plasma using Olink multiplex proximity extension assay (PEA) inflammation 

panel (Olink proteomics: www.olink.com) according to the manufacturer’s instructions and as described 

before (41). The PEA is a dual-recognition immunoassay, where two matched antibodies labelled with 

unique DNA oligonucleotides simultaneously bind to a target protein in solution. This brings the two 

antibodies into proximity, allowing their DNA oligonucleotides to hybridize, serving as template for a DNA 

polymerase- dependent extension step. This creates a double-stranded DNA “barcode” which is unique for 

the specific antigen and quantitatively proportional to the initial concentration of target protein. The 

hybridization and extension are immediately followed by PCR amplification and the amplicon is then 

finally quantified by microfluidic qPCR using Fluidigm BioMark HD system (Fluidigm Corporation. South 

San Francisco, California). 

 

Bulk Transcriptomics 

Whole blood samples were collected in Paxgene tubes (BD Biosciences) and were frozen at -80°C until 

RNA isolation. RNA was isolated from each sample using the miRNeasy Mini kit (Qiagen) and 10 ng of 

total RNA was used as input for cDNA synthesis using the Clontech SMART-Seq v4 Ultra Low Input RNA 

kit (Takara Bio) according to the manufacturer’s instructions. Amplified cDNA was fragmented and 
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appended with dual-indexed bar codes using the NexteraXT DNA Library Preparation kit (Illumina). 

Libraries were validated by capillary electrophoresis on an Agilent 4200 TapeStation, pooled at equimolar 

concentrations, and sequenced on an Illumina NovaSeq6000 at 100SR, yielding 20 million reads per 

sample. ENSEMBL IDs were filtered to remove low/non-expressed transcripts (0 reads in >50% of 

samples). Gene-level counts were created by averaging counts from all ENSEMBL IDs mapping to the 

same gene symbol (IDs mapping to multiple symbols were discarded), using the bioMart package.  

 

Bulk Transcriptomics analysis 

Gene-level counts were filtered to remove those with a median expression less than 32. PCA was performed 

on baseline samples to identify outliers. Three samples were more than 1.5 standard deviations away from 

the mean and were removed from the analysis. RLE plots were generated with EDAseq36; samples with an 

RLE > 0.6 were removed from the analysis. Differential gene analysis was performed using DESeq237 (v 

1.26.0), incorporating participant id into the model to account for inter-participant bias. Genes were ranked 

by the Wald statistic as reported by DESeq2 for GSEA using the BTMs19. Per-participant fold changes were 

computed by dividing the DESeq2 normalized expression data for the day of interest by either day 0 (for 

day 1, day2, and day 7) or day 21 (for day 22, 28, and 42). The age of each participant was compared against 

the per-participant fold changes for day 22. The resulting correlation values were ranked by t-statistic and 

analyzed with GSEA using the BTMs to obtain the BTM correlates with age. The same method was 

employed to obtain BTM correlates with IFN-g. IFN scores were computed by taking the per-participant 

mean fold change on day 22 of the unique set of genes present in the 5 interferon BTMs (M75, M111.1, 

M150, M127 and M68) that significantly correlated with day 22 IFN-g fold change. Similarly, the per-

participant M16 gene score was computed using average fold change on day 22 of the genes present in 

M16.  

 

CITE-seq 

CITE-seq analysis of PBMCs were assayed exactly as described previously4. Briefly,  

live frozen PBMCs were thawed and 2x washed with RPMI supplemented with 10% FBS and 20 μg/mL 

DNAse I (Sigma Aldrich). DCs were enriched using the Dynabeads TM DC Enrichment Kit (Invitrogen, 

11308D) according to manufacturer’s instructions with 3 – 4 million PBMCs as starting material. The 

enriched cells were mixed with total PBMCs at a ratio of 1:2 and mixed cells were stained with a cocktail 



 51 

of TotalSeq-A antibodies in PBS supplemented with 5% FBS, 2 mM EDTA, and 5 mg/mL human IgG 

(Extended Data Table XX), washed twice with PBS supplemented with 5% FBS, and 2 mM EDTA, and 

resuspended in PBS supplemented with 1% BSA (Miltenyi), and 0.5 U/μL RNase Inhibitor (Sigma 

Aldrich). About 9,000 cells were targeted for each experiment. 

 Cells were mixed with the reverse transcription mix and subjected to partitioning along with the 

Chromium gel-beads using the 10X Chromium system to generate the Gel-Bead in Emulsions (GEMs) 

using the 3' V3 chemistry (10X Genomics, Pleasanton, CA). The RT reaction was conducted in the C1000 

touch PCR instrument (BioRad). Barcoded cDNA was extracted from the GEMs by Post-GEM RT-cleanup 

and amplified for 12 cycles. Prior to amplification the cDNA amplification mix was spiked in with ADT 

additive primer (0.2 μM stock) in order to amplify the antibody barcodes. Amplified cDNA was subjected 

to 0.6x SPRI beads cleanup (Beckman, B23318). Amplified antibody barcodes were recovered from the 

supernatant and were processed to generate TotalSeq-A libraries as instructed by the manufacturer 

(BioLegend, TotalSeq-A antibodies with 10x Single Cell 3' Reagent Kit v3 3.1 protocol). The rest of the 

amplified cDNA was subjected to enzymatic fragmentation, end-repair, A tailing, adapter ligation and 10X 

specific sample indexing as per manufacturer’s protocol. Libraries were quantified using Bioanalyzer 

(Agilent) analysis.  

10x Genomics scRNA-Seq and TotalSeq-A libraries were pooled and sequenced on an Illumina 

HiSeq 4000 using the recommended sequencing read lengths of 28 bp (Read 1), 8 bp (i7IndexRead), and 

91bp (Read2). CellRangerv3.1.0 (10xGenomics) was used to demultiplex raw sequencing data and 

quantitate transcript levels against the 10x Genomics GRCh38 reference v3.0.0. 

 

CITE-Seq analysis 

10x Genomics scRNA-Seq and TotalSeq-A libraries were pooled and sequenced on a Novaseq S4. Cell 

Ranger v3.1.0 (10x Genomics) was used to quantitate transcript levels against the 10x Genomics GRCh38 

reference (v3.0.0.) Raw count data was filtered to remove cells with a mitochondrial RNA fraction greater 

than 20% of total RNA counts per cell, cells with fewer than 100 unique features, or cells with fewer than 

200 total reads. The filtered count matrix was used to create a Seurat38 (v 3.1.4) object. Filtered read counts 

were scaled by a factor of 10,000 and log transformed. The antibody-derived tag matrix was normalized 

per feature using center log normalization. Doublets were identified with scds39 (v 1.2.0); cells with a 

doublet score in the top decile were removed. The remaining 242,479 cells were processed with the default 

Seurat pipeline. Specifically, the most variable 2000 RNA features were used to perform PCA on the log-

transformed counts. The first 25 principle components were used further downstream analyses, including 
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clustering and UMAP projections. Clusters were identified with Seurat SNN graph construction followed 

by Louvain community detection on the resultant graph with a resolution of 0.2, yielding 18 clusters. 

Differential expression across timepoints was calculated with MAST40 (v 1.12.0) to account for inter-

participant heterogeneity.  

Pseudobulk profiles were constructed by taking the average expression across all cells in each 

participant, per day. When computing fold changes across timepoints, each participant’s pseudobulk profile 

was compared to their baseline profile to reduce participant-specific biases. To calculate the impact of 

removing a cluster, each cluster across all timepoints was iteratively removed and resulting fold-changes 

were recomputed.  

C8 was re-embedded and reclustered with UMAP and Louvain community detection, respectively. 

Distances from each sub-cluster to the other clusters was calculated as the Euclidean distance between the 

average expression of all genes of each cluster.  

Complexheatmap (v. 2.2.0) was used for all heatmaps. All analysis was performed in R (v 3.6.3) 

 

Data availability  

CITE-seq and bulk RNA data are publicly accessible in the Gene Expression Omnibus under accession 

numbers GSE171964 and GSE169159, respectively.  
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