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The current picture of human salmonellosis shows Salmonella Typhimurium and S.
4,[5],12:i:- as the most common serovars in Italy. The aims of this study were to
investigate the genetic relationship between these serovars, as well as to test the
possibility of inferring sources of human salmonellosis due to S. Typhimurium and
S. 4,[5],12:i:- by using multilocus variable-number tandem repeat analysis (MLVA)
subtyping data. Single isolates from 268 human sporadic cases and 325 veterinary
isolates (from pig, cattle, chicken, and turkey) collected over the period 2009–2011
were typed by MLVA, and the similarities of MLVA profiles were investigated using
different analytical approaches. Results showed that isolates of S. 4,[5],12:i:- were more
clonal compared to S. Typhimurium and that clones of both serovars from different non-
human sources were very close to those which were responsible for human infections,
suggesting that source attribution by MLVA typing should be possible. However, using
the Asymmetric Island Model it was not possible to obtain a confident ranking of sources
responsible for human infections based on MLVA profiles. The source assignments
provided by the model could have been jeopardized by the high heterogeneity found
within each source and the negligible divergence between sources as well as by the
limited source data available, especially for some species.

Keywords: Salmonella, genetic similarities, microbial subtyping, source attribution, MLVA

Introduction

Salmonella is the second most frequent zoonosis in the European Union. In 2012, the top
two Salmonella serovars isolated from humans were S. Enteritidis (41.4%) and S. Typhimurium
(22.1%); (European Food Safety Authority [EFSA], and European Centre for Disease Prevention,
and Control [ECDC], 2014). In Italy, contrary to the majority of the European countries, S.
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Typhimurium has been the most common serovar since 2000
(Graziani et al., 2013). Recently, another serovar, S. 4,[5],12:i:-,
has sharply increased in prevalence. This serovar was isolated for
the first time from humans in Italy in 2003. Since then a constant
and progressive increase has been observed, and S. 4,[5],12:i:-
accounted for almost 40% of human isolates in 2011 (Dionisi
et al., 2009). Similar trends have been observed in other parts of
Europe (European Food Safety Authority [EFSA], 2010; Hopkins
et al., 2010), and in a situation where Salmonella isolations in gen-
eral have been progressively decreasing, S. 4,[5],12:i:- is one of
the few serovars for which an opposite trend has been described
(European Food Safety Authority [EFSA], and European Centre
for Disease Prevention, and Control [ECDC], 2014). S. 4,[5],12:i:-
is defined as amonophasic variant of S. Typhimurium (4,[5],12:i:-
1,2) because of antigenic and genetic similarities between the
two serovars, and the characterization of S. 4,[5],12:i:- isolates
by using different molecular approaches demonstrated that S.
Typhimurium is the direct ancestor of S. 4,[5],12:i:- (Soyer et al.,
2009).

Multilocus variable-number tandem repeat analysis (MLVA)
has been increasingly used in Europe as a primary method for
S. Typhimurium subtyping especially in the context of outbreak
investigations (Torpdahl et al., 2007; Petersen et al., 2011; Ross
et al., 2011). A 5-loci MLVA scheme (Lindstedt et al., 2004) has
been standardized and recently validated in a large European
inter-laboratory trial (Larsson et al., 2013). MLVA has been
identified as one of the most valuable subtyping methods for
Salmonella (European Food Safety Authority [EFSA], 2008, 2013;
Barco et al., 2013), mainly thanks to the possibility of automa-
tion, which facilitates the analysis of a large number of isolates.
Another strength of MLVA is the output it produces. A MLVA
profile consists of a string of numbers, which is easily shared
among laboratories and suitable to supply mathematical models
(Wuyts et al., 2013).

In order to correctly allocate the available resources to prevent
human foodborne diseases, it is important for risk managers
to be able to accurately apportion sporadic cases of infec-
tion to specific animal hosts and to understand transmission
routes of the pathogens (Havelaar et al., 2007; Heck, 2009).
Efforts to quantify the importance of specific sources and ani-
mal reservoirs responsible for human infection have been gath-
ered under the term source attribution (European Food Safety
Authority [EFSA], 2008), which has been defined as the parti-
tioning of the human disease burden of one foodborne pathogen
to specific sources, whether being animal reservoirs or vehi-
cles for transmission through the food chain (Pires et al., 2009).
Even though different source attribution approaches have been
described, microbial subtyping source attribution methodology
has been the most frequently used (see review by Barco et al.,
2013). The principle behind this methodology is the compar-
ison of the subtypes in putative sources with the subtypes
identified in human samples (Pires et al., 2009). This method-
ology requires a collection of temporally and spatially related
isolates from different sources and from humans (European
Food Safety Authority [EFSA], 2008). The great majority of
Salmonella source attribution exercises carried out so far have
been based on frequency-matching models, which compare the

distribution of subtypes identified in humans with those in
the putative sources in order to infer the principal sources
of human infections (European Food Safety Authority [EFSA],
2013). These models have been implemented by using phe-
notypic subtyping data (e.g., serovars, phage-type, and antimi-
crobial resistance profiles). As an alternative models that con-
sider the population genetics of foodborne bacteria can be used.
Mathematical models, which estimate the amount of mutations,
recombination, and migrations of the target DNA from dif-
ferent sources, can be valuable tools to probabilistically assign
human cases to the putative sources (European Food Safety
Authority [EFSA], 2013). The Asymmetric Island Model is an
example of a source attribution model that uses this principle.
It was originally applied to estimate sources of human campy-
lobacteriosis based on multilocus sequence typing (MLST) data
(Wilson et al., 2008). More recently, a Dutch study took advan-
tage of this model to estimate the main sources of human
salmonellosis due to S. Typhimurium, its monophasic variant
and S. Enteritidis based on MLVA profiles (Mughini-Gras et al.,
2014a).

Although different studies have demonstrated that the
monophasic serovar emerged from S. Typhimurium through
multiple independent emergence events (Soyer et al., 2009; Switt
et al., 2009), the genetic relationship between the two serovars
deserves further investigations, in order to collect valuable infor-
mation to explore the reasons for the sharp emergence of S.
4,[5],12:i:- isolates and find plausible explanations for its evolu-
tionary success.

The aims of the present study were (i) to investigate the rela-
tionship between S. Typhimurium and S. 4,[5],12:i:-, as the most
important serovars circulating in Italy, and (ii) to test the possibil-
ity of inferring sources of human salmonellosis due to these two
serovars by using MLVA subtyping data.

Materials and Methods

Data Set
Single isolates from 268 human sporadic cases and 325 veteri-
nary isolates of S. Typhimurium and S. 4,[5],12:i:- (Table 1)
were collected in Italy between January 2009 and December
2011. The isolates were epidemiologically unrelated to the extent
that could be established. Human cases were identified through
“Enter-net Italia,” a passive laboratory-based surveillance sys-
tem for Salmonella based on the contribution of 140 periph-
eral laboratories under the supervision of the Istituto Superiore
di Sanità (Rome). Veterinary isolates were collected in the
framework of the “Enter-vet” network, a laboratory surveil-
lance system in place in Italy for the collection of veterinary
isolates of Salmonella. This network consists of 10 periph-
eral laboratories distributed throughout the Country and it is
coordinated by the Italian National Reference Laboratory for
Salmonella (Istituto Zooprofilattico Sperimentale delle Venezie,
Legnaro, Padova). Veterinary isolates were collected both at
reservoir level (from animal samples) and at the point of
purchase and consumption (from food samples), in order to
trace the putative sources along the entire food production
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TABLE 1 | Distribution of isolates by serovar and source.

Serovar Source N◦ of isolates N◦ of MLVA profiles N◦ isolates with unshared
MLVA profile (%)a

S. Typhimurium Human 63 28 28 (44.4)

Pig 73 44 47 (64.4)

Chicken 20 15 17 (65)

Cattle 18 15 11 (61.1)

Turkey 8 6 3 (37.5)

Total 182 93 106 (58.2)

S. 4,[5],12:i:- Human 205 53 38 (18.5)

Pig 131 43 26 (19.8)

Chicken 27 17 1 (3.7)

Cattle 36 12 1 (2.8)

Turkey 12 10 2 (16.7)

Total 411 79 68 (16.5)

Number of different MLVA profiles identified per each source; number of isolates and percentage () of MLVA profiles identified only in one specific source.
aThe word unshared here refers to isolates belonging to a MLVA profile type only seen among human isolates or among just one of the sources investigated.

chain. Poultry samples were obtained at primary production
level in the context of EU control programs (according to
Regulation EC No 2160/2003) and for other species in the con-
text of locally implemented programs, as well as from ad hoc
surveillance activities following suspected incidents. Food sam-
ples were collected both at the production and retail levels
according to the control programs implemented to verify the
correct application of Regulation EC No 2073/2005. The num-
ber of non-human isolates were distributed among the sources
according to the frequencies reported for S. 4,[5],12:i:- and S.
Typhimurium within the Enter-vet network during the consid-
ered time frame.

Analytical Methods
Serotyping and PCR Confirmation Test
Salmonella 4,[5],12:i:- and S. Typhimurium isolates were
serotyped by slide agglutination with commercial antisera
according to the White-Kauffmann-Le Minor scheme (Grimont
andWeill, 2007). Moreover, in order to ascertain the monophasic
or biphasic status of the isolates the PCR protocol recommended
by the European Food Safety Authority (European Food Safety
Authority [EFSA], 2010; Barco et al., 2011) was used. This mul-
tiplex PCR protocol allows the simultaneous amplification of
the phase-2 flagellar gene (fljB), which is detected only among
the biphasic isolates and the fliA-B intergenic region, gener-
ating a 1 kb amplicon that is specific for S. 4,[5],12:i:- and
S. Typhimurium and that is due to the presence of an IS200
copy.

Multilocus Variable-Number Tandem Repeat Analysis
Multilocus variable-number tandem repeat analysis was per-
formed according to the protocol described by Lindstedt et al.
(2004). The size measurements for each locus were estimated
using a Genetic Analyzer 3130XL (Applied Biosystems, Life
Technologies Corporation, Carlsbad, CA, USA). A set of 33 ref-
erence S. Typhimurium isolates (provided by the Statens Serum
Institut, Copenhagen, Denmark) were used to normalize the raw

data obtained from the analysis of all isolates by capillary elec-
trophoresis using GeneMapper (software version 4.0, Applied
Biosystems Science, Life Technologies Corporation). According
to the nomenclature suggested by Larsson et al. (2009), MLVA
results were reported as a string of five numbers representing
the variable number of tandem repeats (VNTRs) at the cor-
responding loci (STTR9–STTR5–STTR6–STTR10pl–STTR3), or
as 0 in the case that a PCR product was not obtained for a locus.
VNTR allele numbers were imported as character values into the
BioNumerics Software (version 6.6, Applied Maths, NV, Saint-
Martens— Latem, Belgium) for analysis, then subjected to cluster
analysis and dendrogram construction by the unweighted pair-
group method using arithmetic averages (UPGMAs) clustering,
using a distance measure based on the number of different loci
between profiles. To visualize the relationships between isolates,
standard minimum spanning trees (MSTs) were generated using
categorical coefficient, the single and double locus variance pri-
ority rules and avoiding the creation of hypothetical types. Clonal
complexes were created based on maximum neighbor distance of
changes at two loci and a minimum of two MLVA profiles per
complex.

Statistical Analyses
Descriptive Analyses
A descriptive analysis of MLVA profile frequencies in the two
serotypes and VNTR loci variability between human and non-
human sources was conducted by using the R version 3.1.2
(R Core Team, 2012).

Diversity Index
The diversity among the five VNTR (STTR9–STTR5–STTR6–
STTR10pl–STTR3) was estimated according to the Simpson’s
Diversity Index, which quantifies the variation of the number
of repeats at each locus and assumes values ranging from 0.0
(indicative of complete absence of diversity) to 1.0 (indicative
of complete diversity). To calculate the index, the online toll
“DIversity and Confidence Extractor (V-DICE)” provided by
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the Health protection Agency’s Bioinformatics Unit (available
at http://www.hpa-bioinformatics.org.uk/cgi-bin/DICI/DICI.pl)
was used.

Asymmetric Island Model
The Asymmetric Island Model was applied as described orig-
inally by Wilson et al. (2008). The model is an evolutionary
model assuming that the Salmonella population consists of a
number of discrete islands, each of which corresponds to a differ-
ent source, and allowing for occasional exchange between islands
(migrations), generation of new MLVA profiles (mutation) and
recombination. Formally, the model is a Bayesian model in two
stages: in the first stage the model estimates the posterior distri-
butions of the evolutionary parameters (migration, mutation and
recombination), based on source data, and in the second stage
the estimated posterior distributions are used in order to infer
the fraction of human cases attributable to each source.

The model was run considering S. Typhimurium and S.
4,[5],12:i:- MLVA profiles separately as well as considering a
unique dataset (merged database) including all MLVA profiles
irrespective of the serovar. Since few MLVA typed isolates were
available for chickens and turkeys, these isolates were pooled
so that the attribution was performed considering the “poultry”
source.

Moreover, in order to assess the sensitivity of the model to
the sample size differences between sources, bootstrap samples
of equal size were constructed for each source by sampling 100
times with replacement from the original sample. Also this new
dataset, consisting of the original data for human isolates and
the bootstrap samples for the source isolates, was used to run the
model.

Analysis of Molecular Variance
To quantify genetic differentiation between the different pop-
ulations investigated (human and putative sources), analysis
of molecular variance (AMOVA) was used. AMOVA explic-
itly extends the procedures and formats used in the traditional
analysis of variance, in order to estimate the degree of genetic
differentiation between-group and within-group at several hier-
archical levels (Excoffier et al., 1992). AMOVA produces the
variance components of each hierarchical level and estimates
the Phi statistic, the commonly used index that represents the
distribution of allelic diversity across multiple levels of popula-
tion subdivision. A higher value for the Phi statistic represents a
higher amount of population differentiation. AMOVA was per-
formed by partitioning the datasets into a hierarchical structure.
At the top there were “regions” including human and non-
human isolates, then at the second level there were “populations”
including human isolates and isolates from the different sources
separately and at the third level there were MLVA profiles asso-
ciated with each isolate. The Phi statistic was calculated at the
following levels: (i) between human and non-human isolates, (ii)
between each source, (iii) within each source. TheAMOVAanaly-
sis was conducted by using the R package ade4 (Dray and Dufour,
2007) and using the Euclidean distance to construct the distance
matrix.

Results

Comparison of MLVA Profiles between S.
Typhimurium and S. 4,[5],12:i:- Isolates
Although in the dataset contained more isolates of S. 4,[5],12:i:-
than S. Typhimurium (411 and 182 isolates respectively), the
number of MLVA profiles associated with the first serovar (93)
was higher than the number associated with the latter one (79;
Table 1). 25 MLVA profiles were shared by the two serovars,
accounting for 55.49 and 75.91% of S. Typhimurium and S.
4,[5],12:i:- isolates respectively.

Cluster analysis by UPGMA was performed to clarify the
relationship between the two serovars (Figure 1). The entire
dataset was distributed into seven different clusters. Two clus-
ters included MLVA profiles exclusively associated with S.
Typhimurium (clusters 1 and 4). The remaining five clusters
showed MLVA profiles associated with both serovars. Within
clusters 2 and 3, isolates of S. Typhimurium were more com-
mon in comparison to profiles associated with the monophasic
variant, while profiles associated with S. 4,[5],12:i:- were more
common within clusters 5, 6, and 7. Cluster analysis confirmed
that some profiles remain specifically associated with one of the
two serovars, and some degree of differentiation between the two
serovars occurs.

The degree of polymorphism ofMLVAprofiles associated with
the two serovars was quantified by calculating the diversity index
(Table 2) for the five VNTR included in the S. Typhimurium
MLVA scheme. For S. Typhimurium, the diversity index ranged
from 0.37 (STTR9) to 0.87 (STTR6). The most diverse loci were
STTR6 and STTR5, which generated 18 and 17 alleles respec-
tively. STTR10 generated 19 alleles, but the final diversity index
was lower compared to STTR6 and 5, since for 62% of the
S. Typhmurium isolates, amplification at locus STTR10 was not
generated. For the last two loci (STTR3 and 9) the diversity
indexes were equal to 0.51 and 0.37 respectively.

FIGURE 1 | Unweighted pair-group method using arithmetic average
clustering of Salmonella Typhimurium (red balls) and S. 4,[5],12:i:-
(green balls) isolates. Dotted lines separated isolates into different clusters
(1–7).
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TABLE 2 | Simpson’s index of diversity for the five VNTR of the MLVA scheme estimated for S. Typhimurium and S. 4,[5],12:i:-.

S. Typhimurium S. 4,[5],12:i:-

Locus Diversity index Confidence interval∗ K# Max (pi)+ Diversity index Confidence interval∗ K# Max (pi)+

STTR6 0.87 0.84–0.89 18 0.26 0.78 0.75–0.80 14 0.34

STTR5 0.82 0.79–0.86 17 0.34 0.72 0.70–0.75 11 0.40

STTR10 0.60 0.52–0.69 19 0.62 0.06 0.03–0.09 7 0.97

STTR3 0.51 0.44–0.58 10 0.66 0.13 0.09–0.18 8 0.93

STTR9 0.37 0.28–0.45 4 0.78 0.02 0.00–0.04 2 0.10

∗Precision of the Diversity Index, expressed as 95% upper and lower boundaries.
#Number of different repeats present at this locus.
+Fraction of isolates that have the most frequent repeat number in this locus (range: 0.0–1.0).

For S. 4,5,12:i:- only, two out of five loci were polymorphic.
For STTR6 and 5, which generated 14 and 11 alleles respectively,
the diversity indexes were equal to 0.78 and 0.72. The remaining
three loci, STTR3, 10 and 9 had a lack of discrimination. Their
diversity indexes were equal to 0.13 (STTR3), 0.06 (STTR10) and
0.02 (STTR9), indicative of insignificant polymorphism.

Source Attribution
Descriptive Analysis
The unshared MLVA profiles, defined as profiles that were exclu-
sively displayed by human isolates or by one specific source,
comprised 58.2 and 16.5% of the total number of S. Typhimurium
and S. 4,[5],12:i:- isolates, respectively (Table 1). With regard to
S. Typhimurium, six out of 28 human MLVA profiles identified
(accounting for 55.5% of all human isolates) were also found
among isolates from one of the investigated sources. One MLVA
profile was found among human isolates as well as three differ-
ent sources (pig, chicken, and cattle), one human MLVA profile
was shared by two different sources (pig and cattle) and the
remaining four human MLVA profiles were only recovered from
pig isolates. All shared human MLVA profiles associated with S.
Typhimurium were found also in swine isolates (Table 3).

With regard to S. 4,[5],12:i:-, 21 out of 53 human MLVA pro-
files detected (accounting for 81.47% of all human isolates) were
also displayed by isolates from other sources. Four humanMLVA
profiles were also found in isolates from all the investigated
sources, eight humanMLVA profiles were shared by isolates from
three different sources (pig, chicken, and cattle for six profiles;
pig, chicken, and turkey for two profiles); three human MLVA
profiles were shared by two different sources (pig and chicken for
two profiles; pig and turkey for the third profile) and the remain-
ing six human MLVA profiles were detected in only one source
(pig in five cases and turkey in the last case). All but one of the
human shared MLVA profiles were also displayed by pig isolates
(Table 3).

Minimum Spanning Tree
Cluster analysis based on similarities ofMLVAprofiles usingMST
for S. Typhimurium showed one major and eight minor clusters
(including from 2 to 4 different MLVA profiles). The major clus-
ter includedMLVA profiles associated with human isolates as well
as isolates from different sources, even though very few MLVA
profiles were shared between human and non-human isolates

(Figure 2). For S. 4,[5]12:i:- the picture obtained was different
since the MST consisted of only one major and two minor clus-
ters (Figure 3). The minor clusters included few MLVA profiles
displayed by human isolates, whereas within the major cluster,
the most common MLVA profiles were shared by human isolates
and by isolates from all the sources, indicating multiple contam-
ination sources for monophasic isolates responsible for human
infections.

Asymmetric Island Model
The Asymmetric Island model attributed most human cases
to the pig sources for both serovars (64.4%, 95% credibil-
ity interval [95% CI] 27.7–89.3% for S. Typhimurium and
58.4%, 95% CI 1.8–96.2% for S. 4,[5],12:i:-). Cattle were identi-
fied as the second most important source for S. Typhimurium
(21.5%, 95% CI 0.5–63.8%) in humans followed by poultry
(14.1%, 95% CI 0.3–45.6%). With regard to S. 4,[5],12:i:-, poul-
try was the second most important reservoir (29.9%, 95%
CI 0.5–91.8%) and cattle was the reservoir with the small-
est amount of attributable cases (11.7%, 95% CI 0.3–40.8;
Table 4).

For both serovars and for all sources, the attributions pre-
sented extremely large credibility intervals, leading to an exces-
sive uncertainty, which hampered the robustness of the esti-
mation model. As an attempt to improve the precision of the
estimations, the sample size for each source was enlarged by
merging the two original datasets into a unique dataset includ-
ing all MLVA profiles associated with both S. Typhimurium and
S. 4,[5],12:i:- isolates. With the merged dataset the estimations
remained similar to the ones obtained with the S. Typhimurium
dataset in terms of ranking of the different sources, and confi-
dence intervals were still large, so that the source estimates still
carried a large uncertainty (Table 4).

Since a possible bias of the source assignment could be the
large difference in sample size among the putative sources inves-
tigated, the model was also run with a bootstrap dataset con-
structed sampling with replacement from each original source
dataset and including 100 MLVA profiles per source. The boot-
strap dataset provided the same ranking of sources as the
merged dataset, but the relative importance of pigs as a source
increased from 67.0% (95% CI 11.8–97.6) to 87.7% (95% CI 69.1–
98.4), whereas for the other sources the attributions decreased.
Moreover, the equal source size attribution led to a reduction
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TABLE 3 | List of MLVA profiles for S. Typhimurium and S. 4,[5],12:i:- shared by human and non-human sources.

MLVA profile N◦ of isolates

Human Pig Chicken Cattle Turkey

S. Typhimurium 3_12_10_0_211 2 4 2 3 0

3_13_11_0_211 3 2 0 1 0

3_12_11_0_211 7 3 0 0 0

3_12_9_0_211 20 1 0 0 0

3_15_11_0_311 1 3 0 0 0

4_13_9_7_211 2 2 0 0 0

S. 4,[5],12:i:- 3_12_10_0_211 21 16 4 7 2

3_12_9_0_211 23 17 2 5 1

3_12_7_0_211 1 3 1 2 1

3_13_9_0_211 8 7 1 3 1

3_11_8_0_211 8 1 2 2 0

3_11_9_0_211 6 8 1 7 0

3_12_11_0_211 8 8 2 1 0

3_13_10_0_211 49 11 2 3 0

3_12_8_0_211 5 8 4 1 0

3_13_11_0_211 5 1 1 1 0

3_12_12_0_211 3 2 1 0 1

3_13_8_0_211 6 4 1 0 1

3_10_10_0_211 3 3 1 0 0

3_11_10_0_211 3 2 1 0 0

3_11_11_0_211 1 2 0 0 1

3_15_9_0_211 1 3 0 0 0

3_11_12_0_211 3 0 0 0 1

3_11_13_0_211 1 1 0 0 0

3_13_7_0_211 2 2 0 0 0

3_14_10_0_211 8 1 0 0 0

3_14_11_0_211 2 2 0 0 0

of the uncertainty associate with the attribution estimates for all
sources (Table 4).

Analysis of Molecular Variance
The AMOVA analysis was conducted on the merged dataset
(including S. Typhimurium and S. 4,[5],12:i:- isolates). The
results obtained are presented in Table 5. This analysis confirmed
that almost the entire variance of the MLVA profiles (97.3%) was
attributable to the within-source differences, whereas the pro-
portion of the variance due to between-source differences was
negligible (1.2%), as was the variance between human and non-
human isolates (1.5%). The Phi statistics indicate that there were
no significant population structural differences, thereby indi-
cating that the sources did not contain significantly genetically
differentiated MLVA profiles.

Discussion

The analysis of the MLVA profiles of S. Typhimurium and
S. 4,[5],12:i:- isolates demonstrated that, in spite of the high
similarity and close relationship between the two serovars, as
previously described (Switt et al., 2009), and in spite of the

considerable diversity of subtypes associated to both serovars, the
heterogeneity of MLVA profiles of serovar S. 4,[5],12:i:- was more
limited in comparison to S. Typhimurium.

This finding is in conformity with previous studies which
compared the two serovars by using phenotypic methods (Barco
et al., 2012), as well as molecular methods (Alcaine et al., 2006;
Zamperini et al., 2007; Dionisi et al., 2009; Soyer et al., 2009) lead-
ing in all cases to the evidence that S. 4,[5],12:i:- variability is more
limited than S. Typhimurium variability. This may indicate that
S. 4,[5],12:i:- are recently emerged clones, and also that the gene-
sis of the monophasic variants did not happen uniformly among
the different clones of serovar Typhimurium.

In the present study, isolates were typed by using MLVA,
which is classified as a highly discriminative subtyping method,
since it targets highly unstable genetic markers (Chang et al.,
2007). Hence, the identification of a discrete number of shared
MLVA profiles between the two serovars (accounting for 59.40
and 73.97% of the isolates classified as S. Typhimurium and S.
4,[5],12:i:- respectively) strengthens the evidence that they are
very closely related to each other. Cluster analysis subdivided
the dataset into clusters peculiar for S. Typhimurium isolates
and some other clusters including MLVA profiles displayed by
both serovars. The high similarity between S. 4,[5],12:i:- and
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FIGURE 2 | Minimum spanning tree based on the MLVA profiles
observed for S. Typhimurium isolates. Each node corresponds to a MLVA
profile and each node size is proportional to the number of isolates displaying
this particular profile. The length and thickness of the branches are
proportional to the number of the loci differing between two profiles. The color
code used reflects the origin of the isolates: light blue, human; purple, pig;
green, cattle; red, chicken; yellow, turkey. Halos indicate different clonal
complexes.

some S. Typhimurium isolates and the lower heterogeneity of the
former serovar compared to the latter corroborate the hypoth-
esis (Soyer et al., 2009; Hauser et al., 2010) that S. 4,[5],12:i:-
may have evolved from a selection of recent S. Typhimurium
ancestors.

Irrespective of the source of isolation, for S. 4,[5],12:i:- the
MLVA discrimination was only associated to two loci (STTR5
and 6) out of the five loci investigated. The remaining loci
were almost constantly absent (STTR10) or highly stable (STTR3
and 9). STTR5 and 6 were also the most polymorphic loci for
S. Typhimurium. Laorden et al. (2010), who typed a collec-
tion of unrelated isolates of S. 4,[5],12:i:- using the same MLVA
scheme, also observed that the discriminatory power was exclu-
sively related to the diversity of STTR5 and 6. Other authors
(Hopkins et al., 2010, 2012; Gallati et al., 2013; Garcia et al.,
2013; Arguello et al., 2014; Boland et al., 2014), who charac-
terized epidemiologically unrelated isolates of S. 4,[5],12:i:- by
MLVA, reported profiles similar to those found in the present
study. Since MLVA is a highly discriminatory method, Hopkins
et al. (2007) reported that some minor changes in targeted loci
could be tolerated among related outbreak isolates. Gain or loss
of a single repeat unit and occasionally changes involving more
repeat units in one of these highly variable loci (STTR5 and 6)
have been described among epidemiological related S. 4,[5],12:i:-
isolates obtained in the context of outbreak investigations by
several authors (Petersen et al., 2011; Barco et al., 2013; Lettini
et al., 2014). Hence, to interpret MLVA profiles, and as previously
indicated for Escherichia coli O157:H7 (Noller et al., 2003), for

FIGURE 3 | Minimum spanning tree based on the MLVA profiles
observed for S. 4,[5]:i:- isolates. Each node corresponds to a MLVA profile
and each node size is proportional to the number of isolates displaying this
particular profile. The length and thickness of the branches are proportional to
the number of the loci differing between two profiles. The color code used
reflects the origin of the isolates: light blue, human; purple, pig; green, cattle;
red, chicken; yellow, turkey. Halos indicate different clonal complexes.

Salmonella, a difference of one or two repeats at one single locus
was also proposed (Hopkins et al., 2007; Petersen et al., 2011) as
a cut-off to identify isolates that are part of the same outbreak. In
this situation, where the standardized MLVA protocol for typing
of S. 4,[5],12:i:- includes three highly stable loci, and two vari-
able loci in which gain or loss of single repeat units is meaningless
since such minor changes can be detected within related outbreak
isolates, it is evident that interpretation of MLVA profiles can be
challenging especially when the methodology is used to charac-
terize temporally and geographically unrelated isolates. Hence,
although MLVA has been depicted as one of the most promising
subtyping methodologies to conduct large scale epidemiologi-
cal studies for Salmonella, such as source attribution (Best et al.,
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TABLE 4 | Attribution estimates obtained by the Asymmetric Island model
provided with the complete datasets for S. Typhimurium and S. 4,[5],12:i:-,
the merged dataset including all isolates available for both serovars and
the bootstrap dataset.

S.
Typhimurium

S.
4,[5],12:i:-

S. Typhimurium + S. 4,[5],12:i:-

Merged
dataset

Bootstrap
dataset

Pig 64.4
(27.7–89.3)

58.4
(1.8–96.2)

67.0
(11.8–97.6)

87.7
(69.1–98.4)

Cattle 21.5
(0.5–63.8)

11.7
(0.3–40.8)

20.6
(0.3–80.7)

8.4
(0.3–25.4)

Poultry 14.1
(0.3–45.6)

29.9
(0.5–91.8)

12.4
(0.2–49.1)

3.9
(0.1–14.3)

TABLE 5 | Analysis of molecular variance (AMOVA), describing the
population variation between human/non-human isolates, between
isolates from different sources and within each isolate.

Covariance components

Sigma % �-statistic (p-value)

Between human – non-human 33.65 1.53 �ST 0.0153 (0.164)

Between different sources
(human/pig/cattle/turkey/chicken)

26.59 1.21 �CT 0.0123 (0.516)

Within isolates 2143.80 97.27 �SC 0.0273

Total variations 2204.05 100.00

2007; Barco et al., 2013; European Food Safety Authority [EFSA],
2013), the results of the present study pose questions on its
applicability in this specific context.

The presence of identical or closely related MLVA profiles
among isolates from different animal sources and humans rein-
forced the evidence that food-producing animals have an active
involvement in the dissemination of S. Typhimurium and S.
4,[5],12:i:- through the human food chain. This finding was
consistent with the results described by Best et al. (2007),
who compared VNTR profiles from human and veterinary S.
Typhimurium isolates (pig and poultry) and described a genetic
overlap between VNTR profiles among the different species.
However, when we tried to rank the species in terms of their
importance as sources of human infections the picture obtained
was complicated. Although isolates from humans, showed for
both serovars, some overlaps with isolates from different species,
the populations of MLVA profiles produced were not clearly
structured such that the host could be easily inferred from the
genotypes. For S. 4,[5],12:i:-, a consistent genetic overlap was
noted among human isolates and isolates from all species sug-
gesting multiple contamination sources. For S. Typhimurium, in
contrast very few MLVA profiles were shared between human
and non-human isolates, even though the majority of human iso-
lates showed high genetic similarities with isolates from different
sources. This divergence between the two serovars can be related
to the different level of clonality associated with the two serovars,
as previously discussed.

The high discriminatory power of molecular subtyping meth-
ods makes source attribution difficult if sources are attributed

simply based on the exact overlap of subtypes. Hence, population
genetic models, taking into account the genetic relationship
among isolates (based on analysis of mutations, recombination,
and migrations), have been identified as valuable tools to further
clarify the relevant host associations and to identify the key reser-
voirs when molecular subtyping data are available (Mullner et al.,
2009; Mughini-Gras et al., 2014a).

In the present study, the Asymmetric Island Model supplied
with the MLVA profiles was used to infer sources of human infec-
tions. For both S. Typhimurium and S. 4,[5],12:i:-, the model
attributed the majority of human cases to pig, confirming the
results previously obtained by using frequency-matched models
to attribute the source of human salmonellosis in Italy. In particu-
lar, pig was identified as the major source of human salmonellosis
(considering all serovars) in Italy by using the Dutch and mod-
ified Hald source attribution models supplied with serotyping
data collected at the national level over the period 2002–2010
(Mughini-Gras et al., 2014b). This conclusion was consistent
with that previously obtained by using similar approaches to
analyze different datasets (Pires et al., 2011). Differently from
these findings, poultry is described as the main source of human
salmonellosis in the majority of the European countries (Pires
et al., 2011), and in the United States (Chen and Jiang, 2014).

These differences between countries in the relative contribu-
tion of different food sources to human salmonellosis can be
explained by several factors, such as the differences in animal and
food production systems, the food consumption and preparation
habits, the epidemiology of the pathogen and the efficiency of
surveillance programs in place in different regions (Pires et al.,
2011).

Nevertheless, for both serovars and for all sources investi-
gated the attributions provided by the Asymmetric Island Model
presented large credibility intervals, leading to an excessive
uncertainty, which hampered the robustness of the estimations.
Unfortunately, merging the two original datasets into a unique
dataset did not produce a substantial constriction of the cred-
ibility intervals. Smid et al. (2013), who used the Asymmetric
Island Model to identify the sources of human campylobacte-
riosis, concluded that it is advisable to have over 100 isolates
per food source to perform source attribution studies using the
model and to obtain a satisfactory statistical power. To confirm
this hypothesis, the model was also run with a bootstrap dataset
including 100 MLVA profiles per source, and this exercise led
to a reduction of the uncertainty associated with the attribu-
tion estimates. The need for a substantial dataset to get reliable
estimations by the Asymmetric Island Model was also demon-
strated by Mughini-Gras et al. (2014a). These authors described
reliable estimations about sources of human salmonellosis due
to S. Typhimurium-S. 4,[5],12:i:- and S. Enteritidis in The
Netherlands by using the model provided with large datasets of
MLVA data.

Therefore, it seems relevant to enlarge the available datasets, so
that even for the more rare sources at least 100 epidemiologically
independent isolates can be available. Another important issue to
take into account when putative sources of infection are inferred
by using molecular data is the genetic differentiation between
groups (sources), which must be higher than the within group
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heterogeneity in order to get robust estimations. In particular, in
the case of a noteworthy heterogeneity within each source and a
weak genetic differentiation among sources the degree of accu-
racy in the source assignments can be jeopardized (Wilson et al.,
2008). When the AMOVAwas used to quantify the genetic differ-
entiation within and between the different sources investigated in
the present study this prerequisite was shown not to be fulfilled,
i.e., there was high heterogeneity found within each source and
negligible divergence between sources.

Source attribution studies rely on subtyping methods which
should have enough discriminatory power to identify links
between human isolates and their putative sources, but they
should not be too discriminatory, so that true epidemiological
association between isolates might be missed. The current 5-loci
MLVA scheme does not seem to fulfill this requirement, particu-
larly for S. 4,[5],12:i:-. Although MLVA has often been presented
as one of the most promising subtyping methodologies to sup-
port outbreak investigations, the results of the present study pose

significant questions about its effective applicability for conduct-
ing large scale epidemiological studies such as source attribution.
The S. Typhimurium 5-loci MLVA scheme, especially when used
to type S. 4,[5],12:i:- isolates, showed three stable and two highly
variable loci. Hence, MLVA provides fingerprinting of a nar-
row and highly variable tract of the DNA, thereby complicating
the characterization, especially for epidemiologically unrelated
isolates.
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