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Mesenchymal stem cell (MSC) is an intensely studied stem cell type applied for cardiac repair. For decades, the preclinical researches
on animal model and clinical trials have suggested that MSC transplantation exerts therapeutic effect on ischemic heart disease.
However, there remain major limitations to be overcome, one of which is the very low survival rate after transplantation in heart
tissue. Various strategies have been tried to improve the MSC survival, and many of them showed promising results. In this review,
we analyzed the studies in recent years to summarize the methods, effects, and mechanisms of the new strategies to address this
question.

1. Introduction

Ischemic heart disease is the leading cause of death world-
wide. Severe ischemic heart disease, especially myocardial
infarction (MI) and heart failure, causes a significant loss of
functional cardiomyocytes [1]. However, heart is an organ
with very limited self-renewal capacity because adult car-
diomyocytes can hardly regenerate [2]. Over the past decades,
there has been tremendous enthusiasm in an attempt to
repair cardiac tissue with stem cell transplantation [3]. Mes-
enchymal stem cell (MSC), with advantages in immunologic
privilege, easy to be acquired, and multilineage potential, has
been widely studied both in animal model and in clinical
trials [4]. Low survival rate after transplantation is one of
the crucial reasons accounting for the hampered cardiac
repair effect of MSC. The harsh microenvironment with
ischemia, inflammation, oxidative stress, and mechanical
stress contributes to the great cell loss. Hence, a number
of strategies have been used in attempt to overcome this
obstacle. In this review, we summarize the advance of these
strategies recently reported.

2. Characterization of MSC

MSCs are generally described as nonhematopoietic subpopu-
lation of cells with multilineage potential to differentiate into

various tissues of mesodermal origin [5]. MSCs were first
identified and isolated from bone marrow (BM) more than
40 years ago [6].They can also be isolated from other sources,
such as adipose [7], synovial tissue [8], lung [9], umbilical
cord blood [10], peripheral blood [11], and olfactory bulbs
[12], or even in virtually all postnatal organs and tissues [13].
Among these, the most frequently used MSCs in studies for
cardiac repair are BM-derivedMSC (BM-MSC) and adipose-
derived MSC (ADSC).

MSC has been proven to differentiate into osteoblasts,
chondrocytes, and adipocytes [14]. It is also reported that
MSC can transdifferentiate into mesodermal derived cell
types including cardiomyocyte [15, 16], but the cardiogenic
potential of MSCs is still controversial [17, 18].

MSCs are fairly heterogeneous cell population but lacks a
specific marker to define MSCs [19]. According to minimum
criteria that were proposed by The International Society for
Cell Therapy in 2006, MSCs are characterized as (1) adher-
ence to plastic in standard culture conditions; (2) expressing
surface molecules CD73, CD90, and CD105, but in the
absence of f CD34, CD45, HLA-DR, CD14 or CD11b, CD79a,
or CD19; (3) a capacity for differentiation to osteoblasts,
adipocytes, and chondroblasts in vitro [20]. Besides, MSCs
possess species-specific characteristics [21], and the charac-
teristics of MSCs may also vary according to the source of
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tissue [22]. For example, ADSCs were superior to BMSCwith
respect to maintenance of proliferating ability [23].

3. MSC Transplantation for Treating
Ischemic Heart Disease

The first study exploring the cardiac regenerative effect of
MSC was carried out in 1999 on a rat MI model induced
by cryoinjury [24]. The autologous MSC was induced into
cardiogenic cells by 5-azacytidine in vitro and transplanted
into the scar of the injured hearts. The transplantation
improved cardiac function, prevented remodeling, and pro-
moted angiogenesis. In the following decades, MSCs were
transplanted for treating chronic or acute ischemic heart
injury in rodent models and large animals. The underlying
mechanisms for the therapeutic effect include directly transd-
ifferentiation into functional cardiomyocyte/endothelial cell,
secretion of a broad spectrumof cytokine in a paracrineman-
ner, and stimulating local cardiac stem cell proliferation [25].
It was reported thatMSC candifferentiate into cardiomyocyte
phenotype induced by 5-azacytidine [26], coculture [15], and
in vivo [16] models. Some observed that MSCs transdifferen-
tiate into cardiomyocyte in vivo, but the cardiogenic potential
of MSCs remains highly controversial. Fazel et al. injected
MSCs from𝛽-galactosidase (𝛽-gal) transgeneticmice into the
injured ischemic myocardium. As a result, there was no 𝛽-gal
positive cardiomyocyte observed 28 days after transplanta-
tion in recipient hearts, indicating that the transdifferentiate
ability of MSCs is lacking [27]. Noiseux et al. found a very
few MSC-derived cardiomyocytes after transplantation, but
nearly all of which were demonstrated to result from cell
fusion [18]. Thus it seems that paracrine function but rather
cardiogenic transdifferentiation predominantly accounts for
the therapeutic effect of MSC transplantation [28].

Paracrine function of MSCs results from the MSC se-
cretion of antiapoptotic, proangiopoietic factors (growth
factors, cytokines, surface molecules, mRNA, miRNA, and
exosomes) [29]. Several growth factors which consisted in
conditioned medium, such as VEGF [30], FGF [31], IGF, and
HGF [32], also showed cardiac regenerative capability when
applied to MI model. Exosomes (or microvesicle) secretion
by transplanted MSCs was reported by increasing studies
[33]. Exosomes are cholesterol-rich, phospholipid vesicles
of 30–100 nm enriched with microRNAs (miRNAs). MSCs-
derived miRNAs-bearing exosomes are readily internalized
into cardiomyocyte or and endothelial cell, resulting in cardi-
oprotective effect via angiogenetic, antiapoptotic, or anti-in-
flammatory effect. MSC exosomes transferring miR-22 (can
target methyl CpG binding protein 2) [34] and miR-221 (can
inhibit p53-upregulated modulator of apoptosis) [35] reduce
cardiomyocyte apoptosis. MSC exosomes can also reduce
neutrophil and macrophage infiltration after myocardium
ischemic/reperfusion injury [36].

Mitochondria transferring between MSCs and neighbor-
ing somatic cells via a “tunneling nanotube” (TNT), com-
posed of partial membrane fusion and F-actin, was reported.
This process rescued aerobic respiration of cells harboring
mitochondria damage [37]. MSC also showed capacity to

convey functional mitochondria to connected cardiomy-
ocyte via TNT [38]. In a human MSCs-mouse adult car-
diomyocyte coculture system, heterogeneous partial cell
fusion by “tunneling nanotube” junction formation has
been observed. These partial fused cells exhibited a pro-
genitor cell-like phenotype or were described as “repro-
gramming/dedifferentiation.” The mitochondria conveyed
through TNT were necessary for the transient partial fusion-
dependent cardiomyocyte reprogramming [38]. Although
the in vivo evidence of TNT formation and mitochondria
transfer between MSC and cardiomyocyte were lacking,
these findings suggested an alternative mechanism for MSC
mediated beneficial effect.

Despite the underlying mechanism which remains to be
clarified, the established cardioprotective effect of MSC ther-
apy has been confirmed by most preclinical studies. In 2001,
the first clinical trial of BMSCs transplantation onMI patient
was conducted [39]. Thereafter, a large number of phase I/II
clinical trials were designed to test the safety, feasibility, and
efficiency of MSC therapy [40]. A phase II/III trial with
80 patients enrolled was conducted recently [41]. Overall,
the safety and feasibility profiles of MSC therapy have been
well established by most of the trials followed from 1 month
to 2 years, such as POSEIDON [42], C-CURE [43], TAC-
HFT [44], and MSC-HF [45]. The efficacy is also suggested,
as observed improvement in 6min walk (POSEIDON, C-
CURE, and TAC-HFT), EF (C-CURE, MSC-HF), Minnesota
Living with Heart Failure Questionnaire (MLHFQ) (POSEI-
DON, TAC-HFT), event-free survival in a 2-year follow-
up (C-CURE), and reduced LV chamber (POSEIDON, C-
CURE, and MSC-HF), and scar size (POSEIDON). More-
over, POSEIDON proved that allogenic MSC is comparable
to autologousMSCwithout significant alloimmune reactions
[42], supporting a favorable feasibility for MSC therapy; in
addition to improved EF, a reduction in ventricular arrhyth-
mias and improved pulmonary functionwere also reported in
the trial employing MSC to treat patients with acute MI [46].
However, to confirm the efficacy of MSC therapy, especially
the long-term outcome in patient, more rigorously designed,
multicenter, long-term follow-up, well-interpreted trials with
larger sample size are required. Although most of these
trials have demonstrated that MSC therapy in clinical trials
appears to be safe and effective [47], there are also reported
investigations without observed benefits of MSC application
[41]. According to the systematic review reported by Lunde
et al., the MSC therapy had moderate beneficial effect on
improving cardiac function (LVEF increased by 2.99% on
average [48]) and limited effects on long-term effect or global
end point [49].

4. Poor MSC Survival and Its Mechanisms

4.1. MSC Survival in Animal Model of MI. Among the factors
which hurdle the therapeutic effect of MSC treatment, the
poor survival after cell transplantation is a crucial one.
Positron emission tomography (PET) tracking of MSC deliv-
ered by catheter-based transendocardial injection showed
retention of approximately 6% of injected cells in porcine
ischemic myocardium at 10 days after injection [50]. Toma
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et al. reported that less than 0.44% of MSCs survived by day
4 after engraftment in immunodeficient mouse hearts [16].
Accordingly, approximate 1%ofMSCswere detected 24 hours
after transplantation in rat heart with experimental MI [51].

4.2. MSC Survival in Ischemic Human Heart. Clinical tri-
als have consistently demonstrated that the retention and
survival of stem cells are quite low after transplantation
into infarcted heart. In a small group of STEMI patients,
intracoronary infusion of BMSCs labeled with 18F-FDG
showed minimal retention in the infarct region (1.3% to
2.6%) when imaged by PET at 50–75 minutes after cell
injection [52]. Intracoronary infusion of cultured peripheral
mononuclear cells labeled with 111Inoxine in patients with
recent STEMI resulted in activity of 6.3 ± 2.9% in the heart
24 h after injection, but it declined to 2.1% when measured 2
days later [54].

Considering that the acute MI can cause over one bil-
lion cardiomyocyte losses, one cannot realistically expect a
clinically meaningful benefit from such a tiny number of
residual donor cells [55]. This may account for the modest
improvement of cardiac function reported in clinical trials.

4.3. Mechanisms for the Poor Survival of Transplanted MSC.
The loss of cells number occurs in several ways: (1) a
mechanical leakage of cells immediately after injection was
due to the continuous compressive mechanical stress; (2)
cell death, including both necrosis and apoptosis, was subse-
quently worsened by a harsh microenvironment of hypoxia,
inflammation, and oxidative stress comprising superoxide
anions and hydrogen peroxide [56]; (3) gradual loss is also
attributed to the limited self-renewing rate of stem cell in
ischemic myocardium, due to the lack of oxygen, inadequate
nutrients, and the disrupted extracellular cell matrix (ECM).

5. Strategies to Improve MSC Survival

Several strategies have been explored to augment the
longevity of engrafted cells in the hostile ischemic environ-
ment. The strategies are (1) more effective ways of delivery;
(2) tissue engineering strategies involving scaffolds made of
natural or synthetic polymers; (3) preconditioning of MSC
before transplantation; (4) geneticmanipulation ofMSCs; (5)
combined administration of MSC with another cell type or
medicine.

5.1. Delivery Route. Stem cell can be delivered tomyocardium
through different ways, including peripheral intravenous
infusion, direct surgical injection during open heart surgery,
catheter-based intracoronary infusion, retrograde coronary
venous infusion, and transendocardial injection [57, 58].
Using 𝛾-emission counting of harvested organs 1 hour after
cell delivery, it has been demonstrated that intramyocardial
injection had the highest retention rate of delivered BMSCs.
Significantly more cells were retained after intramyocardial
injection (11 ± 3%) compared with intracoronary (2.6 ±
0.3%) and interstitial retrograde coronary venous infusion
(3.2 ± 1%). Intramyocardial injection is the most frequently

reported route for MSC therapy in animal studies, but most
of the clinical trials applied catheter-based intracoronary
infusion.

However, there are still some disadvantages along with
needle-injection: (1) a washout of cells through channel
leakage and the vascular system; (2) an inhomogeneous
distribution of cells [59]. To overcome these obstacles, a
cell sheet/patch based delivery method has been developed.
Confluent, intact cell layers (usually 2 to 3 layers) with
abundant ECM and cell-cell interaction can be acquired by
culturing MSCs in thermosensitive dishes or fibrin-coated
culture plate (confluent cell sheet detached spontaneously at
room temperaturewithin 30minutes), several weeks afterMI.
The cell sheet was deposited onto the infarcted myocardium,
and theMSC can be engrafted intomyocardium and the sheet
was absorbed gradually [55]. In rat model of MI, two months
after the implantation, the three-layer ADSC sheet showed
superior effect of cell retention comparedwith isolatedASDC
delivered by intramyocardial injection [60].

5.2. Biomaterials. Due to the disrupted ECM and compres-
sive mechanical stress, the infarcted myocardium is not an
environment conducive to cell survival. Therefore, cardiac
tissue engineering emerged as a promising strategy, and
three-dimensional polymeric scaffolds for stem cells were
developed. Scaffolds temporarily provide the biomechanical
support for cells until they are able to produce their own
extracellular matrix [61–63]. Scaffolds seeded with MSC
showed better performance in cardiac repair than injection
of MSC alone [64]. There are mainly two types of scaffold.

5.2.1.Thermosensitive Hydrogel. Hydrogel as a biocompatible
material was used to prevent the firstwave loss of transplanted
MSC due to the myocardium contraction. Hydrogels are
in situ formation, biodegradable, and cell adhesive. Once
delivered together with MSC, it can self-cross-link to form
semigrid scaffold which could ameliorate the cell loss.

There are various types of hydrogels applied in MSC
therapy for MI: (1) natural hydrogels, such as fibrin glue [65],
collagen [66], alginate [67], and cardiogel [68]; cardiogel
is a cardiac fibroblast-derived ECM, which was designed
to mimic the natural environment suitable for transplanted
MSC [68]; (2) synthetic hydrogel, including silanized hydrox-
ypropyl methylcellulose (Si-HPMC) [69] and poly(lactide-
co-epsilon-caprolactone) [64]; (3) combination of differ-
ent materials in a certain ratio, such as poly(N-isopropy-
lacrylamide) (PNIPAAm) plus single-wall carbon nanotubes
(SWCNTs) [70], alginate/chitosan [71], poly(glycerol seba-
cate) combined with collagen [72], and hydrophobic poly(𝜀-
caprolactone)-2-hydroxylethyl methacrylate (PCL-HEMA)
plus PNIPAAm [73]. Hydrogel can also serve as a medium
to support the diffusion of molecules [74]. Since interleukin-
10 (IL-10) is an anti-inflammation cytokine, a combination of
MSC, Matrigel, and IL-10 plasmids was designed to improve
cell survival [75].

Hydrogel is effective in improving cell survival in stem
cell therapy. In a rat MI model, intramyocardial injection of
MSCswith Si-HPMC(one of the synthetic hydrogels) showed
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better performance in cell retention and cardiac function
preservation than MSCs injection alone [76]. In a swine MI
model, retention of MSC suspended in 2% alginate (a natural
hydrogel) before transplantation was approximately 4-fold
compared to that in control MSCs at two weeks after delivery
[77]. Similarly, coinjection with fibrin glue increased ADSC
survival by about 30% on a rat MI model [78].

The first clinical trial using injectable bioabsorbable
scaffold (IK-5001), a solution of 1% sodium alginate plus 0.3%
calcium gluconate, combined with MSCs by intracoronary
delivery has been carried out (http://www.clinicaltrials.gov.:
NCT01226563).This first-in-manpilot study also showed that
intracoronary deployment of an IK-5001 scaffold is feasible,
effective, and well tolerated in patients with STEMI [79].

5.2.2. Patch/Cell Sheet. To avoid the shortcomings of needle
injection, biocompatible patches seeded with MSC emerged
as an alternative strategy to circumvent the lack of cell
engraftment. Solid form of biomaterials (such as collagen)
seeded with cells was sutured onto the surface of infarcted
area.The patch can be absorbed gradually while the stem cells
engrafted into the myocardium.

ADSC-cellularized sheets were implanted onto the epi-
cardium of on chronic rat MI model [80]. No cell was
detected in ADSC alone group, but cell sheet exhibited
25.3 ± 7.0% and 6.4 ± 4% engraftment rate at 1 week and
1 month after MI [60, 80]. The same group performed a
head-to-head comparison of cell engraftment between the
conventional injection, deposition of the bilayermyoblast cell
sheet, and deposition of the myoblast cells seeded in collagen
sponge in rat MI model. Both cell constructs are superior to
conventional needle injection.The myoblast-seeded collagen
sponge group produced the best outcome with regard to
engraftment cells number and reduced fibrosis [55].

5.3. Hypoxic, Hyperoxic, and Pharmacological Preconditioning
of MSCs. Although severe hypoxia can lead to cell death,
repeated episodes of short period exposure to hypoxia
(hypoxia-preconditioning) have shown conferring cytopro-
tective benefits [81]. Usually, MSCs were cultured under
hypoxia (0.5% oxygen) or normoxic conditions for 24 hours:
hypoxia-preconditioning reduced about 25% of cell death at
day 1 and 40% of cell death at day 3 after delivery com-
pared with normoxic control [82]. This effect is associated
with the increased expression of prosurvival and proangio-
genic factors including hypoxia-inducible factor 1 (HIF-1𝛼),
angiopoietin-1, vascular endothelial growth factor (VEGF),
erythropoietin, Bcl-2, and Bcl-xL [82]. Moreover, hypoxia-
preconditioning induced autophagy protected MSC from
apoptosis, whichmay be also accounted for the improvement
of MSC survival [83].

On the other hand, preconditioning with hyperoxia
(100% oxygen) or/and Z-VAD-FMK pan-caspase inhibitor
promoted MSCs viability and proliferation, by decreasing
caspases 1, 3, 6, 7, and 9 expression and increasing survival
genes such as Akt [84].

Sevoflurane, an inhaled anesthetic widely used in clinical
anesthesia, has similar effect of hypoxia-preconditioning.

Sevoflurane pretreatment minimized MSC apoptosis and the
loss of its mitochondrial membrane potential induced by
hypoxia, which may be mediated by HIF and Akt pathways
[84].

Study also revealed that MSCs for transplantation could
be preconditioned by coculturing with cells. MSC precon-
ditioned with cardiomyocytes in culture exerted enhanced
therapeutic effect compared with MSC alone [85]. The
hetero-cell-to-cell connection altered the MSC paracrine of
cardioprotective soluble factors such as VEGF, HGF, SDF-1𝛼,
and MCP-3.

Preconditioning of MSCs with TGF-𝛼 enhanced the
VEGF secretion of transplantedMSC in vivo, thereby enhanc-
ing MSCs’ ability to protect myocardium from IR injury
[86]. Platelet-derived growth factor-BB (PDGF) treatment of
MSCs resulted in rapid activation of both Akt and ERK and
upregulated VEGF. Thus, MSCs with PDGF preconditioning
exhibited a greater capacity of functional recovery compared
with näıve MSCs in I/R injured heart [87].

Preconditioning can be operated in vitro prior to trans-
plantation, which circumvents the side effect caused by other
approaches such as genetic manipulation. Since the forced
gene manipulation in stem cells raises concern about the
safety in long-term effect, the continuous overexpression of
gene in MSCs may be harmful if the microenvironment
switches to different stage [88].

5.4. Genetic Modification of MSCs. Genes related to cardiac
protection from I/R injuries such as Akt and Integrin-linked
kinase [89] and genes involved in apoptosis such as Bcl-2 [90]
promoted stem cell survival in ischemic myocardium.

Akt has been well documented among genetic approach-
es. In both rat and porcine model of MI, transplantation of
Akt-engineered MSCs led to improved LVEF and reduced
scar size and fibrosis; this is because not only were Akt-
engineered MSCs more resistant to apoptosis [18, 91], Akt
modification also enhanced MSC secretion of paracrine
factors such as VEGF, IGF-1, and FGF-2 [92]. A double
overexpression system in MSCs comprising Akt and angio-
poietin-1 (an important modulator in angiogenesis) further
improved cell survival [93]. Overexpression of heat shock
protein 20 (Hsp-20) [94], secreted frizzled related protein
2 (sFRP2), a modulator of the Wnt signaling [95], survivin
[96], heme oxygenase (HO-1) [97], GSK-3𝛽 [98], ERBB4 [99],
CCR-1 [100], and serumderived factor-1 (SDF-1) [101] inMSC
had similar beneficial effect on cell survival.

We have demonstrated previously that silencing of prolyl
hydroxylase domain protein 2 (PHD2) enhanced ADSC
survival after transplantation into murine ischemic myocar-
dium, bymaintenance of activeHIF-1𝛼 [102]. PHD2 silencing
can also enhance ADSC paracrine antiapoptotic effect on
cardiomyocytes against ischemia via NF-𝜅B signaling. Sim-
ilarly, GATA-4 overexpression in MSCs increased both MSC
survival and angiogenic potential in ischemic myocardium
[103].

In addition to coding gene, microRNA (miR) has been
explored for stem cell therapy with its multitargets property.
Overexpression of miR-1 in MSCs promoted their survival
2-3-fold at 7 days after transplantation, leading to more
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conducive repair of infarct injury and improved heart func-
tion. miR-1 promoted MSC survival via regulating caspase 9,
Bcl-2, and Bax [104]. miR-210 engineering has similar effect
in MSCs through antioxidative c-Met pathway [105].

5.5. Cotransplantation of MSCs with Other Cells. CS/PCs,
such as c-kit positive residential progenitor cells in heart
[106], emerged as another potential cell source for cardiac
repair [106]. Clinical trial of CS/PCs reported encouraging
results in preserving cardiac function for patients with
ischemic cardiomyopathy [107]. Based on the observation
that MSC can stimulate endogenous CS/PCs proliferation
[25] and regulate CS/PCs niches [108], studies have been
performed to explore the effect of using MSCs together with
CS/PCs [109, 110]. In a porcine model of MI, a combination
of human CS/PCs and MSCs labeled with iron oxide for
CMR imaging was delivered into myocardium 14 days after
MI. CMR revealed that this combination was 7-fold greater
cell engraftment than either cell type alone, thereby further
reduced scar size, and improved cardiac function [110].

Inflammatory status in acute stage is another important
factor causing the low retention of transplanted MSCs.
Previous studies have shown that CD4+CD25hiFoxP3+ T reg-
ulatory (Treg) cells have a potential to suppress inflammation,
thus providing a favorable environment forMSC engraftment
[53, 111]. The cotransplantation of autologous Treg cells with
MSC dramatically increased the MSC survival rate and
proliferation in a porcine MI model with no deleterious side
effects observed [112].

5.6. Administration of MSCs with Medication. Statins
have some cardioprotective function independent of
their lipid-lowering ability. They can protect endothelial
function, increase nitric oxide bioavailability, and exert
antioxidant/anti-inflammatory effects [113–117]. Combina-
tion of Simvastatin (0.25mg/kg/d) and MSC transplantation
(3× 107 cells per animal) showed approximately 4-fold higher
MSC survival rate compared with MSC alone. This was due
to the fact that oxidative stress and inflammatory response
were significantly reduced in the infarcted regions by
Simvastatin [118]. Other groups reported that Rosuvastatin
improved survival of ADSCs after transplantation into
infarcted hearts. Improved cardiac function and reduced
fibrosis were observed in Rosuvastatin plus ADSC group.
Bioluminescence imaging and histological staining in vivo
revealed that Rosuvastatin (20mg/kg per day for 28 days)
enhanced the survival of engrafted ADSC approximately
1.3-fold compared toMSC alone.This was associated with the
idea that Rosuvastatin increased Akt, ERK phosphorylation,
promoted the subsequent FoxO3a phosphorylation and
nuclear export, and decreased the proapoptotic proteins in
ADSCs [119].

5.7. Another Optimization for MSCTherapy

5.7.1. Time Point. Li and colleagues compared the time points
for optimizing MSC efficacy. Among 1 h, 1 week, and 2
weeks delivery after acute MI, time point of 1 week exhibited

the most abundant MSC survival. Delivery at a later time
point may lead to impeded cell retention, whereas cell
administration too early may lead to poor engraftment due
to the intensive inflammatory response in the acute stage
[120]. According to an analysis of 7 randomized controlled
trials with 660 patients with MI undergoing emergent per-
cutaneous coronary intervention and receiving intracoronary
BMSC transplantation, the effect of BMSC delivery at 4 to 7
days was superior to that within 24 hours [121].

5.7.2. Intactness. Adhesion is important for cell survival.
Disruption of cell-ECM contact by trypsinization prior to cell
transplantation may impair cell viability and facilitate apop-
tosis. Recently, improvingMSC survival after transplantation
with effective adhesion attracts much attention. MSCs were
expanded on microcarrier beads in spin culture and directly
transplanted, which avoided trypsinization and detachment
of cell-ECM interaction, showing significantly less apoptosis
than trypsinized control cells [122].

5.7.3. Extracorporeal ShockWave. Genetically overexpression
of SDF-1 in MSC can improve cell retention in ischemic
myocardium [123]. Extracorporeal shock wave, similar to
that used to treat nephrolithiasis, has been experimentally
demonstrated to increase homing factor such as SDF-1 in tar-
get tissue [124]. Whether shock wave treatment can increase
MSC retention requires further investigation. However, the
phase I/II, double-blind, randomized, placebo-controlled
trial CELLWAVE (NCT NCT00326989) conducted among
patients reported that patients with chronic heart failure
receiving shock wave treatment prior to intracoronary BM-
MNC infusion had a modest but significant improvement
in LVEF compared to shock wave/placebo infusion [125].
Although the cell retention has not been evaluated in this
trial, extracorporeal shock wave remains a strategy of interest
in future.

6. Discussion

Thepoor viability of transplantedMSCs hampers their thera-
peutic efficacy for cardiac repair. A number of strategies have
been conducted to augment the longevity of engraft cell in the
hostile environment.We summarized the efficacy of promot-
ing MSC survival with different strategies (Table 1, Figure 1).
Myocardium injection has superior cell retention compared
with other traditional routes such as catheter-based intra-
coronary infusion. MSCs seeded biocompatible materials
scaffold delivered by injection or suturing to the epicardium
hold promising potential. Biomaterials such as hydrogel can
prevent the first wave loss of transplanted MSC due to the
myocardium contraction. Preconditioning and genetic mod-
ification ofMSCs can enhance the resistance of MSCs against
hypoxia, oxidation, and inflammation. MSC transplantation
together with CS/PC or Treg cells showed enhanced cell
engraftment. Statin improves MSC survival after transplan-
tation based on its multipotent function. A limitation of this
review is that the efficacies of approaches improving cell
retention are difficult to be compared with each other. This is
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Figure 1: Schematic cartoon to illustrate the strategies to improve survival of MSC in ischemic myocardium.MSC can be either pretreated by
hypoxia/cytokine or genetically modified before delivery to myocardium. Hydrogel/polymer with suspended MSC forms a semigrid scaffold
when injected into the myocardium, which improves cell retention. MSC can be also seeded on biocompatible patch or form cell layer by
culturing in thermosensitive dish; both of them can be deposited or sutured onto the epicardium of the infarcted area. Combinedwith another
cell type (CSC, Treg cell) or medicine/compound (statin), they improve the survival of MSC.
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partially due to themeasurements of cell retention in different
studies.

As paracrine effects are nowadays considered as pre-
dominant therapeutic effect of MSCs [126], there is an
attempt to apply functional fraction of conditioned medium
(or its components such as exosome) of cultured MSCs
instead of direct cell delivery to treat heart disease [33–
35]. However, some effects, including mitochondria transfer
effect between MSC and cardiomyocytes [38], cannot be
mimicked by paracrine factors alone. Further, the strategies
acquired from MSC studies to promote cell survival have
broader significance. Some stem cell types such as embryonic
stem cell and inducible pluripotent stem cell (iPSC) have
indisputable capacity to generate new cardiomyocytes, which
are conducted in preclinical studies. The optimized methods
for MSC transplantation can be tested in iPSC-derived
cell treatment in ischemic myocardium, leading to greater
efficacy for cardiac regeneration [127–134].
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