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ABSTRACT: Undergraduate first-semester general chemistry (GC1)
functions as a gatekeeper to STEM degrees, asymmetrically impacting
students who are nonwhite, from lower socioeconomic groups, non-native
English speakers, two-year college transfers, and first-generation in
college. Nationally, just under 30% of students earn grades of D, F, or
withdraw (termed DFW) in GC1; however, DFW rates are much higher
for subgroups underrepresented in STEM occupations. Socioeconomic
inequalities tend to increase over an individual’s lifetime due to the
magnification of cumulative disadvantage. Because undergraduate degrees
correlate with higher employment and STEM occupations correlate with
higher earnings, GC1 represents a critical path point where disparities can
be interrupted. The most common strategy employed for GC1 is deficit
remediation for students determined to be at risk of DFW. Unfortunately,
extensive evidence demonstrates that the use of remediation strategies for GC1 does not sustain benefits for students. In this work,
an asset-based approach, less prevalent in higher education than preuniversity, was employed to stress test theories about
interrupting disparities in STEM education. This causal-comparative study involving 1,807 observations reports on a 1-credit asset-
based supplemental course in which DFW-potential students at a minority-serving institution coenrolled during six semesters. The
study outlines this intervention, its impact on GC1 outcomes, and its potential residual impact on progression to the next course in
the general chemistry sequence (GC2). Descriptive and hierarchical inferential analysis of the data revealed socially important
patterns. The asset-based intervention successfully attracted students with greater cumulative disadvantage. The intervention closed
asymmetries between students identified as DFW-potential and ABC-potential in GC1 when a nontraditional curriculum was used
but not when a traditional curriculum was used. Mixed results and contingent effects were found for the intervention’s impact on
subsequent course outcomes. Taking at least 11 credits in the semester of taking GC1 provided an inoculate for participants in the
asset-based intervention, increasing the likelihood of passing GC2.
KEYWORDS: chemistry education research, general chemistry, gatekeeper course, racial equity, gender equity, underrepresentation,
asset-based intervention

■ INTRODUCTION

Equity Asymmetries and Cumulative Disadvantage

Moral and fiscal imperatives are connected in addressing the
function of the first semester of undergraduate general
chemistry (GC1) as a “gatekeeper” to STEM degree
attainment. An undergraduate education correlates positively
with employment prospects and annual earnings.1 STEM
occupations that require bachelor’s degrees command the
highest salaries and have the lowest unemployment rates.2 The
effects of cumulative disadvantage are evident in STEM
professions. Cumulative disadvantage is a theory that provides
a widely accepted explanation for the magnification of
inequities over a person’s lifetime, as well as over generations,
by the accumulation of advantages and disadvantages.3 For
example, in 2019, over half of students in public K-12
education in the U.S. were in school systems that were racially
concentrated, with 27% of students in predominantly nonwhite

school districts (having more than 75% nonwhite students)
and 26% in predominantly white school districts (having more
than 75% white students).4 Due to funding structures for
public education that have been challenged and upheld by the
U.S. Supreme Court, nonwhite U.S. school districts were
funded in 2019 on average at $11,682 per student, while white
school districts were funded at $13,908 per student.4 Benefits
accumulate because those with initial advantages tend to
receive access to better education (in the example), leading to
higher paying jobs, and subsequently better healthcare; the
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reverse also occurs to confer cumulative disadvantages.5,6 In
such ways, inequities broaden over time and across
generations, which leads to disproportionate representations
of the overall population in STEM occupations in many
dimensions, including race and ethnicity, gender, as well as
membership of lesbian, gay, bisexual, transgender, queer,
intersex, asexual, and other terms (LGBTQIA+) commun-
ities.1,7

Students whose STEM degree aspirations are curtailed by
being “weeded out” through course outcomes of D or F or
withdrawing (termed DFW) in GC1 add this to their
accumulated disadvantages. In a study of 32 diverse higher
education institutions in the U.S., GC1 was examined as one of
three courses with high DFWI8 rates (the other two were
Calculus 1 and Introductory Accounting).9 According to this
study, the DFWI rate nationally for GC1 is 29.4%. Underneath
this, however, in examination of overlapping subsets of race
and socioeconomic status, white students experience a DFWI
rate of 26.3%, female and male students differ with 25.8 and
33.9% DFWI rates. Pell-eligible and non-Pell-eligible students
have 32.4 and 28.3% DFWI rates, first-generation college
students have a 32.8% DFWI rate, Native Hawaiian or Other
Pacific Islander students have a 41.7% DFWI rate, Hispanic
and Latino10 students have a 42.0% a DFWI rate, Black and
African American students have a 47.2% DFWI rate, and
American Indian and Alaska Natives have a 54.5% a DFWI
rate. Consequently, GC1 represents a critical path point where
the accumulation of disadvantage and promotion of inequities
can be interrupted.

Addressing inequities in GC1 is further important because
DFW11 rates in GC1 have a strong relationship with retention,
which impacts not only students’ access to future opportunities
but also the fiscal health of colleges and universities in the U.S.
Higher education institutions in the U.S. are increasingly facing
challenges due to demographic changes and declining
enrollments, the intensification of revenue losses due to
inflation and the COVID-19 emergency, the inability to raise
tuition due to competition, and increasing costs from measures
taken to control inflation.12 The national study referenced
above found that students who took GC1 and continued at the
same institution the following year had a DFW rate of 25.9% in
GC1, while GC1-takers who were in good overall academic
standing and left the institution within one year of taking GC1
had a DFW rate of 49.2% in GC1.9 Thus, as there is a
relationship between higher DFW rates in GC1 (nearly
double) and leaving the institution, actions that higher
education institutions can take to improve equity in GC1 are
likely to aid in maintaining enrollment, which benefits an
institution’s fiscal health, as well as benefiting the institution’s
students and their future careers.
Addressing Equity Asymmetries in General Chemistry

The pernicious nature of cumulative disadvantage results in a
large fraction of students belonging to groups that have
historically been marginalized in the U.S. beginning GC1 with
knowledge and skills that do not match those of their peers
from historically privileged backgrounds. Differences in starting
points in GC1 are further exacerbated by the COVID-19
pandemic’s impacts on primary and secondary education, as
lower socioeconomic, less educated, and racial minority
populations sustained greater unemployment, reduced access
to food and housing, and higher death rates.13,14 Within higher
education institutions, inequities can be addressed through

revising gatekeeper courses or making structural changes to
academic programs. In course content and its conveyance,
changes can be made to curricular materials (e.g., through use
of open education resources15 and emphasis of depth over
breadth16), to instruction (e.g., through use of less passive
learning and more student-centered approaches17,18), and to
assessment (e.g., through changing how exam questions are
evaluated19). In addition, inequities can be addressed by
course-level efforts that intersect with learning, such as text
messages reminding students to study.20 Course-level inter-
ventions, either separate courses substituted for GC1 or as
supplemental courses taken alongside GC1, can also address
inequities.

Addressing inequities through course-level interventions that
directly support students with accumulated disadvantages can
be considered to have two main perspectives available: (1)
recognizing deficits that students have and educating to
provide students with the missing skills and knowledge and/or
(2) recognizing the assets that students bring and working with
them to identify ways to rely on these for increased success.
Deficit examination has been the primary approach to studying
the DFW problem in GC1, and remediation to address specific
deficits that are demonstrated by selection methods based on
this literature has been the primary model for addressing
achievement gaps in gatekeeper courses.21,22 The research
literature includes many studies of what students who are “at-
risk” of DFW in GC1 lack − they have poor scores on general
achievement tests such as SATs23 and particularly on verbal
scores,24 they have weak logical and scientific reasoning
skills,25 they have done fewer laboratory experiments in high
school chemistry,26 and they lack positive attitudes and self-
concept.27 Researchers have also looked for indicators of
success in GC1 which point to further deficits.27−31 Exam 1
scores have been shown to be a strong predictor of final course
grade in GC1,30 and logical reasoning skills also appear to have
strong predictive power.32 However, many predictors reported
in the literature may not be generalizable to all students at all
kinds of higher education institutions. There is considerable
evidence, for example, that achievement tests (SATs) are weak
predictors of college success, especially for students who are
first-generation in college, not white, or non-native English
speakers.33,34

Generally, course-level interventions are often explicitly
described as “remedial” by the literature and stakeholders.
structured either as separating DFW-potential students into
special sections of GC1 in which interventions for these
students occur alongside GC1 learning, or employing place-
ment tests or prerequisites to determine whether students
should first take an introductory chemistry course that includes
addressing missing content and skills prior to enrolling in
GC1.35,36 Setting aside whether existing course-level inter-
ventions involve deficit- or asset-based perspectives, or a
combination, two broad synthesis studies35,36 on the impacts
of courses for DFW-potential students at multiple types of
institutions report that the majority of interventions, while
helpful in the semester of the intervention, do not yield
positive effects for at-risk students that last beyond GC1. In
addition, peer comparison studies have shown that the long-
term effects of such interventions in GC1 on students are
indistinguishable from no intervention.37,38 The problem
appears immune to a wide variety of strategies that have
been attempted in such interventions, including emphasis on
problem solving and vocabulary, cooperative and peer-led
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learning, emphasis on study skills and attendance, flipped
classrooms and self-study modules, fewer topics and math
remediation, and use of pass/fail options. The persistent
shortcomings of remediation, compounded by the likelihood of
mounting impacts of the COVID-19 pandemic on disparities,
signal the importance of testing alternatives to remediation.
Anti-Deficit Perspective and Asset-Based Interventions

Commonalities exist across the literature39−42 on approaches
in postsecondary STEM education to support students who are
likely to have accumulated disadvantages. Successful inter-
ventions: (1) frame students’ diverse experiences as assets
rather than something to be rectified, (2) support identity
development in STEM, (3) build supportive communities
through racial and gender representation, and (4) reframe
assessment experiences as opportunities for learning rather
than measures for sorting students into educational pathways.
The Anti-Deficit Achievement Framework for Students of
Color in STEM43 was developed as a lens for understanding
what enables success despite accumulated disadvantages. The
framework advocates that, “instead of relying on existing
theories and conceptual models to repeatedly examine deficits,
researchers using this framework should deliberately attempt to
discover how some students of color have managed to succeed
in STEM” (ref 43, p. 68). The framing of research from an
anti-deficit perspective can be paired with the design of
interventions and inquiries from an asset-based perspective.

Asset-based,44 strengths-based,45 and funds of knowledge46

models have overlapping definitions, and substantial literature
on both asset-based perspectives47 and how they differ from
deficit-based thinking48,49 undergirds these models. Interven-
tions based on the models provide alternatives to remediation
by supporting “a pedagogical shift from problems to
possibilities.” (ref 45, p. 228) Akin to the intervention tested
in the study reported in this article, Yosso’s Community
Cultural Wealth model50 is often followed in asset-based
intervention designs as a way of intentionally acknowledging
the value brought to learning by students of color. This model
describes six types of assets (called “cultural wealth”) that
students who are typically more excluded from higher
education possess and rely upon throughout their education:
(1) aspirational wealth is maintaining hopes and dreams for
the future in the face of barriers, (2) linguistic wealth is skills
attained through communicating in different languages or
cultures, (3) familial wealth is community history, memory,
and cultural intuition, (4) social wealth is networks that
provide institutional and emotional support, (5) navigational
wealth is ways of maneuvering through social institutions that
are exclusive, and (6) resistant wealth is how to oppose
behavior that promotes inequality.

The design and use of asset-based approaches in STEM
higher education courses is not (yet) widely adopted. For
example, a recent review51 of studies of asset-based
interventions in K-12 and postsecondary STEM education
that employed the Community Cultural Wealth model50 found
that most studies of postsecondary-level interventions have so
far occurred in undergraduate engineering. In addition, most
studies followed qualitative research methodologies: in the 33
studies examined in the review, two used quantitative methods,
six used mixed methods, and 25 used qualitative methods of
analysis. Nonetheless, there is also a need for more quantitative
studies in order to gauge the broader value of asset-based
interventions, especially in STEM disciplines in higher

education.51,52 Empirical studies related to the Community
Cultural Wealth model often use counternarratives of
individuals as a mechanism to amplify the voices of students
who do not look like the people who comprise norms that are
often taught as the pioneers of STEM and examples to
emulate. Counternarratives (noun) are a methodological tool
in qualitative research for understanding students’ experiences
from their perspectives by including contextual aspects from
the students’ viewpoints on their educational and broader
experiences.53 The conceptualization of learning can then rely
on rigorously built resources in order to be counternarrative
(adjective) by foregrounding the assets, such as cultural wealth,
of students in how their learning is designed to take place,
particularly in schools and higher education institutions with
nonmajority student populations. Another problem that
compounds the existing literature on interventions is the
overuse of Western educated industrialized rich and demo-
cratic (WEIRD) participants in research studies, particularly
undergraduate students.54 Aligned with the cumulative
disadvantage model, a contributing factor in the over-
representation of WEIRD students in educational studies is
the accumulation of facilities at research institutions, which are
largely predominantly white institutions, that then yield more
research funding being awarded to these institutions.55

Sampling gatekeeper courses in many research studies may
not properly account for inequities in advantage and
differences in cultural wealth represented by enrolled students
in these courses. Research that is dutiful to the 21st-century
student body must design and employ different types of studies
− ones that involve and account for both a diverse set of
student participants and a greater contextual diversity − in
order to produce a more robust extant literature (and,
consequently, an extant literature that can yield actionable
results for educators).

The quantitative comparison research study reported here
overcomes the limitations of previous studies. First, the study is
undertaken at a minority-serving institution, an educational
context in which nonwhite, immigrant-origin, and first-
generation college students from low socioeconomic back-
grounds comprise the majority of undergraduates. Second, the
study examines the impacts on students of an asset-based
supplemental chemistry course taken by students at risk of
DFW outcomes in GC1. Third, this study aims to excavate
more about what works to support the success of students
whose experiences are underrepresented in research. Fourth,
by leveraging an asset-based approach to designing an
intervention to increase GC1 outcomes for DFW-potential
students, this study contributes to the counternarrative34 thrust
of cultural wealth models in education. It does so by privileging
and amplifying the experiences of students in a STEM
gatekeeper course whose experiences are less well represented
in the literature.

This research study addresses two questions: (1) What
impact does the asset-based intervention have on students’
GC1 outcomes? (2) What impact does the asset-based
intervention have on students’ persistence to and outcomes
in GC2?

■ METHODS

Research Design
The overall objective of this study was to examine the extent to which
the asset-based supplemental chemistry course intervention benefited
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the students whom it was theorized and designed to support. The
analysis of the intervention’s impacts involved descriptive and
inferential statistics. The theoretical perspective in making assump-
tions in the analysis was the cumulative disadvantage theory. The
choice of research questions was framed by the Anti-Deficit
Achievement Framework. The intervention is replicable and causal
claims can be advanced from the analysis, but there are limits to
generalizability because this study is not an experiment and is not
replicable. Specifically, there was no random assignment, and
conditions at other institutions would differ. The implications of
this are taken up further in the limitations.

Students were invited to the intervention based on academic
preparation factors (e.g., prior GPA; eligibility determination is
detailed further below), and invited students were given the choice
whether to enroll in the intervention. The observations, therefore, are
not independent. Due to the empirical nature of the inquiry related to
determining how an intervention impacted outcomes, a causal-
comparative research design was adopted, in which the groups to be
compared were formed based on pre-existing variables that defined
the groups.56 The design was ex post facto, as there was no random
assignment to the treatment group.57 Because some analytical tools
used in research studies assume that observations are independent,
measures were taken in this study to address the interdependence of
observations. One approach that has been taken in studies with such
complications is to statistically equalize the group differences by
propensity weighting;58 however, this approach is most appropriate
when comparing similar interventions or interventions where the
demographics of the groups do not shape group membership; thus,
this strategy was not employed here. An approach to studying
complex interrelationships and processes is to use structural equation
modeling, such as understanding the effects of campus racial climate
on students’ degree completion through mechanisms of students’
involvement in activities and various commitments.59 However, this
study does not test the relative impacts and pathways of different
processes. Because the intervention and invitation of students, as well
as the research questions, were theory-driven, the approach taken in
this study was to identify and exclude the use of confounding variables
(i.e., related to the explanatory variable of group membership as well

as GC1 and GC2 outcomes). By empirical justification, academic
preparation factors used in determining invitations were not included
in the analytical models because they are confounding variables. By
theoretical justification, variables associated with cumulative dis-
advantage (race and socioeconomic status) were taken as confound-
ing variables as the intervention was designed to be most beneficial for
and desirable to students with a higher likelihood of DFW outcomes
in relation to these variables. After excluding these variables, the
overall impact of the intervention was assessed by use of a hierarchical
linear model with class membership as level 2 and student data as
level 1, using regression models with dependent variables associated
with two courses: grade outcomes in GC1 (Research Question 1) and
persistence to and grade outcomes in GC2 (Research Question 2).
University Context
This study took place at an urban public minority-serving institution
that is primarily a commuter campus. The university has a Carnegie
classification as a doctoral university with high research activity (R2).
The university enrolls between 15,000 and 16,000 students annually.
Among undergraduate students, 59% are first-generation college
students, many are from immigrant-origin families representing over
130 countries, about one-third of matriculating students each year
transfer from another higher education institution, and about 42% of
undergraduate students receive Pell grants (a proxy for low
socioeconomic status). In fall 2021, 55.2% of the 12,269 under-
graduate students identified as U.S. residents of an ethnicity that is
federally considered of minority status (Black/African American,
Cape Verdean, Hispanic of any race, Asian, American Indian/Alaskan
Native, Hawaiian/Pacific Islander, or two or more races), 33.9%
identified as white, 6.2% were international (nonresident) students,
and 4.7% did not report their ethnicity.60 Federal minority status, for
U.S. residents, is a variable that is highly correlated with cumulative
disadvantage.61

Asset-Based Supplemental Chemistry Course Intervention
The asset-based supplemental chemistry course was designed based
on Activity Theory62,63 to leverage students’ personal resources to
further their success in chemistry. The basic tenet of Activity Theory
is that human (a subject’s) activity toward achieving goals (object) is

Figure 1. Representation of the Activity Theory design of the asset-based supplemental chemistry course.
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mediated by tools. For example, the learning (object) by a student
(subject) is mediated through many kinds of tools, such as organized
work during lessons, use of instruments in the lab and simulations on
a computer, models such as the periodic table and kinetic molecular
theory, and dialogue with the instructor and other students. A
subsequent generation of Activity Theory clarified categories of
mediative artifacts into tools, rules, the community, and division of
labor. This subsequent generation of the theory was deemed to be of
overarching relevance to both the implementation and research design
because it considers the student in relation to the larger system, which
is consistent with the cumulative disadvantage rationale for the
intervention. Specifically, Activity Theory brings attention to the
objective of the activity. For example, for the activity of being a
student who is taking GC1, this includes the outcome (passing GC1),
the objective (learning chemistry), the tools that mediate this success
(e.g., online homework, lectures, PhET simulations), the community
(other students, GC1 professor, support resources on campus,
students’ support systems off campus, etc.), rules (explicit and
implicit norms for how to succeed in GC1, expectations for success in
school), and division of labor (expected roles of students, professor,
peers). Figure 1 illustrates the structure of the Activity Theory design
of the asset-based supplemental chemistry course that underlies the
activity of being a student in this course.

Activity Theory framed the interpretation of “asset-based” that was
applied to the intervention and, consequently, to differentiating the
asset-based supplemental chemistry course from other approaches to
addressing the asymmetries in GC1 performance that tend to occur
across socioeconomic variables. The assumptions that instructors
make about what students are capable of is embedded in the asset-
based approach of the intervention under study here (Figure 1).
Specifically, the asset-based assumptions include that students bring
valuable resources (Community Cultural Wealth) to the activity of
learning chemistry. Thus, class activities (tools in Activity Theory) are
designed to incorporate and rely upon these resources. As well, for
other vertices of Activity Theory, the roles of the instructor, near-peer
undergraduate learning assistant, and students in the course are
designed to involve learning from one another (division of labor in
Activity Theory), and shape norms that are both explicit (e.g., weekly
emails/texts from the instructor or learning assistant to every student
to check in on them) and implicit (e.g., scheduling classes to occur in
classrooms where students are seated at large round tables and there is
no “front” of the classroom) are established (rules in Activity
Theory). An expansive connection to other students (community in
Activity Theory) is enacted by relying on the expertise of near-peers
(e.g., panels of advanced peers are led by learning assistants twice per
semester) and engaging in allyship, advocacy, and coconspiracy (e.g.,
learning assistants attend GC1, share example notes from class with
students, and offer to attend office hours of the GC1 instructor with
students). In contrast, deficit-based assumptions center on the
deficiencies that students bring to learning chemistry. For example,
a deficit-based intervention may observe motivation as one exogenous
predictor of what happens in school, and thus may assume that
students lack motivation, as well as mathematical abilities and study
skills. A deficit-based approach may center activity on the object of
remedying these deficits by creating merit-based initiatives and
methods of cooperative study with peers (rules in Activity Theory),
drilling algebraic manipulations during class and bringing profes-
sionals who use chemistry in their work to generate motivation and
excitement about chemistry (tools in Activity Theory), and facilitating
study groups that engage in productive ways of working on homework
together (community and division of labor in Activity Theory). The
ways in which activity occurs depends to a great extent on the
assumptions made by the designers and implementers of an
intervention and how activity is structured (e.g., including intentional
training for instructors and undergraduate learning assistants on asset-
based pedagogy). Of course, aspects of interventions may not be
purely deficit-based or asset-based in nature. How motivation is
considered in an intervention is a good example of this. Motivation
may be seen as an exogenous predictor of what happens in school,
thus indicating whether a deficit has been improved (an object in

Activity Theory); meanwhile, motivation also can be seen as an
indication of the success of efforts by instructors to increase the
relevance of chemistry for students by connecting curriculum to
students’ lives, career aspirations, and real-world issues (tools in
Activity Theory).

This study of an intentionally asset-based intervention was
primarily theorized with an Anti-Deficit perspective that took into
account interlocking student-success centered ideas (e.g., Community
Cultural Wealth, cumulative disadvantage, peer-to-peer instruction)
with reliance on the four distilled claims from relevant empirical
literature, as summarized earlier. The resulting curricular plan includes
relation (students relying on each other, learning each other’s
strengths), usage (e.g., calculator skills as a context for sharing various
ways that students and instructors use them), practice (e.g.,
specialized language of chemistry and how understanding it can be
aided by knowing other languages; many students in the course were
multilingual), and study (e.g., ways of using practice exams that more
advanced peers share) goals. Ref 64 contains a study of the critical
course components, and the syllabus, curriculum, instructional
materials, an example semester, and other resources are available in
the Associated Content.

The asset-based approach is illustrated through an example activity
in the asset-based supplemental chemistry intervention that involves
selecting and arranging dominoes of conversions to solve dimensional
analysis problems. This activates strong strategies that students who
are most impacted by cumulative disadvantage are adept at and can
channel toward visually rich collaborative problem solving. Many
students who live with their families and commute to campus are used
to navigating substantial responsibilities. They rely on similar
processes in their daily lives, planning forward from the beginning
and backward from the end of most days. For example, their schedules
may need to fit with when to wake younger siblings or their own
children, prepare their breakfasts and lunches, and bring children to
daycare or school before going to campus to attend classes.
Meanwhile, mid-days are often transformed by managing calls with
a child’s or sibling’s school, translating meetings via phone for their
parents, and paying bills, while also doing homework in between
classes. Students plan backward based on when to pick up children
and grocery shop, and they organize time to do homework after their
children’s or younger siblings’ bedtime. A similar example of
backward-and-forward planning using navigational wealth is present
when students share with peers their ways to manage utility bills when
there are insufficient funds to pay them, by strategically cycling which
bills are paid late so as not to have utilities turned off when a bill is
twice paid late. In such ways, relevant assets derive from experiencing
poverty. When students employ this type of navigational wealth, they
plan both forward and backward, simultaneously evaluating the
efficacy of different possible pathways to solving problems. These
strategies map well to solving many types of problems in chemistry,
including dimensional analysis and reaction prediction, which also
appear in GC2 and later chemistry courses.

The 1-credit asset-based supplemental chemistry course ran in
sections (two to four per semester) with enrollment limits of 25
students. Each section met twice weekly for 50 min, with the course
meeting time and day block being determined after an analysis of
course enrollment patterns with the goal of serving most students.
Eligibility to enroll in the asset-based supplemental chemistry course
for all semesters in this study was determined by the probability of
DFW outcome in GC1 set at a historically high DFW rate of the GC1
course (50%). The initial design of the intervention took place prior
to the COVID-19 pandemic. To explore how to use academic
preparation variables to identify DFW-potential students to invite to
the intervention, the ACS Toledo exam (an instrument with three
components − mathematics, scientific reasoning, and prior chemistry
knowledge − that is used by many colleges and universities for similar
purposes) was administered with all students in GC1 for two
semesters (spring and fall 2019) prior to beginning the asset-based
supplemental chemistry course. The binary outcome variable of GC1
grades (ABC or DFW) for students in both 2019 semesters was
modeled by binary logistic regression, with results that the
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mathematics and scientific reasoning components of the Toledo exam
accounted for 17.8% of the outcome’s variance.65 This was deemed a
sufficient method for predicting whom to invite, given that a more
expansive model with 36 variables accounted for 36.2% of variance for
similar predictions.26 For spring 2020, the Toledo exam was
administered to all GC1 students during the first week of the
semester and invitations were determined based on cutoff scores on
the ACS Toledo placement exam that predicted a 50% or higher
likelihood of a DFW outcome in GC1. When the university moved to
remote operation, the in-person proctored ACS Toledo exam could
not be used, so pre-intervention institutional data were used to build
an academic index predictive model based on an inferential binary
logistic regression model. Demographic and socioeconomic variables
were not included in the inferential model to avoid creating
confounding variables for the research. Contender academic
preparation variables based on the research literature were tested
with historical GC1 outcome data. The most successful model
included high school or transfer school GPA, grade in the student’s
most recent math course, and whether the student was retaking GC1.
The academic index model was used for determining invitations for
fall 2020 onward. In all semesters of the study, invitations were sent to
eligible students by email. Information about the asset-based
supplemental chemistry course was communicated via email,
announcements in GC1 classes, announcements in the GC1
laboratory (a separate corequisite course), and drop-in information
sessions. In semesters that began in-person (spring 2020, fall 2021,
spring and fall 2022), an information table was also staffed outside the
lecture hall during the first week of classes.

GC1 Course
GC1 is the first course in a two-semester introductory sequence in the
ACS-approved chemistry program at the university where the study
took place. The GC1 course introduces fundamental principles of
chemistry and basic chemical concepts. These include stoichiometry,
states of matter, atomic structure, the periodic table, molecular
structure and bonding, and states of matter based on kinetic
molecular theory. Participants in the study were enrolled in GC1
classes in spring and fall semesters during calendar years 2020, 2021,
and 2022. A review of the syllabi for all GC1 classes in the study
revealed common characteristics of the GC1 classes (see Table 1).
One of the semesters under study (spring 2020) began in-person and
switched to remote at midpoint due to the COVID-19 pandemic, two
of the semesters (fall 2020, spring 2021) were entirely remote, and
one of the classes in spring 2021 was hybrid (about half of students
attended remotely). The wide postpandemic literature in educational
journals suggests that the greatest impacts of COVID-19 on higher
education occurred during spring 2020 and fall 2020 semesters;
however, this was not the case at the university where this study
occurred (this is explained in further detail in the Limitations).
COVID-19 has been demonstrated to have had more adverse
outcomes for minorities,13,66−68 and this very likely will have
continuing repercussions for these students as they continue their
higher education. Several other differences also existed among the
GC1 classes; however, these were too varied to be tested in the

comparative analysis. This is discussed in more detail in the
Limitations. Nonetheless, as there is an extensive literature in
preuniversity educational research that has shown that the teacher
is the single most important factor in a K-12 student’s education,69

which class a student was in was expected to have an impact on
student outcomes in both GC1 and GC2.

Two different curricula were used. For both curricula, the
instructors based their lecture slides on those provided with the
curriculum, assigned online homework from the system that
accompanies the curriculum, and provided groupwork problems for
weekly discussion classes that corresponded to the curriculum. At this
university, the laboratory is a separate course and follows a different
curriculum than either of the two curricula used in the GC1 lecture
course. Two of the instructors, who taught five of the classes (all in fall
semesters), used Chemistry: The Central Science,70 which is a
traditional curriculum that follows a topical sequence. Four of the
instructors, who taught seven of the classes (one in fall and six in
spring semesters), used Chemical Thinking,71 which organizes the
content of chemistry around central questions of the discipline (e.g.,
how to identify substances, how structure accounts for physical
properties and reactivity). None of the GC1 classes included in this
study were taught by any of the authors of this article. The Chemical
Thinking curriculum has been demonstrated to result in narrower
performance gaps between female and male students, and between
underrepresented and white students.72,73 The balance of math-based
and conceptual questions on exams varied by the curriculum used.
Exams in classes with the traditional curriculum favored math-based
questions, while exams in classes with Chemical Thinking favored
conceptual questions. Prior research has shown that courses that favor
math-based questions on exams tend to result in lower performance
by Hispanic and Black students.74

Participants, Research Ethics, Comparison Groups, and
Variables Examined
In total, 1,807 instances of enrollment in 12 classes of GC1 across six
semesters of the study were treated as discrete observations. A total of
1,610 unique students are included in the data; because some students
took GC1 more than once, there are 1,807 instances of enrollment.75

The trajectories of the students from GC1 to GC2 in the immediately
adjacent term were also studied. Five students were excluded from
this analysis because they were erroneously enrolled in GC2 without
having passed the GC1 course. The remaining 1,802 instances (1,605
unique students) comprised the population studied in the second
research question.76

Of 862 eligibility determinations for enrollment in the asset-based
supplemental chemistry course among the 12 GC1 classes taken
across the six semesters included in the study, 262 (30.4%) enrolled in
the intervention. The study included three comparison groups: the
treatment group enrolled in the asset-based supplemental chemistry
course (Group 1), the group of eligible/invited students who did not
enroll in the asset-based course (Group 2), and the group of students
who were not eligible/invited (Group 3). The study was approved
under exempt status by the university’s Institutional Research Board
(Protocol #2019157). All students were considered participants and

Table 1. Features of the GC1 Classes

characteristic manifestation

lecture and
enrollment

class sizes ranged from 96 to 241 students. Lectures were taught by chemistry faculty and took place in a 500-seat auditorium with two large screens
on which the instructor projected material while lecturing. Time during class included lectures, problem solving by students, and feedback data to
check understanding.

exams three or four midterm exams were administered during lecture at even points during the semester. These included multiple-choice questions and
problems. All classes employed multiple-choice final exams that were administered at the end of the semester.

discussion
section

students were required to attend a one-hour discussion section, capped at 35 students, once per week in which attendance was taken. During
discussion, students worked in groups on solving chemistry problems related to lecture material while the instructor circulated. All discussion were
taught by faculty in the chemistry department.

homework students were assigned weekly homework problems from the online homework system associated with the curriculum used in the course.
grading

scheme
the grading scheme was similar in most classes. This included homework (20%), in-class assessments (40−45%), discussion attendance (5−10%),

and final exam (20−30%). Two of the four TR classes, however, weighted the final exam higher (at 30%) than all CT and three of the TR classes
(at 20%). The lowest midterm grade was not counted in the course grade. Neither overall grades nor exam scores were fit to a curve in any of the
classes.
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were informed of their participation in the study through announce-
ments made in GC1 classes and emails sent to students. The use of
institutional data complied with the Family Educational Rights and
Privacy Act (FERPA). Data included GC1 and GC2 course grades for
all students. No incomplete (I) grades occurred in the data. Some
students elected a pass/fail option;77 in cases of P grades, the
Institutional Research Office provided the letter grades underneath.

The study examined several variables for instance of enrollment
from each of the six semesters in the study, including GC1 and GC2
outcomes, socioeconomic proxies, social identity indicators, and
academic preparedness proxies. Collectively, these variables proxy for
which students were most likely to be impacted by cumulative
disadvantage, e.g., self-identified ethnicities defined by the federal
government as having minority status, female-identifying students,78

Pell-eligible students, first-generation college students, and older
students. The study included admit type (whether student is a first-
year or a transfer student) in the analysis. Doing so accounts for the
U.S. Department of Education’s Integrated Postsecondary Education
Data System (IPEDS) reporting statistics, which only include first-
time first-year freshmen.79 Age and admit type were predicted to
coalesce in students who were more likely not to be first-year
students, and indeed age and transfer admission were related (with
sample correlation coefficient of 0.560, p < 0.001). Descriptions of all
variables included in the data are provided in the Supporting
Information. Since some variables could change over time (e.g., Pell
eligibility), variables for students who enrolled multiple times were
included for the semester in which they enrolled in GC1.

Hierarchical Linear Modeling
The data are nested in nature, with students in different classes (GC1
Class) taught by various instructors. Here, this means that the data are
clustered in that observations (in this case the GC1 and GC2
outcomes of interest) from the same cluster (in this case the class) are
likely to be more similar than observations from different clusters.
This also means that the total variance of any equation modeling the
impact of covariates on the outcomes of interest includes between-
cluster variance and within-cluster variance. By identifying the level by
which observations cluster and by differentiating between the fixed
effects and random effects impinging upon the dependent variable,
hierarchical linear modeling techniques (as a variance-component
modeling technique) decompose the total variance, account for
unmeasured heterogeneity among the data, and avoid the problem of
underestimating the standard errors of parameters associated with
using standard linear modeling techniques.80

In recognition of the robust K-12 literature showing the substantial
impact of teachers on student outcomes,69 intraclass correlations were
evaluated to determine the extent to which the inferential models
would benefit from hierarchical linear modeling (HLM) techniques.
When null models (GC1 and GC2 outcomes dependence only on
class) were run, intraclass correlations indicated that 5.9% of the
overall variance of GC1 grades and 9.6% of GC2 grades depended on
class. While there is “no consensus on a cut-off point,” (ref 81, p. 62),
given the extant literature on teacher impact, hierarchical linear
models with class at level 2 were built for all inferential analyses.
Given the animating research questions, this study endeavored to
unpack the within-cluster and between-cluster covariate effects by
leveraging the HLM random-slopes modeling technique, which
enables simultaneous estimation of the random intercepts and
random slopes. The former estimation approach, HLM random-
intercepts modeling, showcases how the overall quantities identifying
the outcome of special interest (in this case an ABC outcome in GC1
and GC2) may vary over clusters (in this case the classes) after
controlling for covariates, whereas the latter estimation approach,
HLM random-slopes modeling, showcases how the effect of a
particular covariate (in this case group membership) may also vary
over the clusters.82 All variance-component models were derived
using the multilevel melogit/mixed commands in Stata 16.1 with the
maximum likelihood estimator option to produce the parameter
estimates. For parsimony, the study assumes zero random intercept

and slope covariance and thus does not estimate the correlation
matrix.83

Dependent Variables (Research Question 1)
Investigation of the impact of the asset-based supplemental chemistry
course involved examining the dependence of students’ GC1 course
outcomes on the independent variables. Two measures of GC1
outcomes were studied. First, because a course grade of C− is a
prerequisite for enrollment in GC2, qualifying grades were binned as
ABC and assigned a binary outcome value of 1, while nonqualifying
grades were binned as DFW and assigned a binary outcome value of
0. This enabled a connection to research literature that refers to DFW
rates. This binary variable, GC1 Outcome, was referenced to the DFW
outcome as the excluded baseline. The second measure of GC1
outcomes studied was grade outcomes, GC1 grade. GC1 grades
included all letter grades (e.g., A, A−, B+, B, B−, etc.) as well as W
(13 possible values).

Dependent Variables (Research Question 2)
As with Research Question 1, the investigation of the impact of the
asset-based supplemental chemistry course examined the dependence
of students’ GC2 course outcomes on the independent variables. Only
students with ABC outcomes in GC1 could advance to GC2.
Corresponding to Research Question 1, two measures of GC2
outcomes were studied. First, binary ABC and DFW outcomes in
GC2 were studied for students who were eligible to advance to GC2;
this excluded attrition (i.e., students with ABC outcomes in GC1 who
did not advance to GC2 in the adjacent term). Second, full GC2
outcomes (GC2 Outcome for Those Eligible) were studied, consisting
of assigned grades, withdrawal (W), and attrition. As with Research
Question 1, the investigation of the impact of the asset-based
supplemental chemistry course examined the dependence of students’
GC2 course outcomes on the independent variables.

Level 1 Independent Variables (Research Questions 1 and
2)
Investigation of the impacts of the asset-based supplemental chemistry
course on students’ GC1 outcomes involved analysis by Comparison
Group, including Group 1 (Invited:Enrolled), Group 2 (Invited:Did-
NotEnroll), and Group 3 (NotInvited), the latter of which was the
baseline referenced. Other variables of interest were associated with
student characteristics and the features of the GC1 classes (level 2)
that the students were enrolled in. Due to multicollinearity, measures
for instructor-specific variables were not used.84

Student characteristics included how many total credits a student
was taking during the semester while enrolled in GC1 (Total Credits
During GC1),85−87 tuition residency status (Tuition, as in-state or not
in-state) in the semester in which the student was enrolled in GC1
and Admit Type (first-time freshman or transfer). Characteristics of
the twelve GC1 classes included which Curriculum was used in the
GC1 class (TR = Traditional, or CT = Chemical Thinking).88

Categorical and binary variables were referenced to excluded
baselines, which were assigned to the value that had the larger
fractional distribution. Tuition (out of state, or in state) was
referenced to having in-state tuition, Admit Type was referenced to
being a first-time freshman, and Curriculum was referenced to TR.
This modeling strategy enabled the investigation of the impact of a
student’s conjoined circumstances on the probability of outcomes in
GC1 and GC2.

Analytical Approach: Descriptive and Inferential Analyses
The study endeavored to answer the two research questions by
examining descriptive statistics of the variables of interest and of the
outcome data; by examining inferential statistics, including the
employment of hierarchical binary logistic regression and HLM OLS
regression models to ascertain the relationships between the variables
of interest and the GC1 and GC2 outcomes and by examining the
plots of results from the regression models. For ease of interpretation,
tables that are presented report odds ratios for the hierarchical binary
regression models, and figures depict the average marginal effects
(AMEs). Stata 16.1 was used for all equation estimations and plotting.
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Descriptive Analysis. The descriptive analysis endeavored to
excavate the potential existence of cumulative disadvantage by
examining the distribution proportions on key variables per
membership in the three comparison groups. As such, three objectives
drove the descriptive analysis:

(1) To describe who was invited to participate in the asset-based
supplemental chemistry course intervention (Groups 1 and 2),
and whether the characteristics of students who were invited or
not aligned with findings from the literature about the
differential impacts of cumulative disadvantage.

(2) To examine whether the opportunity to enroll in the
intervention was taken up differently by students based on
characteristics associated with cumulative disadvantage and

(3) To highlight patterns in the distributions of students in
comparison groups and among variables in the causal model
that related to withdrawing from GC1 and advancing to GC2.

The descriptive analysis informed the inferential analysis; thus,
objectives 1 and 2 of the descriptive analysis are presented here in
Table 2. Results show that factors typically associated with cumulative
disadvantage were associated with grade outcomes: identifying as
female, being a first-generation student, identifying as a member of a
minority group associated with cumulative disadvantage (Hispanic,
Black/African American, and Other Racial Minority), belonging to
lower socioeconomic groups (using Pell eligibility as a proxy), and
being a nontraditional student (i.e., starting GC1 when older than 18
or 19 years old, using age and whether the student was a first-time
freshman as proxies).

Given how the intervention was structured (i.e., how students were
identified for group membership), there was not a random assignment
of students to groups and thus normal distributions were not expected
across comparison groups. Accordingly, the results by group
membership in Table 2 are unsurprising and indeed were expected.
Tests were run to determine which differences were significant.
ANOVA analyses were run using the Tukey method, which adjusts for
the number of pairwise comparisons, to examine whether there were
significant differences in the group means and between which groups
those mean differences appeared. These results are reported in
superscripts on variables in Table 2. As a complementary examination
of group differences, Kruskal−Wallis tests (a nonparametric rank test
for means) were run and verified that the medians indeed differed
among groups.

Objective 3 of the descriptive analysis relates to the study of
persistence to GC2. For this, a comparison set from the larger Group
2 (Invited:DidNotEnroll) was created to match all instances in Group

1 (Invited:Enrolled). This was organized by matching on the three
factors that were most correlated with enrolling in the intervention:
gender, Pell eligibility, and first-generation status. To do this, an equal
number of Group 2 instances with the same combination of the three
variable values was randomly selected to match instances in Group 1
with that combination.89,90 To examine patterns in the distributions
of students in the comparison groups and among variables in the
causal model that related to withdrawing from GC1 and to not
advancing to GC2 (i.e., Attrition defined as meeting the prerequisite
to enroll in GC2 but not enrolling in it), the matched sets from Group
1 (Invited:Enrolled) and Group 2 (Invited:DidNotEnroll) were
compared via descriptive statistics. Findings from this analysis are
reported in the Results.
Inferential Analysis. Given the collinearity between select

variables that were theoretically driven predictors (see Table 2) and
the probability of group membership, a parsimonious modeling
technique was utilized when constructing the hierarchical logistic and
linear equations because it accomplished the desired level of
explanation with as few predictor variables as possible. This enabled
foregrounding the impact of the asset-based supplemental chemistry
course on student outcomes, disentangling class-specific and student-
specific influences, and differentiating between degrees of academic
preparedness and cumulative disadvantage. Taken together, this
comparative-causal study, complete with a parsimonious model and
plotted average AMEs, highlights how enrollment in the asset-based
supplemental chemistry course impacts the odds of GC1 and GC2
success associated with group membership and select variables, as well
as the AMEs related to obtaining an ABC or DFW outcome in GC1,
and obtaining a specific grade outcome in GC2.

Hierarchical Linear Regression: Binary Logistic and OLS
Regression Models (Research Question 1)
Hierarchical binary logistic regression was employed to model the
dependence of the GC1 course outcome on class (level 2) and the
independent variables (level 1). Binary logistic regression was utilized
because the dependent variable was measured as 0 or 1; thus, a
nonlinear relationship between the independent variables and the
outcome must be accounted for. It was expected that, if the
intervention was effective, being in Group 1 (Invited:Enrolled) would
result in a higher odds ratio than being in Group 2 (Invited:DidNotEn-
roll). It was also expected that being in Group 1 or Group 2 would
result in lower odds ratios than being in Group 3 (NotInvited), as the
accumulation of disadvantage is unlikely to be eliminated in a single
semester. The goodness of fit of the hierarchical binary logistic
regression models was tested via the Hosmer−Lemeshow method,91

Table 2. Race and Socioeconomic Status Variables for Samples in the Comparison Groups and the Overall Study Population

variable

group 1 invited:enrolled group 2 invited:didnotenroll group 3 notinvited overall

meana SD meana SD meana SD meana SD

race variables
Asianb,c 0.11 0.32 0.18 0.39 0.21 0.41 0.19 0.39

Black/African Americanc,d 0.27 0.45 0.22 0.42 0.14 0.34 0.18 0.39
Hispanicc 0.31 0.46 0.25 0.43 0.20 0.40 0.23 0.42

two or more races 0.034 0.18 0.040 0.20 0.031 0.17 0.034 0.18
other racial minority 0.0076 0.087 0.0067 0.081 0.011 0.10 0.0089 0.094

Whitec,d 0.18 0.39 0.24 0.43 0.33 0.47 0.28 0.45
non-resident 0.046 0.21 0.042 0.20 0.038 0.19 0.040 0.20
not specified 0.031 0.17 0.020 0.14 0.037 0.19 0.030 0.17

socioeconomic status variables
femaleb 0.77 0.42 0.65 0.48 0.69 0.46 0.69 0.46

first-generation studentc,d 0.56 0.50 0.51 0.50 0.39 0.49 0.46 0.50
pell eligibleb,c 0.63 0.48 0.53 0.50 0.49 0.50 0.52 0.50

age (years) 20.6 2.95 20.2 2.74 20.1 3.42 20.2 3.15
first-time freshman 0.79 0.41 0.80 0.40 0.81 0.39 0.80 0.40

aBased on reference of 1.0 for the sample, except for Age which is reported in years. bGroup 1 and Group 2 are different (p < 0.05). cGroup 1 and
Group 3 are different (p < 0.05) dGroup 2 and Group 3 are different (p < 0.05)
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to compare observed and expected proportions of ten equally sized
groups (decile default). The goodness of fit of the hierarchical linear
regression models was tested via standard Aikake information
criterion (AIC), Bayesian information criterion (BIC), and Wald χ2

tests.
HLM OLS regression was employed to model the dependence of

GC1 grade outcomes, with a total of 13 grade outcomes (i.e., A, A−,
B+, B, ··· D−, F, and W), with W given the lowest value (1) and A
given the highest (13), on class (level 2) and the independent
variables (level 1). The study envisions instructors as giving out
grades across the range of letter grades, not simply as a sequence of
binary outcomes. As Group 3 (NotInvited) was the excluded baseline,
it was expected that Group 1 (Invited:Enrolled) and Group 2
(Invited:DidNotEnroll) would both exhibit negative relationships
(corresponding to significant negative logit coefficients, as well as
significant odds ratios less than 1) for higher GC1 grades (grades of
A, A−, B+, B, B−, C+, C, and C−). It was also expected that Group 1
would exhibit less negative relationships for some of these grades than
Group 2 would. It was further expected that, given prior research
showing that the Chemical Thinking curriculum results in performance
gap reductions,47,48 the CT variable (when referenced to the
traditional curriculum) would exhibit positive relationships for
upper grades relative to W. As students who are taking more credits
were anticipated to be more traditionally enrolled in higher education,
it was expected that Total Credits During GC1 would exhibit more
positive relationships with higher grades. As out-of-state tuition status
and non-Pell eligibility is a conjoined proxy for wealth, opposite
cumulative disadvantage, the expectation was a positive correlation
when Tuition was out-of-state and placement in the higher grades.
Lastly, as the composition of the transfer Admit Type could include
students who transferred from two-year colleges (which has a
relationship with socioeconomic status) and students who transferred
from four-year colleges (unknown relationships), there was no
expectation for this variable related to the theories that framed the
study.

A plot of the AMEs of each independent variable set to their
observed values (not set to their means) reveals much about
influences of each independent variable on the dependent variable. In
this study, in line with the social science methods adopted, AMEs
were calculated instead of marginal effects at the means (the latter is
where the mean value of every variable would be substituted in the
model) because the data are about people and there are variables
(such as the binary variables for gender or for race) for which a mean
value makes little interpretable sense (since no real person could have
such values). The resulting AME provides the average effect in the
estimation sample of the dependent variable on the probability
associated with the binary outcome. Put differently, because the
expected change in a probability of achieving a 1 (of a binary
dependent variable where 0 is the lowest and 1 is the highest)
depends on the values of the independent variables, AMEs represent
the differences in probabilities and thus enable a researcher to isolate
the effect of one variable given values on the other independent
variables. An AME value can be considered as analogous to a partial
derivative, in that the AME on an outcome with respect to a specific
explanatory variable is calculated by holding the other variables at
their observed values while changing that one explanatory variable of
interest. Thus, the AME provides information on the magnitude by
which an outcome changes when a specific explanatory variable
changes. For all variables, the AME is computed as the average of all
the marginal effects from each observation. With regard to
interpreting the impact of each independent variable, the
interpretation is relatively straightforward. When estimating the
AME results from a binary logistic regression, the resulting AME
number for a continuous independent variable reflects the degree to
which an increase (usually a one-unit change) in the independent
variable impacts the expected probability of obtaining the highest
value (1) on the binary outcome (the dependent variable). For
noncontinuous (i.e., categorical) independent variables, the resulting
AME number represents the difference in the probability between the

lowest value and the target value of the independent variable of
obtaining the highest value on the dependent variable.
Hierarchical Linear Regression: Binary Logistic and OLS
Regression Models (Research Question 2)
To explore Research Question 2, the study adopted the same
hierarchical linear modeling techniques as Research Question 1:
hierarchical binary logistic regression to model the dependence of the
binary GC2 course outcome (1 = ABC, 0 = DFW) on class (level 2)
and the independent variables (level 1); and HLM OLS regression to
model GC2 grade outcomes on the same variable and employed the
same goodness of fit methods. The study coded the grade outcomes
(i.e., A, A−, B+, ··· D−, F, and W), so that Attrition was excluded and
W was given the lowest value (1) and A was given the highest value
(13). The same expectations related to the independent covariates (or
variables) applied as the analysis for Research Question 1, with
acknowledgment that because GC2 had a prerequisite of C− in GC1,
only students with ABC outcomes in GC1 could advance to GC2.

An examination of the AMEs for each independent variable
revealed much about the relationship. Given the study’s focus on
whether the intervention disrupted the effects of cumulative
disadvantage, the study turned to examining the impact of the
intervention in conjunction with academic preparedness. The
mechanism employed was examining a plot of adjusted predictions
for representative (APR) values for the continuous variable of Total
Credits During GC1 and for the categorical variable of Comparison
Group membership, leaving all other variables at their observed values.
This analysis made it possible to isolate the effects of variables of
interest under different conditions.

■ RESULTS
Results are showcased for the three groups compared: students
who were eligible to enroll in the asset-based supplemental
chemistry course intervention and elected to do so (Group 1),
students who were eligible and did not enroll in the
intervention (Group 2), and students who were not eligible
and therefore not invited to enroll (Group 3). Figure 2
provides an overall depiction of the trajectories and outcomes
for the aggregated observations in the study.

Figure 2. Bubble plot illustrating the 1,802 instances of GC1 course
takers in the 12 classes during six semesters trajectories from GC1 to
GC2 in the subsequent term.
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Research Question 1: Impacts of the Asset-Based
Intervention on Students’ GC1 Outcomes

Table 2 reports findings from the descriptive analysis and
indicates that students who were eligible and invited (Groups 1
and 2) differed from students who were not eligible (Group 3)
by all expected variables associated with cumulative disadvant-
age except age. In other words, students who were female, first-
generation, and Pell-eligible, as well identifying with an
ethnicity considered to be a federal minority status, were all
more likely to be eligible. Eligible students who elected to
enroll in the asset-based supplemental chemistry course
(Group 1) also differed from eligible students who did not
enroll (Group 2) by all but one of the variables associated with
cumulative disadvantage. Being Asian92 was more associated
with being in Group 3 (not eligible/invited) and least
associated with being in Group 1 (eligible and elected to
enroll in the intervention). Admit Type (first-time freshman or
transfer student) was similar across groups.
Regression Analysis

The results of the hierarchical binary logistic regression model
revealed noteworthy relationships between independent
variables and binary GC1 outcomes (see Table S2 in the
Supporting Information). In the Supporting Information,
Table S3 presents the odds ratios of the variables, and Figure
S1 provides an example of how goodness of fit was assessed.93

The hierarchical binary logistic regression analysis isolates the
direct effects of individual variables in the sample of all
observations. Aligned with expectations, being in either Group
1 or Group 2 resulted in greater probability of having lower
GC1 outcomes (p < 0.001) compared to the reference of being
in Group 3. Different from expectations, when isolated as one
variable, being in a GC1 class that used the Chemical Thinking
(CT) curriculum did not have a different probability of overall
grade outcomes than being in a class that used the traditional
curriculum. Aligned with expectations, having taken more
credits while taking GC1 was associated with higher
probability of having a GC1 outcome of ABC (p < 0.001),

and having a tuition residency class other than in-state (i.e., out
of state) conferred a higher probability of having a better GC1
grade outcome (p < 0.05).

The three semesters whose instructional modalities were
most immediately impacted by the COVID-19 pandemic −
spring 2020, fall 2020, and spring 2021 − coincided with
classes 1−6 (see Table S6 in the Supporting Information) in
which the Chemical Thinking curriculum was used in 5 of the 6
classes. This correspondence suggested that a comparison of
the two curriculum conditions in relationship to the
comparison groups (whose composition had a relationship
with cumulative disadvantage) could be fruitful, i.e., the
interactive effects may reveal useful causal explanation.

Figure 3 shows the AMEs for the hierarchical binary logistic
regression model of GC1 outcomes by curriculum used in the
classes, and Table S3 in the Supporting Information provides
the odds ratios for these data in tabular form. Figure 3
represents two plots overlaid: the AMEs for all observations
using the CT curriculum, and the AMEs for all observations
using the TR curriculum. When separated by curriculum, being
in different comparison groups matters. As shown in Figure 3,
the traditional curriculum differentially impacted the students
with greater cumulative disadvantage who were targeted by the
intervention, as these students exhibited a 30−33% point
decrease in the probability of obtaining an ABC outcome in
GC1. Meanwhile, when the Chemical Thinking curriculum was
used, there was no statistically significant difference between
students in the intervention and students who were not invited.
The AME value of −0.09 being below 0.00 indicates that the
mean likelihood of ABC outcomes for Group 1 (Invited:En-
rolled) students in the CT curriculum condition was lower than
the mean likelihood for Group 3 (NotInvited) students, but the
two distributions are not statistically different at the p < 0.05
level. In other words, the asset-based intervention in
combination with use of the Chemical Thinking curriculum
made it possible for DFW-potential students (in Group 1) to

Figure 3. Average marginal effects (AMEs) on GC1 outcomes in the hierarchical binary logistic regression models by different curriculum
conditions. AMEs represent the differences in probabilities and thus enable a researcher to isolate the effect of one variable given values on the
other independent variables. The result is the average change in the probability. Numbers reflect the degree to which an increase in the variable
impacts the expected probability of obtaining the highest value (1) on the binary outcome. Positive values correspond to positive probability
relationships. A variable is significant if it does not cross the vertical line at 0.00. 95% confidence intervals are shown, and the value of the AME is
shown above each point.
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achieve GC1 outcomes that were not statistically different from
ABC-potential students (in Group 3).

The odds ratios in Table S3 provide the same information as
the AME plot. Odds ratios are proportions of the likelihood of
an event occurring to the likelihood that it will not occur. An
odds ratio greater than 1.0 indicates greater likelihood of
occurrence than the reference (i.e., a positive relationship),
while an odds ratio less than 1.0 corresponds to a negative
relationship. Odds ratios occurring with significant differences
are marked with stars showing degrees of significance (see
footnote to Table S3). Because the study assumes an unknown
standard deviation of GC1 outcomes in the overall student
population, t-statistics are reported in parentheses below each
odds ratio (reflecting whether the coefficient is equal to zero).
Looking at the odds ratio results from the hierarchical binary
logistic regression in Table S3, holding all other variables
constant at their observed values, within the traditional
curriculum (TR condition), there was a significant difference
in the odds of students who were invited to the intervention
achieving an ABC outcome in GC1 compared to the not
invited students (OR = 0.242, 95% CI [0.16, 0.37] as
computed by the model), with the odds of achieving an ABC
outcome therefore being about 25% as high (or about 75%
lower) for Group 1 (Invited:Enrolled) compared to Group 3
(NotInvited). Conversely, for Group 2 (Invited:NotEnrolled)
students in GC1 classes that followed a nontraditional
curriculum (CT condition) the odds of achieving an ABC
outcome decreased by 49% compared to Group 3 (NotInvited)
(OR = 0.508, 95% CI [0.29, 0.90]), holding all other variables
constant. The AMEs depicted in Figure 3 reiterate these
points.

Additionally, the probability of a more positive GC1
outcome resulted from having a tuition classification other
than in-state (i.e., out-of-state) when classes used the
traditional curriculum, but not when classes used the Chemical
Thinking curriculum. Another way of reading this (0.10) is that
for students in the sample under the traditional curriculum, the
expected difference in predicted probability of obtaining an
ABC outcome (GC1 Outcome = 1) is 0.10 greater for an out-
of-state student (probability of 0.67, as calculated by the
model) relative to an in-state student (probability of 0.57, as
calculated by the model), thus representing an expected
difference of a 10-percentage point increase (shown in Figure

3). Given the conjoined nature of in-state tuition status with
Pell eligibility, this suggests that use of the traditional
curriculum may have differentially favorable benefits for
students from higher socioeconomic groups.

An HLM OLS regression model was used to examine the
effects of variables on the GC1 letter grades of A through W
(13 grade outcomes: A = 13, A− = 12, B+ = 11,··· C− = 6, ··· F
= 2, W = 1). Table 3 provides the distributions of students in
grade outcomes who were in different comparison groups.
Table 4 presents the coefficients of the HLM OLS regression
model for the GC1 grade outcomes whose observations are
shown in Table 3.

Table 3. Frequencies of GC1 Course Outcomes in Grades by Comparison Group and Overalla

grade Group 1 (Invited:Enrolled) Group 2 (Invited:DidNotEnroll) Group 3 (NotInvited) total

A 15(5.6%) 34(12.8%) 217(81.6%) 266(100%)
A− 22(12.6%) 35(20.1%) 117(67.2%) 174(100%)
B+ 13(14.0%) 22(23.7%) 58(62.4%) 93(100%)
B 19(14.6%) 35(26.9%) 76(58.5%) 130(100%)
B− 23(13.5%) 65(38.0%) 83(48.5%) 171(100%)
C+ 9(9.1%) 35(35.4%) 55(55.6%) 99(100%)
C 19(14.4%) 62(47.0%) 51(38.6%) 132(100%)
C− 22(17.7%) 47(37.9%) 55(44.4%) 124(100%)
D+ 11(15.9%) 35(50.7%) 23(33.3%) 69(100%)
D 7(13.5%) 26(50.0%) 19(36.5%) 52(100%)
D− 10(20.8%) 22(45.8%) 16(33.3%) 48(100%)
F 33(18.8%) 78(44.3%) 65(36.9%) 176(100%)
W 59(21.6%) 104(38.1%) 110(40.3%) 273(100%)
total 262(14.5%) 600(33.2%) 945(52.3%) 1807(100%)

aPercentages in parentheses are relative to the total in each row.

Table 4. Coefficients of Variables in the HLM OLS
Regression Model of GC1 Course Outcomes as Grades (W
= 1 through A = 13); Excluded Baselines are Group 3
(NotInvited), CT (Curriculum in GC1), Tuition Status (In
State), and Admit Type (Transfer)a

variable coeff.

Group 1 (Invited:Enrolled) −2.283***(0.427)
Group 2 (Invited:DidNotEnroll) −2.409***(0.328)
Group 3 (NotInvited)
TR curriculum −1.040*(0.525)
CT curriculum
total credits during GC1 0.167***(0.039)
Tuition (out of state) 0.849**(0.279)
Tuition (in state)
Admit Type (first-time freshman) −0.102(0.246)
Admit Type (transfer)
constant 6.410***(0.642)
var.(1.comparison) 1.244(0.908)
var.(2.comparison) 0.748(0.551)
var.(_cons) 0.650(0.349)
var.(residual) 15.15***(0.509)
observations 1807

aLR test vs. linear model: χ2 (3) = 82.72. Prob > χ2 = 0.0000.
Random slope and random intercept model, standard errors in
parentheses. log likelihood (model) = −5043.05. d.f. = 11. AIC =
10108.09. BIC = 10168.58. Wald χ2 (6 d.f.) = 117.31. * p < 0.05, ** p
< 0.01, *** p < 0.001.
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The coefficients in Table 4 resulting from the HLM OLS
regression analysis provide more specificity than the
hierarchical binary logistic regression about the differences in
outcomes. As expected, students who were eligible for the
intervention performed less well in GC1 than students who
were not eligible. Specifically, the HLM OLS model delineates
that students in Group 1 (Invited:Enrolled) had GC1 outcomes
that were lower than students in Group 3 (NotInvited), but not
as low as those of students in Group 2 (Invited:DidNotEnroll)
when compared to Group 3 (NotInvited). The curriculum used
in GC1 had an impact on grades outcomes. A student’s
movement toward the highest outcome (13 = A) was
decreased by being in a class using the traditional (TR)
curriculum (p = 0.048) relative to being in a class using the
Chemical Thinking (CT) curriculum. Two other differences
also were significant. Holding covariates at their observed
values, taking more credit hours while enrolled in GC1 led to
greater likelihood of higher grades (p < 0.001). Having tuition
residency status that was not in-state (i.e., out-of-state)
resulted in a greater likelihood of higher grades (p = 0.002)
relative to being an in-state student (an average marginal effect
of 0.84, or an increase on the W-to-A grade scale of 0.84). The
random-effects portion of the table shows that the estimated
residual variance (or overall variance of the level 1 error term)
was 15.15 and is significant. This residual variance gives further
indication that instructors and instruction mattered in shaping
GC1 outcomes. The within-class random slopes for the
invited/noninvited groups were not significant. The variance
for the random effects at the class level is 0.65, representing
how the classes vary in their intercepts.
Research Question 2: Impacts of the Asset-Based
Intervention on Students’ GC2 Persistence and Outcomes
More than half (54.8%) of the 1,802 students in the study
population for Research Question 2 did not advance to GC2 in
the subsequent term (see Figure 2). Of the 988 students who
did not advance, a little over 60% could not advance due to a
DFW outcome in GC1. The remainder (labeled “attrition”)
who did not advance to GC2 (a little under 40%) were
students who met the prerequisite for GC2 but did not take
the course the following term. As noted in the Introduction,
there are many reasons why attrition occurs (e.g., stopping
out), and the descriptive and causal analyses can only shed
light on reasons related to conditions and variables examined
in this study.

Among students who met the GC1 grade prerequisite to
advance to GC2, similar fractions of students who used the CT
(424 of 917, or 46.2%) vs the TR (390 of 885, or 44.1%)
curriculum in GC1 advanced to GC2 in the immediately

subsequent term. Part of this may be related to repeating GC1.
GC1. Students in the sample who repeated GC1 at least once
during the semesters in the study overwhelmingly came from
fall semester classes (126 of the 683 students, or 18.4%, from
fall 2020 and fall 2021 vs 51 of the 658 students, or 7.8%, from
spring 2020, spring 2021, and spring 2022), and these students
may have a different likelihood of advancing to GC2 than
students who had ABC outcomes upon their first enrollment in
GC1. Likely because spring was adjacent for the latter, 69.4%
(93 of 134) of the adjacent repeats of GC1 occurred during
spring semesters. The CT curriculum was used in all spring
classes and in one fall class of GC1. Based on probability, then,
there is a higher likelihood that spring cohort students who did
not continue to GC2 were students who were retaking GC1.
However, there are also two other prerequisites for enrollment
in GC2 whose data were not included in the study: a D− or
higher in Precalculus, and a D− or higher in the GC1 lab
(which is a separate course from GC1). At this university,
Precalculus has DFW rates that rival GC1. Thus, it is likely that
F or W outcomes in Precalculus also contributed to students
not advancing immediately to GC2 even when a student did
not have a DFW outcome in GC1 that prevented GC2
enrollment.

Within the bounds of the data included in this study, to
excavate information about the impact of the asset-based
supplemental chemistry course on not advancing to GC2 in
the subsequent semester (termed “attrition” in this study), a
matched set of students from Group 2 (Invited:DidNotEnroll)
was compared to students in Group 1 (Invited:Enrolled). Of
the 262 students in Group 1, more than half, 142 students
(54.2%), met the C− prerequisite in GC1 to advance to GC2.
One additional student in Group 1 repeated GC1 in the
summer, met the C− prerequisite in GC1, and then enrolled in
GC2 in the fall). Of these 143 Group 1 students, 52 (36.4%)
obtained ABC outcomes in GC2 in the subsequent term, 39
(27.3%) had DFW outcomes in GC2 (one of these 39 was the
student who repeated GC1 in the summer), and 52 (36.4%)
did not enroll in GC2 in the subsequent term (attrition
outcome). Of the 262 students in the matched set from Group
2, a smaller number, 138 students (52.7%), met the
prerequisite for GC2. Of these 138 Group 2 students, 64
(46.4%) had ABC outcomes in GC2, 29 (21.0%) had DFW
outcomes, and 45 (32.6%) did not enroll in GC2 in the
subsequent term. Table 5 shows comparisons of these two
samples by relevant variables examined Research Question 1,
as well as one additional variable. The additional variable
(cumulative GPA at the university in the semester prior to
taking GC1) was not examined in Research Question 1 due to

Table 5. Variables for Group 1 and the Matched Set from Group 2a

variable

Group 1 Invited:Enrolled
matched set from Group 2
Invited:DidNotEnroll

all students in Group 1 and
matched set from Group 2

mean SD mean SD mean SD

GC1 curriculum (CT = 1, TR = 2) 1.49 0.50 1.50 0.50 1.50 0.50
total credits during GC1** 14.52 2.25 14.05 3.08 14.28 2.70

Tuition (in state = 1, out of state = 2) 1.11 0.31 1.10 0.29 1.10 0.30
Admit Type (first-time freshman = 0, transfer = 1) 0.21 0.41 0.23 0.42 0.22 0.42

cumulative GPA in term before GC1* 2.35 1.31 2.14 1.40 2.25 1.36
GC1 outcome (DFW = 0, ABC = 1) 0.54 0.50 0.53 0.50 0.53 0.50

total 262 262 524

a*** p < 0.01, ** p < 0.05, * p < 0.10.
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its collinearity with one of the variables used to determine
invitations, GPA at the institution (high school or transfer
college) that the student attended prior to enrollment at the
university. However, since both Group 1 and Group 2 were
invited, and invitations were based on a variable that was
collinear with how eligibility was determined, then theoret-
ically there is not a reason to exclude this variable when
comparing Groups 1 and 2. The other two variables used in
determining eligibility − most recent math course grade and
whether the student had previously taken GC1 − were present
for too few of the students to be useful in the comparison.
Values for cumulative GPA in the term before GC1 were
missing for students who enrolled in GC1 during their first
semester at the university. In all, this value was missing for
19.8% of Group 1 students and 26.3% of the matched set of
Group 2 students. ANOVA tests were run to determine which
differences between the matched sets were significant.
Cumulative GPA and the number of credits taken during
GC1 differentiated the groups, with the former being
significant at the p < 0.10 level (p = 0.088) and the latter

being significant at the p < 0.05 level (p = 0.047). In other
words, there are two levels of GPA differences in Table 5 that
can explain the difference in attrition between the matched
groups, implying that there is an association between having a
higher cumulative GPA and not advancing to GC2 in the
adjacent semester. However, since the asset-based supplemen-
tal course in which students in Group 1 were enrolled was a 1-
credit course, being enrolled in this course likely accounts for
why the total credits taken during GC1 is higher for students in
Group 1, leaving cumulative GPA prior to taking GC1 as a
variable that can explain the difference in attrition between the
matched groups.
Regression Analysis. As with GC1, the study employed

hierarchical binary logistic regression to model the binary GC2
outcomes (ABC vs DFW). Table S5 (see Supporting
Information) presents the odds ratios of this model, with
excluded baselines shown as dashes. As with GC1 outcomes,
this model revealed a negative relationship (p < 0.001)
between being in Group 1, as well as a negative relationship (p
< 0.05) between being in Group 2, and the probability of

Table 6. Frequencies of GC2 Course Outcomes in Grades by Comparison Group and Overalla

grade Group 1 (Invited:Enrolled) Group 2 (Invited:DidNotEnroll) Group 3 (NotInvited) total

A 12(7.5%) 22(13.8%) 126(78.8%) 160(100%)
A− 4(5.1%) 21(26.6%) 54(68.4%) 79(100%)
B+ 5(10.0%) 13(26.0%) 32(64.0%) 50(100%)
B 8(10.5%) 22(28.9%) 46(60.5%) 76(100%)
B− 10(14.5%) 17(24.6%) 42(60.9%) 69(100%)
C+ 5(9.6%) 13(25.0%) 34(65.4%) 52(100%)
C 4(5.4%) 26(35.1%) 44(59.5%) 74(100%)
C− 4(7.1%) 19(33.9%) 33(58.9%) 56(100%)
D+ 8(25.8%) 13(41.9%) 10(32.3%) 31(100%)
D 6(20.0%) 11(36.7%) 13(43.3%) 30(100%)
D− 9(22.5%) 13(32.5%) 18(45.0%) 40(100%)
F 9(20.9%) 15(34.9%) 19(44.2%) 43(100%)
W 7(13.0%) 23(42.6%) 24(44.4%) 54(100%)
total 91(11.2%) 228(28.0%) 495(60.8%) 814(100%)

aPercentages in parentheses are relative to the total in each row.

Figure 4. AMEs of variables in the HLM OLS regression model for GC2 outcomes, shown with 95% confidence intervals. The GC2 outcomes
modeled were W (1), F (2), D− (3), ··· through A (13). Values with confidence intervals that cross the 0 line indicate no statistically significant
effect. Positive values indicate movement toward the A outcome. The excluded baselines are Group 3 (NotInvited), CT (curriculum in GC2),
Tuition Status (in state), and Admit Type (transfer).
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moving toward the ABC outcome in GC2. No other
relationships were significant.

Also parallel to the GC1 analysis, an HLM OLS regression
model was built for GC2 grade outcomes along a range from
W to A grade (values of 1−13), i.e., Attrition was not included.
The frequencies of GC2 grades are presented in Table 6. The
corresponding AME analysis is provided in Figure 4 and the
coefficients of the HLM OLS regression model for GC2 grade
outcomes are provided in Table 7. As shown in Figure 4, being

in Group 1 (Invited:Enrolled) or Group 2 (Invited:DidNotEn-
roll) when students took GC1 corresponded to having lower
GC2 grade outcomes than being in Group 3 (NotInvited). The
coefficients of the model, in Table S5 (see Supporting
Information), show the level of significance as p < 0.001 (for
Group 1 compared to Group 3) and p < 0.01 (for Group 2
compared to Group 3). While the mean grades of Group 2
students were slightly higher than Group 1 students, the GC2
grade outcomes of students in Groups 1 and 2 did not differ
from each other, as shown by the overlapping 95% confidence
intervals for these variables in Figure 4. Having taken more
credits while taking GC1 corresponded to a greater likelihood
of moving toward an ABC outcome in GC2 (p < 0.01, as
indicated in Table 7). Within the bounds of the data, it is not
possible to determine whether these relationships may have
occurred due to the skewed presence of larger numbers of
students who took GC1 in fall semesters repeating GC1 in
spring semesters. Additionally, and aligned with the finding
from the corresponding model for GC1, the AME plot shows
that having a tuition status of out-of-state resulted in having
higher GC2 grade outcomes (p < 0.05, as indicated in Table
S4). No differences in GC2 grade outcomes were attributable
to Admit Type (first-time freshman vs transfer student) or to
which curriculum was used in GC2 (TR vs CT).

Because there was a strong relationship between credits
taken while enrolled in GC1 and students’ GC2 outcomes,
regardless of the curriculum used in GC1, probabilities derived
from adjusted prediction at representative (APR) values were
calculated to understand how GC2 outcomes were predicted
by credits taken while enrolled in GC1 while holding all other
covariates at their observed values. These details add another
level of richness to the results shown in Figure 4. Figure 5
shows predicted values for the GC2 grade outcome groups (13
values, W through A). This figure is analogous to a vapor
pressure curve, where the boiling point may be read as the
number of credits (on the horizontal axis) that inoculate
students against deleterious effects of other variables. Observed
values in the data set of credits taken while enrolled in GC1

Table 7. Coefficients of Variables in the HLM OLS
Regression Model of GC2 Grade Outcomes (1 = W, 2 = F, 3
= D−, 4 = D, ···, 6 = C−, ···, 12 = A−, 13 = A)a,b

variable coeff. (std. err.)

Group 1 (Invited:Enrolled) −2.108***(0.608)
Group 2 (Invited:DidNotEnroll) −1.668**(0.521)
Group 3 (NotInvited)
TR curriculum 0.401(0.459)
CT curriculum
total credits during GC1 0.171**(0.0626)
Tuition (out of state) 0.955*(0.376)
Tuition (in state)
Admit Type (first-time freshman) −0.307(0.373)
Admit Type (transfer)
constant 6.305***(0.968)
var.(1.comparison) 2.231(1.616)
var.(2.comparison) 2.058(1.206)
var.(_cons) 0.513(0.323)
var.(residual) 12.54***(0.634)
observations 814

aThe excluded baselines are Group 3 (NotInvited), CT (curriculum in
GC2), Tuition Status (in state), and Admit Type (transfer). bLR test
vs. linear model: χ2 (3) = 52.83 Prob > χ2 = 0.0000. Random slope
and random intercept model, standard errors in parentheses. log
likelihood (model) = −2203.67. d.f. = 11. AIC = 4429.34. BIC =
4481.06. Wald χ2 (6 d.f.) = 38.26. * p < 0.05, ** p < 0.01, *** p <
0.001.

Figure 5. APR values for GC2 outcomes, based on the HLM OLS regression model. GC2 grades are theorized as being on a linear 13-point scale,
related to total credits enrolled in during the semester of taking GC1, and separated by comparison group. GC2 outcomes depicted along the
vertical axis correspond to W at the lowest end (value of 1), followed upward by F, D−, D, D+, etc., up to A (value of 13). The horizontal dashed
line corresponds to the minimum grade of C− that is a prerequisite to enrollment in the next chemistry course, Organic Chemistry 1, which is
taken by most students in the population.
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ranged from 3 to 22, based on total enrolled credits
immediately after the add-drop deadline, i.e., any courses
from which a student elected to withdraw (W outcome) were
also included in the number. Since GC1 is a 3-credit course,
students who were taking 3 credits were enrolled only in GC1
that semester. Table 7 presents the OLS coefficients for GC2
outcomes of the HLM OLS regression model on which Figure
5 is based.

Figure 5 shows that students in Group 3 (NotInvited) had a
greater likelihood of GC2 grade outcomes at or above C− than
D+ or below no matter how many credits they were taking, but
their ABC likelihood increased as they were enrolled in more
total credits. For Group 2 (Invited:DidNotEnroll), the
inoculation point of having a greater likelihood of a grade
outcome of C− or higher was 8 credits, and for Group 1
(Invited:Enrolled), the inoculation point was 11 credits. This
suggests that greater cumulative disadvantage can be
inoculated by concurrently enrolling in at least two more
courses in addition to GC1 (given that most courses carry 2−4
credits).

■ DISCUSSION AND IMPLICATIONS
The outcomes of three groups were compared for 12 classes of
students across six consecutive terms in which an asset-based
supplemental chemistry course intervention was offered.
Students who were invited to enroll in the intervention
corresponded to factors predicting greater cumulative dis-
advantage (belonging to underrepresented minority groups,
female, first-generation college students, and Pell-eligible), and
students who elected to enroll concentrated this even further,
indicating that the intervention succeeded in recruiting and
appealing to the population of students whose success the
intervention was designed to enhance.

When a traditional curriculum (TR condition) was followed
in GC1 classes, students who were invited to the intervention
exhibited a 30−33% point decrease in the probability to have
an ABC outcome in GC1 relative to noninvited students.
Meanwhile, invited students whose GC1 classes followed a
nontraditional curriculum (CT condition) exhibited only a 9−
13 percentage point decrease in the probability to have an
ABC outcome in GC1 relative to noninvited students.
However, for students in the CT curriculum who were
enrolled in the intervention, this difference was not significant
(Figure 3). The intervention’s impacts were also studied for
students’ advancement to GC2 in the subsequent term. The
rate of not advancing to GC2 in the subsequent term
(“attrition”) of students who attained ABC outcomes in
GC1 was highest for students who were in the intervention
during GC1 and lowest for noninvited students. A comparison
of relevant variables for all students in the intervention with
ABC outcomes in GC1 and matched (by gender, first-
generation, and Pell eligibility) students who were invited and
did not enroll in the intervention produced very weak
evidence, within the bounds of the data collected in the
study, to illuminate why this might be. The only variable with a
potential relationship to the difference in attrition vs ABC
outcomes in GC2 was the cumulative GPA of students in the
semester prior to taking GC1.

An examination of the graph (Figure 5) depicting adjusted
predicted probabilities at representative values (APRs) derived
from the equation in Table 7, revealed much: Credit load
during the semester of enrollment in GC1 provided differential
inoculation against DFW outcomes in GC2 for students who

were eligible to enroll in the intervention. Students in Group 2
(Invited:DidNotEnroll) had a greater likelihood of an ABC
outcome than a DFW outcome if they were taking at least 8
total credits during the semester in which they were enrolled in
GC1, and for Group 1 students (Invited:Enrolled) this
threshold was 10 credits. In other words, taking at least 10
credits (including the 3-credit GC1 course) provided a better
inoculation against non-DFW outcomes students who were
identified as eligible for the intervention.

The results from this study are most relevant for higher
education institutions that have high diversity in their
undergraduate student populations along several federally
determined and self-identified dimensions: race/ethnicity,
gender, Pell eligibility, first-generation college student, and
admit type (transfer students and first-time freshman), as well
as for tuition residency (in state or out of state). The analysis
underscores four takeaways.

First, the intervention successfully targeted students with
greater likelihood of cumulative disadvantage (Table 2). In
addition, among students who were eligible and invited,
students with higher propensity for cumulative disadvantage
elected to enroll in the asset-based supplemental chemistry
course intervention (Table 2). This suggests that use of an
academic index that includes immediate prior school GPA
(high school or transfer institution), grade in the most recent
math course taken, and whether the student is retaking GC1 is
a valuable combination of predictors for identifying students
who can benefit from the asset-based supplemental inter-
vention.

Second, the intervention closed equity asymmetries in GC1
in a single semester when the GC1 course used a nontradi-
tional curriculum that has demonstrated benefits for equity
improvements. Specifically, this study showed that students
who participated in the asset-based supplemental chemistry
course and whose GC1 classes used the Chemical Thinking
curriculum (Group 1, CT condition) had GC1 course
outcomes that were not statistically different than their peers
with the same curriculum who were not eligible for the
intervention (Group 3, CT condition) (Figure 3). Prior
research on student performance outcomes when using
nontraditional curricula have shown that such curricular
choices also can link to more equitable framing of other
aspects of GC1. This can include placing lower weight on high-
stakes exams in the overall grade,73 having more student-
centered activity and less lecture time during class,94 and
designing a ratio of conceptual-to-mathematical emphasis on
assessments that is higher than in courses with traditional
curricula.74 The analysis in the present study is unable to
decouple these factors from the curriculum used. For example,
while two of the classes with the TR condition had a heavier
emphasis on high-stakes exams in the overall grade, three had
nearly the same grading scheme as the classes with the CT
condition, although as noted earlier, exams in the classes with
the TR condition had a higher emphasis on mathematics (vs
conceptual) than the classes with the CT curriculum. Use of
the CT curriculum, with attendant heavier basis of the overall
grade on course components other than high-stakes exams, has
been shown to be associated with reduced race and gender
gaps for students at a Hispanic-serving R1 university,74,94 and
this study now adds evidence that when using this curriculum,
likely with higher conceptual-to-mathematics emphasis on
high-stakes exams that accompanies the CT curriculum, an
asset-based supplemental intervention closes these gaps at a
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majority minority R2 university. The choice of curriculum is
decided at either the department or instructor level at
institutions. An implication of this study is that departments
or instructors choosing a nontraditional curriculum, such as
Chemical Thinking, is likely to close gaps in cumulative
disadvantage without harming students who have greater
cumulative advantage.

Third, students who enrolled in the asset-based intervention
when they were in GC1 (Group 1) had lower GC2 outcomes
than their peers who were invited and did not enroll (Group 2)
as well as their peers who were not invited (Group 3) (Figure
4). Furthermore, students who were invited but did not enroll
(Group 2) in the intervention during GC1 did not differ
statistically in GC2 outcomes from students who were not
invited (Group 3). This may be due to compounded factors.
For example, students in the intervention withdrew from GC1
at higher rates than their peers who were invited but did not
enroll (Table S4), suggesting a possibility that students in the
intervention may have gained a greater awareness of their
ability to perform well in GC1 and/or a higher degree of
agency in decision making related to GC1 through
participation in the asset-based supplemental course. This
phenomenon also may be due to a relationship between degree
of cumulative disadvantage (Group 1 being highest) and
higher likelihood of stopping out. Sense of belonging in a GC1
course can play a role in attrition (i.e., not taking GC2 in the
subsequent semester), particularly for women across the range
of grade outcomes,95 however the study reporting GC1
belonging’s relevance in attrition was conducted at a highly
selective, residential, primarily white private institution, so it is
unclear whether the finding is generalizable to a public
minority-serving primarily commuter institution. Nevertheless,
belonging, which was not measured in the study in this article,
may be worth including in future studies.

Fourth, taking closer to full-time credits in the semester of
taking GC1 has an inoculative effect for GC1 outcomes for all
students, and it appears to scale with likelihood for cumulative
disadvantage. At the inoculation point, the likelihood of an
ABC outcome in GC2 (when taken in the semester subsequent
to an ABC outcome in GC1) varied by the comparison group.
It is also notable that first-time freshmen across all comparison
groups had significantly higher probability of GC1 outcomes of
C and D grades than transfer students (Table 3). Given that
there was a moderate correlation between credits taken during
GC1 and transfer admit status, this suggests that the challenges
that first-time freshmen experience in GC1 could be addressed
by taking GC1 alongside at least two other classes and/or by
enrolling in the asset-based supplemental chemistry course if
they are determined to be eligible. As noted in the
Introduction, from an institutional fiscal health perspective,
supporting the academic success of GC1 students with greater
DFW potential and increasing their persistence to GC2 make
good sense. There is also evidence suggesting that this matters
more for Latina/o and Black students and may matter most for
Black STEM majors. Research in the past 15 years using
national data shows that Black and Latina/o students are now
as likely to enter STEM majors as their White peers.96,97

However, more recent research, also based on national data,
shows that these peer groups differ by departure pathways, i.e.,
changing majors vs discontinuing higher education.98 Whereas
Black and Latina/o students have comparable rates as White
students in both departure pathways when they discontinue a
non-STEM entry major, pathways differ when the entry major

is STEM. Black and Latina/o students who depart STEM
majors are more likely to discontinue their higher education
while their White peers are more likely to change major and
persist toward degree completion. Taking into consideration
social background (e.g., parental education, family income,
gender, working part-time or full-time) and institutional
characteristics (e.g., sector, selectivity), the average marginal
effects for Latina/o students decreases to having nonsignificant
differences from White students, but differences between Black
and White students remain substantial.

Five main structural aspects of institutions explain time to
degree completion99 − mission, size, selectivity, diversity, and
wealth − and students at less wealthy, less selective, and more
highly diverse institutions have longer degree completion times
than the perceived norm of four years. This suggests that at
higher education institutions that share fit with these aspects,
such as the one where this study was conducted, faculty and
staff who advise students on course selections may further
support students’ success by exploring possibilities with
students on ways to arrange academic plans with consideration
of prior cumulative GPA and how many courses students can
concurrently take (with taking at least 5 to 8 other credits
concurrently with GC1 to advantage likelihood of a successful
outcome in GC1) when making decisions about when to enroll
in GC1. However, it is also important to bear in mind that the
findings relevant to advising students align with course taking
behavior that is aligned with “traditional” norms. Nonetheless,
it may be useful to consider that a “full” course load of four or
five courses is not necessary, statistically speaking, to gain
advantage.

While what is examined in this study is a content-related
direct intervention with students with the potential of DFW
outcomes in GC1, it is worth noting that multitudes of studies
address how other changes make a difference in addressing
inequities in GC1, other gatekeeper courses, STEM courses
more generally, and in the broader campus culture. While these
are beyond the scope of this study, it is important to recognize
that a single intervention in higher education has limited
impact. To address inequities on a larger scale requires holistic
change,100,101 including multiple interventions at curricular and
program levels, as well as structural and cultural changes at
program and campus levels, such as mathematics placement
policy changes, multiple mathematics pathways, and the
development of corequisite courses.102−105 In addition,
students who are experiencing challenges may either stop out
(i.e., take time away from college and then return) or drop out
(i.e., discontinue higher education). Stopping out of college
does not equate to dropping out, although grades in specific
courses, chemistry among them, as well as Pell eligibility and
being a first-generation student, are among the strongest
predictors of stopping out.106 Researchers have also reported
on reasons for stopping out that are beyond the scope of this
study, including financial aid issues, class scheduling, students’
assessment of whether a degree is needed for their future, and
sense of belonging on campus.107

■ LIMITATIONS
GC1 instructor characteristics, days and times that classes met,
and instructional modalities were unable to be modeled for
research ethics reasons and therefore their impacts cannot be
reported, but they likely had an impact.108 Table S6 in the
Supporting Information provides characteristics of the 12
classes with care not to compromise research ethics. To further

JACS Au pubs.acs.org/jacsau Article

https://doi.org/10.1021/jacsau.3c00192
JACS Au 2023, 3, 2715−2735

2730

https://pubs.acs.org/doi/suppl/10.1021/jacsau.3c00192/suppl_file/au3c00192_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacsau.3c00192/suppl_file/au3c00192_si_001.pdf
pubs.acs.org/jacsau?ref=pdf
https://doi.org/10.1021/jacsau.3c00192?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


support the point that GC1 class characteristic likely played a
role in GC1 impacts, in addition to the information in Table
S6, and constrained by the goal of not compromising research
ethics, it is noted that all white instructors had < 5 semesters of
teaching experience, no male teachers taught in the morning,
there were no nonwhite male instructors, and no nonwhite
instructors used the CT text. A quasi-experimental study could
have illuminated instructor effects, but at most universities, it is
not possible to control which faculty are assigned to teach
which classes. Put another way, unless a university serves an
enormous number of students, a wide range of instructors will
not be available for students to choose classes based on
instructor characteristics. Thus, variables other than instructor
characteristics must be considered for increasing the likelihood
of positive outcomes for students who are most impacted by
cumulative disadvantage.

Other unaccounted for factors may explain outcomes. For
example, some reasons for differences between Groups 1 and 2
have unknown relationships with cumulative disadvantage.
Findings from related qualitative data indicate that one reason
that invited students reported for not enrolling was that the
times the classes were offered were schedule conflicts. A
second reason was associated with credit hours. If a student
was enrolled in fewer than 12 credits, adding the 1-credit
course would result in a tuition increase that was prohibitive
for some students. Also, first-year students and students with
lower GPAs were unlikely to receive permission for a credit
overload to enroll in the 1-credit asset-based supplemental
chemistry course if they were already enrolled in 17 credits.

Finally, the entire study occurred under the auspices of the
COVID-19 pandemic, and it is not possible to quantify the
extent to which various aspects of the pandemic impacted
students and instructors in different semesters. Three of the six
semesters studied in this intervention occurred during the
period when university operations shifted to remote
instruction due to the COVID-19 pandemic. In addition, the
pandemic disproportionately impacted populations that have
high overlap with the enrollment at the university where this
study was conducted, and students who have higher propensity
for cumulative disadvantage were also more likely to have
endured greater negative impacts from the pandemic, which
certainly contributed to challenges in the in-person semesters
following remote instruction. Partial evidence is seen in
comparing grades in different semesters. The syllabi indicate
consistent grading schemes, and mean grades from spring 2020
and fall 2020 did not differ by more than one standard
deviation from the mean grade of the other four semesters
combined.109 Given that the study occurred at a public
university that enrolls mostly in-state students who attended
public high schools, the greater the cumulative disadvantage,
the more likely first-time freshmen were to have completed
high school in a school district where students’ educations
were more substantially disrupted by the pandemic. Thus,
disparities in inputs and outputs to success in high school were
present among students in in-person semesters included in the
study as well. These influences were not separately accounted
for in independent variables in the study, but they likely
contributed further impacts in relation to the degree of
cumulative disadvantage that occurred in the different
comparison groups.

■ CONCLUSIONS
Overall, when using an eligibility determination that is
associated with cumulative disadvantage, the asset-based
supplemental chemistry course is beneficial to students in
GC1 when combined with use of a nontraditional curriculum
(Chemical Thinking). Inoculation against negative GC2
outcomes can be achieved by taking at least 8−11 credits
total in the semester of GC1, in association with a student’s
degree of cumulative disadvantage. The combination of all of
these − (1) use of a nontraditional curriculum in GC1, (2)
taking at least two other courses while taking GC1, and (3)
enrolling in the asset-based supplemental chemistry course if
eligible based on an academic index model that scales with
cumulative disadvantage − is likely to result in the greatest
benefits toward closing equity asymmetries in GC1. Because
GC1 is a critical path point in STEM pathways, this would lead
to increased retention of students and increased graduation
rates among students with greater cumulative disadvantage,
which is likely to have an impact on increasing diversity in the
STEM workforce so that it better reflects the population of the
United States while also improving the fiscal health of higher
education institutions.
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