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Circular RNA cerebellar degeneration-related protein 1 antisense RNA 
(Circ-CDR1as) downregulation induced by dexmedetomidine treatment protects 
hippocampal neurons against hypoxia/reoxygenation injury through the 
microRNA-28-3p (miR-28-3p)/tumor necrosis factor receptor-associated factor-3 
(TRAF3) axis
Junhua Wang and Ying Wang

Department of Anesthesia, Liyang People’s Hospital, Changzhou, P.R. China

ABSTRACT
Cerebral ischemia/reperfusion (CI/R) injury results in serious brain tissue damage, thereby leading 
to long-term disability and mortality. It has been reported that dexmedetomidine (DEX) exerted 
neuroprotective effects in CI/R injury. Herein, we intended to investigate whether and how circular 
RNA (circRNA) cerebellar degeneration-related protein 1 antisense RNA (circ-CDR1as) was involved 
in the DEX-mediated protection on hippocampal neurons. In our work, the mouse hippocampal 
neuronal cells (HT-22) were used to construct a hypoxia/reperfusion (H/R) model for CI/R injury. 
Cell proliferation and apoptosis were evaluated by CCK-8 and flow cytometry. Gene expressions 
were detected by RT-qPCR. Levels of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) were 
measured by ELISA. The association between miR-28-3p and circ-CDR1as or TRAF3 was verified by 
dual-luciferase assay. The results indicated that DEX alleviated HT-22 cell dysfunction induced by 
H/R treatment. In addition, circ-CDR1as was downregulated after DEX treatment and reversed the 
effects of DEX on the proliferation, apoptosis, and inflammatory responses of H/R-treated HT-22 
cells. Circ-CDR1as positively regulated TRAF3 expression via interaction with miR-28-3p in HT-22 
cells. Circ-CDR1as aggravated H/R-treated HT-22 cell dysfunction through targeting miR-28-3p. 
Furthermore, TRAF3 inhibition partly abolished the effect of circ-CDR1as overexpression on 
cellular activities of H/R-treated HT-22 cells. To sum up, our findings, for the first time, demon
strated that DEX exerted neuroprotective effects on hippocampal neurons against H/R treatment 
via the circ-CDR1as/miR-28-3p/TRAF3 regulatory network, providing novel therapeutic targets for 
DEX administration in CI/R treatment.
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Introduction

Stroke, an acute cerebrovascular disorder, is 
a leading cause of long-term disability and mor
tality in adults worldwide [1]. Nearly 85% of 
stroke cases might be attributed to cerebral ische
mia [2,3]. At present, the most effective method 
for ischemia stroke treatment in clinical practice 
is thrombolytic therapy through which blood 
supply to brain tissues can be timely restored, 
thereby ameliorating ischemic stroke-induced 
brain injury [4]. However, sudden resumption 
of blood supply after cerebral ischemia may 
induce a succession of pathological reactions, 
such as aggravated apoptosis and inflammatory 
responses in neurons, and even cause secondary 

injury to local brain tissues, which is known as 
cerebral ischemia/reperfusion (I/R) injury [5]. 
Although numerous drugs are of neuroprotective 
capability, many of them fail to therapeutic effects 
in cerebral I/R (CI/R) treatment [6]. Hence, it is 
of great significance to find new therapeutic 
approaches for CI/R therapy.

Dexmedetomidine (DEX), an activator of 
Alpha2-adrenoceptor, is a widely applied anes
thetic drug for sympathetic activity depression, 
analgesia, and sedation in clinical anesthesia, with
out causing respiratory depression [7]. Besides, 
DEX also exerts essential pharmacological effects 
on reducing apoptosis, diminishing inflammation, 
and relieving neuropathic pain [8]. For example, 

CONTACT Ying Wang ying_wang321@163.com Department of Anesthesia, Liyang People’s Hospital, Changzhou, P.R. China

BIOENGINEERED
2021, VOL. 12, NO. 2, 10512–10524
https://doi.org/10.1080/21655979.2021.1999369

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which 
permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0003-2320-7795
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/21655979.2021.1999369&domain=pdf&date_stamp=2021-12-09


Kang et al. revealed that DEX eliminated diabetes- 
induced neuropathic pain in mice by regulating 
P2X4 and NLRP3 expressions [9]. Li et al. found 
that DEX reduced renal I/R-induced apoptosis via 
the α2 Adrenoceptor/PI3K/Akt signaling [10]. He 
et al. demonstrated that DEX alleviated doxorubi
cin-mediated apoptosis and inflammation of myo
cardial cells [11]. Recently, there is a heated topic 
on DEX-mediated neuroprotection in CI/R [12– 
14]. However, the pharmacological action of DEX 
in CI/R still needs further investigation. Hence, 
a deeper understanding of the underlying mechan
isms of DEX in CI/R is imperative for the better 
improvement of DEX application in CI/R 
treatment.

Circular RNAs (circRNAs), a group of newly 
identified RNAs with covalent closed-loop struc
tures, play vital roles in several diseases, includ
ing CI/R [15–18]. To cite an instance, Zhang 
et al. disclosed circRNA CAMK4 aggravated 
CI/R injury by accelerating neuron cell death 
[19]. Yang et al. revealed that circ_008018 exa
cerbated CI/R-induced neuronal cell apoptosis 
via regulating miR-99a [20]. Liu et al. 
circ_002664 promoted CI/R-induced neuron 
cell apoptosis via regulating Herpud1 through 
interaction with miR-182-5p [21]. As reported 
in a study by Quan et al., circRNA cerebellar 
degeneration-related protein 1 antisense (circ- 
CDR1as) was highly expressed in PD and cause 
cell damage in vitro [22], indicating its promot
ing role in neurological disorder. Nevertheless, 
the functions of circ-CDR1as in CI/R remains 
poorly understood.

In this study, a hypoxia/reoxygenation (H/ 
R)-induced neuronal cell model serves as an 
effective tool for the research on the cellular 
dysfunction caused by CI/R injury [23]. It was 
hypothesized that DEX exerted protective 
effects on H/R-induced hippocampal neuron 
cells via regulating circ-CDR1as. Herein, we 
for the first time explored the specific role of 
circ-CDR1as/miR-28-3p/TRAF3 competing 
endogenous RNA (ceRNA) network in the 
DEX-mediated protection against H/R-induced 
hippocampal neuronal dysfunction, thereby 
providing novel molecular targets for CI/R 
treatment with DEX.

Materials and methods

Cell culture and DEX treatment

Mouse hippocampal neuronal cells (HT-22) pur
chased from BeNa Culture Collection (Beijing, 
China) were cultured in DMEM supplemented 
with 10% FBS in an incubator (5% CO2; 37°C) as 
per standard protocols. For DEX treatment, HT-22 
cells were exposed to DEX (100 µM) for 24 h.

Establishment of hypoxia/reoxygenation (H/R) 
cell model

To construct an H/R cell model, HT-22 cells were 
cultivated in a low-oxygen atmosphere (94% N2 
+ 5% CO2 + 1% O2; 37°C) for 6 h. Thereafter, the 
HT-22 cells were transferred to fresh DMEM sup
plemented with 10% FBS and cultured in a regular 
incubator (95% O2 + 5% CO2; 37°C) for 6 h. 
Untreated HT-22 cells were used as the blank 
control group (Control group) [24].

Cell transfection

Small interfering RNAs against circ-CDR1as (si- 
circ-CDR1as: 5′-UAAUGUGAGACGUCAUAGA 
AC-3′), TRAF3 (si-TRAF3: 5′-AUAGAGAA 
UAUAACCUGUCGA-3′), scramble control (si- 
NC: 5′-AUUGUAGAUAAUCAGCUUAAU-3′), 
pcDNA3.1 overexpression vector for circ-CDR1as 
(oe-circ-CDR1as), empty vector (Vector), miR-28- 
3p overexpression and inhibition plasmids (miR- 
28-3p mimics: 5′-UAGAUCACAGUCCUUUGU 
UAU-3′ and miR-28-3p inhibitor: 5′-AUCU 
AGUGUCAGGAAACAAAUA-3′), and corre
sponding negative controls (NC mimics: 5′- 
AUCUAGUCAGUCCUUUGUUUAU-3′ and NC 
inhibitor: 5′-AUCUAGUGUCAGGAAACAAAU 
A-3′) were provided by GenePharma (Shanghai, 
China) and transfected into HT-22 cells via 
Lipofectamine 2000 (Invitrogen, USA).

CCK-8 assay

CCK-8 assay was utilized for cell viability assess
ment. HT-22 cells were seeded into six-well plates 
(3 × 105 cells/well) and cultured for 24 h. 
Afterward, 10 μl CCK-8 reagent was added into 
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each well. After incubation with CCK-8 reagent 
for 1 h, the absorbance (optical density) was mea
sured with a microplate reader (Bio-Rad, 
USA) [25].

Flow cytometry

Flow cytometry was applied for the analysis of 
HT-22 cell apoptosis via the Annexin V-FITC 
Apoptosis Detection Kit (eBioscience, USA). HT- 
22 cells in each group were centrifuged at 400 × g 
for 5 min, rinsed 3 times with PBS, and then 
incubated with 5 μL Annexin V-FITC reagent 
and 10 μL PI reagent (Sigma-Aldrich, USA) for 
15 min at room temperature in darkness. The 
apoptotic HT-22 cells were analyzed with a flow 
cytometer (Beckman Coulter, China) [26].

ELISA

In order to determine TNF-α, IL-6, and IL-1β levels 
in HT-22 cells, ELISA assays were performed with 
corresponding ELISA assay kits (Mlbio, China) 
according to the standard protocol [27].

RT-qPCR

Isolation of total RNA from HT-22 cells was per
formed via TRIzol (Invitrogen). Then, cDNA was 
generated with a reverse transcriptase kit (Takara, 
Japan) or Thermo Fisher’s K1622 kit (Thermo 
Fisher Scientific, USA). Afterward, qPCR was 
accomplished with SYBR-Green PCR Master Mix 
kit (Takara, China). Relative gene expression was 
evaluated by 2−ΔΔCt method, with GAPDH or U6 
as the internal reference [28]. The primers used 
were as follows: circ-CDR1as forward (F): 5′- 
GTGTCTCCAGTGTATCGGCG-3′ and reverse 
(R): 5′-TACTGGCACCACTGGAAACC-3′; TR 
AF3 F: 5′-CTTCCCGGGCTGTGATATTG-3′ and 
R: 5′-GGCTGTATCTGACCGCTAGG-3′; GAP 
DH F: 5′-ACCCACTCCTCCACCTTTGAC-3′ 
and R: 5′-TGTTGCTGTAGCCAAATTCGTT-3′; 
miR-28-3p F: 5′-CGCGCACTAGATTGTGAGCT 
-3′ and R: 5′-AGTGCAGGGTCCGAGGTATT-3′; 
U6 F: 5′-CTCGCTTCGGCAGCACATATACT-3′ 
and R: 5′-ACGCTTCACGAATTTGCGTGTC-3′.

Dual-luciferase assay

The 3′ UTR regions of TRAF3 and circ-CDR1as 
with binding or mutant sequences for miR-28-3p 
were cloned into pmirGLO luciferase vectors 
(Promega, USA) to synthesize wild-type plasmids 
(TRAF3-WT and circ-CDR1as-WT) or mutant- 
type plasmids (TRAF3-MUT and circ-CDR1as- 
MUT). The above plasmids were respectively 
transfected into HT-22 cells, together with NC 
mimics or miR-28-3p with Lipofectamine 2000 
(Invitrogen). 48 h later, the luciferase activity was 
determined via the dual-luciferase reporter assay 
kit (Promega, USA) and normalized to Renilla 
luciferase activity.

Statistical analysis

The data were expressed as mean ± standard 
deviation (SD). Each experiment was conducted 
three times. Student’s t test or one-way ANOVA 
was applied to accomplish difference comparison 
between two or multiple groups. Statistical analysis 
was performed using GraphPad Prism 6.0. 
A difference with P < 0.05 was deemed statistically 
significant.

Results

In this work, we intended to investigate the role 
and molecular mechanism of DEX in H/ 
R-challenged hippocampal neuronal dysfunction. 
Our results demonstrated that DEX exerted neu
roprotective effects on hippocampal neurons 
against H/R treatment via the circ-CDR1as/miR- 
28-3p/TRAF3 regulatory network, providing novel 
therapeutic targets for DEX administration in CI/ 
R treatment.

DEX relieves HT-22 cell dysfunction induced by H/ 
R treatment

To discover the possible effects of DEX treatment 
on H/R-induced HT-22 cells, we treated HT-22 
cells with DEX after H/R treatment. As shown in 
Figure 1(a), HT-22 cell viability prominently 
dropped after H/R treatment, while DEX treat
ment everted an ameliorative effect on cell viabi
lity. In addition, it was discovered that HT-22 cell 
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apoptosis rate was significantly increased after H/R 
treatment, while DEX led to an opposite result 
(Figure 1(b)), indicating that DEX reduced cell 
apoptosis. Moreover, the TNF-α, IL-6, and IL-1β 
levels were increased after H/R treatment, whereas 
DEX remarkably reversed such a phenomenon 
(Figure 1(c-e)). To sum up, DEX relieved H/ 
R-induced apoptosis and inflammatory responses 
in HT-22 cells.

Circ-CDR1as is down-regulated after DEX 
treatment and reverses the effects of DEX on H/ 
R-treated HT-22 cell proliferation, apoptosis, and 
inflammation

It was found that circ-CDR1as expression was 
markedly increased in HT-22 cells subject to H/R 
treatment; on the contrary, DEX led to down- 
regulated circ-CDR1as expression (Figure 2(a)). 
To further discover the potential functions of circ- 
CDR1as in DEX-mediated neuroprotection against 
H/R treatment, cell viability, apoptosis, and 

inflammatory responses of HT-22 cells were 
detected in each group. Firstly, circ-CDR1as was 
overexpressed in HT-22 cells (Figure 2(b)). As 
indicated by RT-qPCR assay, circ-CDR1as expres
sion was evidently up-regulated by H/R, remark
ably decreased by DEX, and increased again by 
circ-CDR1as overexpression (Figure 2(c)). 
Functional assays exhibited that circ-CDR1as 
upregulation reversed the effect of DEX on cellular 
processes of HT-22 cells, as indicated by decreased 
cell viability, elevated apoptotic rate, as well as 
increased inflammatory responses (Figure 2(d-h)).

MiR-28-3p directly binds to circ-CDR1as

StarBase predicted that circ-CDR1as contains 
a latent binding region for miR-28-3p (Figure 3 
(a)). The dual-luciferase reporter assay was per
formed to verify the binding condition between 
miR-28-3p and circ-CDR1as. Firstly, miR-28-3p 
was overexpressed in HT-22 cells (Figure 3(b)). 
The results showed that miR-28-3p upregulation 

Figure 1. DEX relieves HT-22 cell dysfunction induced by H/R treatment. (a) Relative cell viability after H/R injury and DEX treatment 
was measured using CCK-8 assay. (b) Cell apoptosis rate after H/R injury and DEX treatment was measured by flow cytometry. (c-e) 
TNF-α (d), IL-6 (e), and IL-1β (f) levels were measured by ELISA. *P < 0.05; **P < 0.01; ***P < 0.001.
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inhibited the luciferase activity of circ-CDR1as-WT 
but almost had no effect on the luciferase activity of 
circ-CDR1as-MUT (Figure 3(c)). RT-qPCR results 
revealed that miR-28-3p was lowly expressed in H/ 
R-challenged HT-22 cells, while DEX upregulated 
miR-28-3p expression (Figure 3(d)). Next, circ- 
CDR1as was knockdown in HT-22 cells (Figure 3 
(e)). Furthermore, miR-28-3p expression was down
regulated or overexpressed in HT-22 cells after circ- 
CDR1as overexpression or knockdown, respectively 

(figure 3(f)). These data showed that circ-CDR1as 
negatively regulated miR-28-3p expression.

Circ-CDR1as expedited apoptosis and 
inflammatory responses of H/R-treated HT-22 
cells via regulating miR-28-3p

To explore the regulating role of circ-CDR1as and 
miR-28-3p in H/R-induced HT-22 cell dysfunction, 
H/R-treated HT-22 cells were transfected with 

Figure 2. Circ-CDR1as is down-regulated after DEX treatment and reverses the effects of DEX on H/R-treated HT-22 cell proliferation, 
apoptosis, and inflammation. (a) Circ-CDR1as expression in HT-22 cells after H/R injury and DEX treatment was detected via RT-qPCR. 
(b) Circ-CDR1as overexpression efficiency was evaluated by RT-qPCR. (c) Circ-CDR1as expression in Control group, H/R group, H/R 
+ DEX group, H/R+ DEX+Vector group, or H/R+ DEX+oe-circ-CDR1as group was evaluated by RT-qPCR. (d) cell viability was 
measured using CCK-8 assay. (e) Cell apoptosis rate after H/R injury and DEX treatment was measured by flow cytometry. (f-h) TNF-α 
(g), IL-6 (h), and IL-1β (i) levels were measured by ELISA. *P < 0.05; **P < 0.01; ***P < 0.001.
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Vector, oe-circ-CDR1as, oe-circ-CDR1as+NC 
mimics, or oe-circ-CDR1as+miR-28-3p mimics, 
respectively. RT-qPCR assay revealed that miR-28- 
3p expression was decreased after circ-CDR1as over
expression and then increased after miR-28-3p addi
tion (Figure 4(a)). Next, we measured cell viability, 
apoptotic rate, and levels of pro-inflammatory cyto
kines in each group. It was revealed that circ-CDR1as 
upregulation significantly inhibited proliferation and 
increased apoptosis of H/R-treated HT-22 cells; while 
miR-28-3p upregulation partly reversed such phe
nomena (Figure 4(b,c)). In addition, the TNF-α, IL- 
6, and IL-1β levels in H/R-treated HT-22 cells were 
remarkably lifted after circ-CDR1as amplification and 

declined after miR-28-3p overexpression (Figure 4 
(d-f)). Taken together, circ-CDR1as exacerbated H/ 
R-induced apoptosis and inflammatory responses via 
miR-28-3p in HT-22 cells.

MiR-28-3p targets TRAF3

Via 5 miRNA databases (microT, miRmap, PITA, 
PicTar, and TargetScan), 10 candidate downstream 
genes (MARCH6, RNF216, FAF2, ARF6, ZFP91, 
C15orf48, FUBP3, FAM168B, NR3C2, and TRAF3) 
were predicted for miR-28-3p (Figure 5(a)). As Yao 
et al. disclosed that TRAF3 (tumor necrosis factor 

Figure 3. MiR-28-3p directly binds to circ-CDR1as. (a) Binding site between circ-CDR1as and miR-28-3p. (b) MiR-28-3p overexpression 
efficiency was evaluated by RT-qPCR. (c) The binding relationship between circ-CDR1as and miR-28-3p was verified by dual-luciferase 
activity assay. (d) MiR-28-3p expression in HT-22 cells after H/R injury and DEX treatment was detected via RT-qPCR. (e) Circ-CDR1as 
knockdown efficiency was evaluated by RT-qPCR. (f) MiR-28-3p expression in HT-22 cells transfected with Vector, oe-circ-CDR1as, si- 
NC, or si-circ-CDR1as was detected by RT-qPCR. *P < 0.05; **P < 0.01; ***P < 0.001.
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receptor-associated factor-3) expression was upregu
lated in neurons from hippocampus after cerebral 
ischemia [29], TRAF3 was selected for subsequent 
experiments. The putative binding site between miR- 
28-3p and 3′UTR of TRAF3 was presented in 
Figure 5(b). Dual-luciferase activity assay manifested 
that miR-28-3p upregulation remarkably reduced 
the luciferase activity of TRAF3-WT, while the luci
ferase activity of TRAF3-MUT was nearly 

unchanged (Figure 5(c)). RT-qPCR revealed that 
TRAF3 expression in HT-22 cells were significantly 
lifted after H/R and substantially declined after DEX 
treatment (Figure 5(d)). Then, the efficiency of miR- 
28-3p inhibition was detected via RT-qPCR 
(Figure 5(e)). TRAF3 expression were apparently 
decreased after miR-28-3p addition and distinctly 
increased after miR-28-3p inhibition; however, 
such phenomena were partly abrogated by circ- 

Figure 4. Circ-CDR1as expedited apoptosis and inflammatory responses of H/R-treated HT-22 cells via regulating miR-28-3p. (a) HT- 
22 cells were subject to H/R treatment and then transfected with Vector, oe-circ-CDR1as, oe-circ-CDR1as+NC mimics, or oe-circ- 
CDR1as+miR-28-3p mimics, with untreated HT-22 cells as the Control group. MiR-28-3p expression in each group was evaluated by 
RT-qPCR. (b) cell viability was measured using CCK-8 assay. (c) Cell apoptosis rate after H/R injury and DEX treatment was measured 
by flow cytometry. (d-f) TNF-α (e), IL-6 (f), and IL-1β (g) levels were measured by ELISA. *P < 0.05; **P < 0.01.
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CDR1as amplification or circ-CDR1as silencing, 
respectively (figure 5(f,g)). These results indicated 
that circ-CDR1as positively regulated TRAF3 
expression in HT-22 cells via interaction with miR- 
28-3p, suggesting that circ-CDR1as exerting its 
effects via the miR-28-3p/TRAF3 pathway.

TRAF3 knockdown reverses the effect of 
circ-CDR1as overexpression on H/R-challenged 
HT-22 cells

To further probe the role of TRAF3 in H/ 
R-mediated damage to HT-22 cells, H/R-induced 
HT-22 cells were transfected with Vector, oe-circ- 
CDR1as, oe-circ-CDR1as+si-NC, and oe-circ- 
CDR1as+si-TRAF3, respectively. First of all, 
TRAF3 was knocked down in H/R-induced HT- 
22 cells (Figure 6(a)). As indicated by RT-qPCR, 
TRAF3 expression was significantly elevated after 
circ-CDR1as addition, but declined after TRAF3 
depletion (Figure 6(b)). Functional assays 

exhibited that TRAF3 knockdown partly neutra
lized the effects of circ-CDR1as overexpression on 
viability, apoptosis, and inflammatory responses of 
HT-22 cells subject to H/R treatment 
(Figure 6(c-g)).

Discussion

DEX has not only effects on the hippocampus but 
also sensory processing, which involves the sen
sory cortex [30]. Moreover, DEX significantly reg
ulates the thalamus, the pulvinar nucleus in 
particular [31], which plays a vital role in visual 
and auditory processing [32,33]. Moreover, accu
mulating evidence shows that DEX exerts signifi
cant neuroprotective effects in neurological 
diseases [34–36]. In this work, the protective effect 
and regulatory mechanism of DEX on H/ 
R-induced HT-22 cell dysfunction were further 
investigated. Our findings substantiated that DEX 
considerably attenuated H/R-induced apoptosis 

Figure 5. MiR-28-3p targets TRAF3. (a) Venn diagram of target mRNAs for miR-28-3p predicted by 5 databases (microT, miRmap, 
PITA, PicTar, and TargetScan). (b) Binding site between TRAF3 and miR-28-3p. (c) The binding relationship between TRAF3 and miR- 
28-3p was verified by dual-luciferase activity assay. (d) TRAF3 expression in HT-22 cells after H/R injury and DEX treatment were 
detected via RT-qPCR. (e) MiR-28-3p knockdown efficiency was evaluated by RT-qPCR. (f) TRAF3 expression in HT-22 cells transfected 
with NC mimics, miR-28-3p mimics, miR-28-3p mimics+Vector, or miR-28-3p mimics+oe-circ-CDR1as were detected by RT-qPC. (g) 
TRAF3 expression in HT-22 cells transfected with NC inhibitor, miR-28-3p inhibitor, miR-28-3p inhibitor+si-NC, or miR-28-3p inhibitor 
+si-circ-CDR1as were detected by RT-qPCR. *P < 0.05; **P < 0.01; ***P < 0.001.
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and inflammation in hippocampal neurons via the 
circ-CDR1as/miR-28-3p/TRAF3 cascade.

It has been widely recognized that circRNAs play 
crucial roles in the development and progression of 
neurological diseases, such as cerebral I/R [37], 
Alzheimer’s disease (AD) [38], Parkinson’s disease 
(PD) [39], and Hirschsprung’s disease (HSCR) [40]. 

Circ-CDR1as, also known as ciRS-7, is deeply 
involved in the biological processes of cells, includ
ing cell viability and apoptosis. For example, Mao 
et al. found that circ-CDR1as inhibited the prolif
eration of bone microvascular endothelial cells by 
regulating FIH-1 via interaction with miR-135b 
[41]. Geng et al. revealed that circ-CDR1as 

Figure 6. TRAF3 knockdown reverses the effect of circ-CDR1as overexpression on H/R-challenged HT-22 cells. (a) TRAF3 knockdown 
efficiency was evaluated by RT-qPCR. (b) HT-22 cells were subject to H/R treatment and then transfected with Vector, oe-circ-CDR1as, 
oe-circ-CDR1as+si-NC, and oe-circ-CDR1as+si-TRAF3, with untreated HT-22 cells as the Control group. TRAF3 mRNA and protein 
levels in HT-22 cells from each group were detected by RT-qPCR. (c) cell viability was measured using CCK-8 assay. (d) Cell apoptosis 
rate after H/R injury and DEX treatment was measured by flow cytometry. (e-g) TNF-α (f), IL-6 (g), and IL-1β (h) levels were measured 
by ELISA. *P < 0.05; **P < 0.01; ***P < 0.001.
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contributed to apoptosis of hypoxia-treated mouse 
cardiac myocytes [42]. Besides, Zhang et al. uncov
ered that circ-CDR1as also exacerbated inflamma
tory responses [43]. In this study, we found that 
DEX exerted protective effects on hippocampal neu
ronal cells against H/R treatment, which was closely 
related to the downregulation of circ-CDR1as 
expression. However, circ-CDR1as overexpression 
could markedly weaken the protective effect of 
DEX on H/R-induced apoptosis and inflammation 
in HT-22 cells. Hence, DEX could attenuate H/ 
R-induced dysfunctions in hippocampal neurons 
via down-regulating circ-CDR1as.

Emerging evidence has demonstrated that 
circRNAs can post-transcriptionally regulate the 
transcription and translation of messenger RNAs 
(mRNAs) as endogenous competitive RNAs for spe
cific microRNAs (miRNAs) [44]. Moreover, such 
a circRNA-miRNA-mRNA regulating network also 
exerts key effects in diverse neurological disorders, 
including cerebral I/R [39,45,46]. Interestingly, our 
data demonstrated that circ-CDR1as sponged miR- 
28-3p as a ceRNA and miR-28-3p targeted TRAF3. 
Previous studies demonstrated that miRNAs also 
play important roles in CI/R-induced nerve damage. 
For instance, a report from Ma et al. showed that 
miRNA-589 protected against CI/R-induced inflam
matory responses in primary cortical neurons via 
mediating TRAF6 [47]. Xing et al. disclosed that 
miR-374 targeted WNT5A to alleviate CI/R injury 
[48]. Besides, Liu et al. revealed that miR-211 exerted 
protective effects on OGD/R-challenged PC12 cells 
via reducing cell apoptotic rate [49]. MiR-28-3p is 
differently regulated in human diseases and deeply 
involved in the regulation of cellular functions [50]. 
In addition, Fan et al. disclosed that miR-28-3p 
expression was negatively related to IL-1β level in 
colorectal cancer [51]. In the present study, we 
found that miR-28-3p was downregulated in H/ 
R-induced HT-22 cells, while DEX increased miR- 
28-3p expression. Further experiments revealed that 
miR-28-3p could partially abolish the effects of circ- 
CDR1as overexpression on H/R-induced HT-22 cells 
by enhancing proliferation, reducing apoptosis, and 
impairing the secretion of pro-inflammatory cyto
kines. Therefore, circ-CDR1as aggravated cellular 
dysfunction of H/R-induced HT-22 cells via interac
tion with miR-28-3p.

As a member of the TRAF adaptor protein family, 
TRAF3 exerts critical functions in regulating cellular 
activities in multiple diseases [52]. Sun et al. dis
closed that TRAF3 upregulation substantially 
enhanced the inflammatory responses of caerulein- 
induced AR42J cells [53]. Liu et al. revealed that 
TRAF3 promoted apoptosis and inflammatory 
responses of oxygen-glucose deprivation/reperfusion 
(OGD/R)-induced PC12 cells [54]. Zhang et al. 
found that TRAF3 impaired the proliferation of 
MDA-MB-231 cells via inhibiting miR-29b-3p [55]. 
Also, Liu et al. demonstrated that TRAF3 aggravated 
cardiac I/R-induced apoptosis and inflammation 
[56]. Consistent with the above findings, TRAF3 
expression was significantly increased in HT-22 
cells after H/R treatment and remarkably after DEX 
administration. Rescue experiments showed that the 
promoting effects of circ-CDR1as upregulation on 
cellular dysfunction of H/R-treated HT-22 cells were 
partly abrogated by TRAF3 silencing. Taken 
together, circ-CDR1as upregulated TRAF3 expres
sion, thereby promoting apoptosis and inflammatory 
responses in H/R-treated HT-22 cells.

Conclusion

In summary, this work demonstrated that DEX 
exerted neuroprotective effects against H/ 
R-induced HT-22 cell dysfunction through regu
lating the circ-CDR1as/miR-28-3p/TRAF3 cas
cade. This study explored the neuroprotective 
effects and potential mechanisms of DEX in hip
pocampal neuron damage induced by cerebral I/ 
R, providing a theoretical basis and certain targets 
for DEX application in cerebral I/R. In the future, 
in vivo experiments should be performed to 
further confirm the role of circ-CDR1as/miR- 
28-3p/TRAF3 axis in CI/R injury.

Research highlights

1. DEX attenuated H/R-induced dysfunctions of HT-22 cells 
by regulating circ-CDR1as

2.circ-CDR1as upregulated TRAF3 expression by targeting 
miR-28-3p

3.circ-CDR1as promoted dysfunction of H/R-induced 
HT-22 cells via miR-28-3p/TRAF3 axis
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