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Abstract: Supramolecular hydrogels based on chitosan and monoaldehydes are biomaterials with
high potential for a multitude of bioapplications. This is due to the proper choice of the monoaldehyde
that can tune the hydrogel properties for specific practices. In this conceptual framework, the present
paper deals with the investigation of a hydrogel as bioabsorbable wound dressing. To this aim,
chitosan was cross-linked with 2-formylphenylboronic acid to yield a hydrogel with antimicrobial
activity. FTIR, NMR, and POM procedures have characterized the hydrogel from a structural and
supramolecular point of view. At the same time, its biocompatibility and antimicrobial properties
were also determined in vitro. Furthermore, in order to assess the bioabsorbable character, its
biodegradation was investigated in vitro in the presence of lysosome in media of different pH,
mimicking the wound exudate at different stages of healing. The biodegradation was monitored
by gravimetrical measurements, SEM microscopy and fractal analyses of the images. The fractal
dimension values and the lacunarity of SEM pictures were accurately calculated. All these successful
investigations led to the conclusion that the tested materials are at the expected high standards.

Keywords: hydrogel; biocompatibility; antimicrobial activity; biodegradation; SEM image; fractal
analysis

1. Introduction

Wounds are a major health concern when they occur on large skin portions as a result
of injury or illness, such as burns, chronic skin ulcers, venous stasis, or diabetes melli-
tus [1–3]. Long wound healing periods increase the risk of side effects such as infections,
which lead to disfigurements and permanent physical disabilities, affecting the mental and
socioeconomic status of patients [4]. Thus, many researchers have focused their attention
to find solutions for rapid wound closure and developing an aesthetically satisfactory
scar. To this aim, strategies including antibacterial ointments, synthetic growth factors,
polyurethanes, polymeric hydrogels, and fiber dressings have been developed over the
years [5–8]. Polymeric hydrogels showed the advantage of supporting a hydrated envi-
ronment, adsorbing excess fluids [9–11]. Among them, those based on polysaccharides
demonstrated non-toxic, biodegradable, and biocompatible properties, providing a good
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ability to improve the re-epithelization and acceleration of wound closure [12]. Chitosan
biopolymer is a preferred polysaccharide to this aim, which demonstrated an acceleration
of wound re-epithelialization due to its hemostasis potential and the stimulation of fibrob-
last proliferation, angiogenesis, regular collagen deposition, and the ability to favor the
synthesis of natural hyaluronic acid (HA) at the wound site [13,14]. It was also reported
that the healing ability is improved by the loading of antibacterial agents which prevent
the bacterial invasion of wounds [15].

One major disadvantage of wound dressings is their adhesion to lesions, requiring
mechanical debridement, which is damaging for the newly formed tissue and traumatic for
the patient. To overcome this issue, the use of biodegradable chitosan for wound dressings
is advantageous because it can be adsorbed into the skin during the re-epithelization
process. Data in the literature show that during the healing period, the pH of wound
exudate is a dynamic parameter, increasing from 8.5 to 10 in the first four days after the
wound occurrence and decreasing slowly to 5.5 (the pH of the normal dermis) up to the
total closure of wound [16]. However, even though a plethora of studies have been carried
on chitosan-based materials, less attention has been directed to the influence of pH on
their degradation.

In this light, the goal of this study was to investigate the biodegradation rate of a
chitosan-based hydrogel as a function of the pH exudate over the wound healing period.
To fulfill this objective, a chitosan-based hydrogel suitable for wound healing, exerting
strong antimicrobial activity and excellent biocompatibility, was synthetized, and its en-
zymatic biodegradation rate as a pH function was monitored by gravimetrical measure-
ments and SEM. A fractal theoretical application has been specially developed to support
the quantitative investigation of SEM images and develop a better understanding of the
biodegradation mechanism.

2. Experimental Investigation
2.1. Materials

Low-molecular-weight chitosan (178 kDa calculated by viscosimetry and a degree of
deacetylation of 85% calculated from 1H-NMR [17]), 2-formyl-phenyl-boronic acid (2FPBA)
(95%), glacial acetic acid, sodium hydroxide and lysozyme 40,000 U/mL were purchased
from Sigma-Aldrich and used without further purification. Phosphate-buffered solution
(PBS), pH 7.4, was prepared in our laboratory, and the pH was further varied using small
amounts of sodium hydroxide or glacial acetic acid.

2.2. Synthesis of the Hydrogel

The studied hydrogel has been synthetized reacting the chitosan with 2-formyl-phenyl-
boronic acid in homogeneous medium by an acid condensation reaction, as follows: 60 mg
of chitosan was added to 2 mL of 0.7% acetic acid aqueous solution, and stirred for 30 min
at room temperature, up to chitosan’s complete dissolution. Furthermore, the chitosan
solution was heated up to 55 ◦C, and then a 1 mL solution of 2-formylphenyl boronic acid
in water (2.3%, w/v) was slowly dropwise under vigorous magnetic stirring (1500 rot/min).
In less than 10 min, the reaction mixture transformed into a soft material, which passed the
inverted tube test, indicating the formation of hydrogel. The hydrogel was kept at 55 ◦C,
without stirring, for 3 h, in order to facilitate the shifting of the imination equilibrium to
the products.

2.3. Equipment and Methods

The freeze-drying was performed with a LABCONCO FreeZone Freeze Dry System, at
−50 ◦C, 1.510 mbar, for 24 h, after previously freezing in liquid nitrogen.

ATR-FTIR spectra were registered with a Bruker Vertex 70 Ettlingen FTIR spectrometer
(Billerica, MA, USA), on pieces of lyophilized hydrogel. The spectrum was recorded in
the 600–4000 cm−1 spectral range, with 32 scans at 4 cm−1 resolution, and processed with
OPUS 6.5 software and OriginProBit9.
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1H-NMR spectra were recorded on a Bruker Avance DRX 400 MHz Spectrometer
(Billerica, MA, USA), at room temperature. To this aim, the hydrogel was prepared directly
into the NMR tube, replacing the bi-distilled water with deuterated water. The spectrum
was recorded at different moments, starting with the initial moment (t0) when the hydroge-
lation occurred up, to 72 h. The chemical shifts are reported as δ values (ppm) relative to
the residual peak of deuterated water.

Polarized optical microscopy images were acquired with a Zeiss Axio Imager M2 mi-
croscope (Zeiss, Wetzlar, Germany) on hydrogels and xerogels. The changes in the hydrogel
morphology were monitored with a field-emission scanning electron microscope, SEM
EDAX-Quanta 200 (Waltham, MA, USA), operating at an acceleration voltage of 20 keV.

Cytotoxicity of the hydrogel was assessed on normal human dermal fibroblasts
(NHDF, PromoCell, Heidelberg, Germany) by MTS assay using the CellTiter 96® AQue-
ous One Solution Cell Proliferation Assay (Promega, Madison, WI, USA), according to
the manufacturer’s instructions, and a direct contact procedure, according to ISO 10993-
5:2009(E), for the biologic evaluation of medical devices [17]. First, the cells were grown
in alpha-MEM (Lonza, Basel, Switzerland) supplemented with 10% fetal bovine serum
(FBS, Gibco, Thermo Fisher Scientific, Waltham, MA, USA) and 1% penicillin–streptomycin–
amphotericin B mixture (10 K/10 K/25 µg, Lonza, Basel, Switzerland) in a humidified
atmosphere with 5% CO2 at 37 ◦C. Furthermore, the cells were seeded at a density of
0.5 × 105 cells/mL into 96-well tissue-culture-treated plates in 100 µL culture medium/well
and allowed to adhere for 24 h. Cells were then incubated for another 24 h with 100 µL
culture medium and 10 (±0.01) mg of hydrogel sample was obtained by serial dilution to
reach concentrations of 2FPBA from 0.284% to 0.004438%. Before incubating, the hydrogel
samples were exposed to UV light (253.7 nm) for 30 min. Control cells were incubated
only with culture medium. The next day, the medium in the wells containing the tested
materials was replaced with 100 µL fresh medium and MTS reagent (20 µL) was added
3 h prior to absorbance readings at 490 nm on a microplate reader (EnSight, PerkinElmer,
Rodgau, Germany). Experiments were performed in triplicate and the viability of the cells
when in contact with hydrogel samples was expressed as a percentage of the control cells’
viability. Graphical data are expressed as the means ± standard error of the mean.

Antimicrobial tests were performed on pieces of hydrogels against three reference
strains: Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 6583 and Candida albicans
ATCC 10231 [18]. Shortly, the hydrogel films were put into contact with the pathogen and
their growth inhibition was measured using a caliper.

2.4. Enzymatic Biodegradation Tests

Pieces of hydrogels weighting from 147 mg to 258 mg (corresponding to 4–7 mg
xerogel) were incubated in lysozyme solution (376 U/mL) in saline PBS of different pH
values (5.5, 7.4, 8.5, 9 and 10) or lysozyme solution (4830 U/mL) in saline PBS of pH = 8.5,
at a xerogel/media ratio of 1 mg/1 mL. In order to monitor the hydrolytic degradability,
one sample was immersed in a PBS solution of pH 8.5, without adding lysozyme. At
different moments relevant for wound healing—1 h and 1, 3, 7 and 14 days—the hydrogel
pieces were taken from the media, washed with distilled water in order to remove the salts
from PBS, lyophilized, and weighted with an analytical balance in order to establish the
mass loss, applying the equation: mass loss = mi−m f

m f × 100, where mi is the weight of the
initial xerogel and mf is the weight of the lyophilized hydrogel at different moments of
investigation. The experiments were performed in triplicate, and the results are expressed
in terms of the mass loss ± S.D. obtained from the three independent measurements. All
the samples resulted from the experiment were subjected to SEM in order to analyze the
changes impacted by biodegradation.
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3. Results and Discussion
3.1. Structural and Supramolecular Characterization

An antimicrobial hydrogel was synthetized by the acid condensation reaction of
chitosan with 2-formyl-phenyl-boronic acid in water (Figure 1), in view of investigating its
biodegradability depending on pH, following the evolution of the pH exudate over the
wound healing period. This hydrogel has been designed in view of applications for wound
healing; thus, compared with the reported data [19], the synthetic procedure has been
modified, i.e., the reaction was realized in a water biodispersant, avoiding the use of other
organic solvents. The hydrogel state was confirmed by the inverted tube test (Figure 1).
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Figure 1. Imination reaction of chitosan with 2-formyl-phenyl-boronic acid and images of the obtained
hydrogel, in normal light and when illuminated with a UV lamp.

The structure and supramolecular architecture of the hydrogel were investigated by
1H-NMR, FTIR, and polarized light microscopy. As can be seen in Figure 2, 1H-NMR of
the hydrogel showed both chemical shifts of imine and aldehyde protons, indicating that
an imination equilibrium was established during the hydrogelation. Their ratio evolved
over the hydrogelation period, according to an imination degree of 18.9% in the first few
minutes, to 26.1% after one hour.
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On the other hand, the FTIR spectrum on the corresponding lyophilized hydrogel
showed the occurrence of the absorption band characteristic for the imine linkage at
1628 cm−1 [18–22] and no band specific for the aldehyde group [22–24], proving that
the imination equilibrium was shifted to the products during the water removal process
(Figure 3). This confirmed that the imination was a reversible process, which could be
modified under the influence of external stimuli. In addition, the broad band characteristic
for the vibration of hydroxyl and amine units in chitosan and the H-bonds prompted by
them with the maxima at 3357 and 3300 cm−1, and that characteristic to hydroxyl units in
aldehyde and the H-bonds prompted by them with the maximum at 3353 cm−1, shifted at
higher wavenumbers in the hydrogel product (3403 cm−1), indicating the formation of a
new H-bond environment [18,19]. Considering the structure of the chitosan and 2-FPBA
reagents and the imine product which resulted between them, it was estimated that the new
H-bonds derived from the intermolecular interactions among the hydroxyl units of 2-FPBA
and the amine and hydroxyl units of chitosan on one hand, derived and from the intra-
and intermolecular interactions between the hydroxyl groups and the nitrogen atom of
the new imine units on the other hand. The stabilization of imine units by imino-boronate
bonds [25] by “imine-clip” stabilization [26–28] is possible too.
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POM images of the hydrogel showed bright birefringence with a banded texture
identified for layered supramolecular architectures, proving that the new formed imine
units self-ordered during the hydrogelation into a layered architecture pattern, similar to
lyotropic liquid crystals (Figure 4) [29,30]. Furthermore, the hydrogel showed an emission
of blue light when illuminated with a UV lamp (Figure 1), in line with the formation of
supramolecular fluorophores [26]. This is in agreement with our previous studies, which
proved that the hydrogelation of chitosan with monoaldehydes is possible due to an
imination reaction followed by the self-assembly of the newly formed imine units into
layered clusters playing the role of crosslinking nodes [26,30].
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3.2. In Vitro Biologic Properties

This hydrogel was designed for wound healing; therefore, its cytotoxicity against
normal human dermal fibroblasts (NHDF) was investigated in order to establish the 2-FPBA
level for which the hydrogels can be safely used in contact with tissues (Figure 5). To do
this, the hydrogel was diluted to rich concentrations of 2-FPBA in hydrogel from 0.284 up
to 0.004438%. As can be seen, except for the concentration of 0.284%, the hydrogels showed
cell viability higher than 70% which, according to ISO 10993-5:2009(E) for the biologic
evaluation of medical devices, indicates that they can be safely used in bioapplications [17].
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It should be stressed that the hydrogel showed strong antimicrobial activity against
relevant pathogens, reaching inhibition zones of 9 mm (S. aureus), 15 mm (E. coli) and
17 mm (C. albicans) [18]. Moreover, for the 2FPBA concentration of 0.142% in hydrogel, the
antifungal effect recorded a microbial burden reduction of 99.999% against the Candida
species in 24 h, proving that, for this concentration, the hydrogels can successfully be
applied on wounds to assure complete protection against infections [19]. The antimicrobial
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activity has been correlated with the reversibility of the imination, which favored the
equilibrium shifting to the reagents once they were consumed in the pathogen killing
process [18,19].

3.3. Biodegradation Investigation

In this line of thought, the rational question arising is to what extent the hydrogels
can be applied on wounds without the need for traumatic debridement, while they are
an active barrier against microbial infections. In this view, a biodegradation experiment
was performed in media of different pH values, corresponding to that of pH exudate
over the wound healing period. The results are presented in Figure 6. First, the clear
influence of lysozyme on biodegradation can be seen, a mass loss up to 45% being reached
compared with 17% in its absence. Furthermore, it is observed that the pH of the lysozyme
medium clearly influenced the biodegradation rate. Thus, whereas in the medium of
pH = 7.4 characteristic to the physiological environment the mass loss was 32%, in that of
pH = 8.5 and 9, characteristic to the exudate of wounds in the first 4 days of healing, the
mass loss increased to 42% and 45%, respectively. This is particularly important because
this pH is favorable for the proliferation of infection [31] and faster biodegradation of the
hydrogel indicates the faster release of the antimicrobial aldehyde assuring a self-defense
environment. Interestingly, at pH 10, (characteristic for day 4 of the healing period), the
biodegradation rate slowed down, reaching a mass loss of 30%. The increase in lysosome
concentration, representative of infected tissues, inflicted a slightly increase in degradation,
leading to a mass loss 43%. On the other hand, at pH = 5.5, which is characteristic for the
normal dermis [32], the biodegradation abruptly amplified, leading to a mass loss of 75% in
the first day, and totally vanishing by day 2. This suggests that the hydrogel will be rapidly
adsorbed into the newly formed tissue, with no need for a traumatic debridement, favoring
smooth tissue regeneration without trauma. This suggests wound healing without scars.
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The evolution of the hydrogel morphology during the degradation was investigated
by SEM (Figure 7).
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In PBS, without enzyme, the pores of hydrogel appeared collapsed, and ruptures
occurred, in line with the release of the aldehyde and partial dissolution of the chitosan.
Interestingly, no such effect was observed at pH = 8.5 in the presence of a lysozyme
concentration characteristic to the non-infected wounds in the first minutes after wound
occurrence; the morphology appeared less affected. On the other hand, at pH = 9.5 and
10, characteristic to a wound exudate over the healing period of the first four days, which
is determinant for the evolution of wound to a complete recovery of tissue, the hydrogel
showed a loose morphology, in agreement with the massive mass loss. Furthermore, at pH
= 5.5, characteristic for the normal dermis, massive biodegradation was evident, with the
hydrogel morphology transforming into a fibrous one, suitable for tissue regeneration.

3.4. Application Results of Fractal and Lacunar Analysis Algorithms

Fractal geometry is the mathematical completion that Euclidean geometry and crys-
talline (or quasi-crystalline) symmetry were lacking. Fractal analysis, which is the main
vein/lode exploited with this new way of thinking, works with two basic notions, namely,
fractal size and lacunarity.

The fractal dimension alone does not characterize the object studied from a fractal
point of view. There are many sets (mathematical objects) that have the same fractal
dimension but a completely different spatial structure. Thus, two sets of Cantor type have
the same fractal dimension, but differ in their lacunarity, another characteristic which is
required, not only intuited, but also clearly defined.

Fractal analysis uses this term, respective lacunarity, to describe the uniformity of
texture in images. It can also characterize the size of a space, the homogeneity of objects,
and the rotational and translational invariance of an image.

A low gap coefficient refers to a homogeneity, defined as low (or reduced) lacunarity,
which implies gaps of similar size and low rotation variance. On the other hand, a high
coefficient of gaps refers to heterogeneity, defined as a large (or high) lacunarity, which
implies a larger number of gaps.

The SEM images of Figure 7, indicated by the abbreviation 8.5PBS (image A), 8.5
(image B) and 8.5 × (image C) were investigated by fractal analysis [33–36] in Figures 8–10.
The abbreviation 8.5PBS indicates the absence of lysozyme. In our images, we used a
magnitude of 1000×.

The pictures were preprocessed in order to optimize the binary process (the luminance
was removed from the original image). Binarization involved setting a threshold according
to which the pixels (gray levels in the image) were set to 0 or 1 (55 for the first image, 60 for
the second, and 57 for the third).

For image A, we determined the following values obtained by applying the fractal
analysis procedure: the fractal dimension d = 1.9131 with a standard deviation of ±0.10211
and lacunarity λ = 0.5995.

For image B, we determined the following values obtained by applying the fractal
analysis procedure: the fractal dimension d = 1.9171 with a standard deviation of ±0.10422
and lacunarity λ = 0.6581.

For image C, we determined the following values obtained by applying the fractal
analysis procedure: the fractal dimension d = 1.9213 with a standard deviation of ±0.10675
and lacunarity λ = 0.6069.
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4. Conclusions

A chitosan-based hydrogel with biocompatibility and antimicrobial properties suitable
for wound healing has been synthetized by an acid condensation reaction with 2-forml-
phenyl-boronic acid to yield imine units and their supramolecular ordering into ordered
clusters with the role of crosslinking nodes.

The hydrogel proved to have a lack of toxicity against normal dermal human fibrob-
lasts and antimicrobial activity against relevant pathogens, such as E. coli, S. aureus and
C. albicans. The investigation of the hydrogel biodegradation as a function of the pH of
the wound exudate over the healing period demonstrated that the biodegradation rate
is modulated by pH over the healing period, and is favorable to re-epithelization and
avoiding traumatic debridement.

The topographic assessments of SEM images of the hydrogels degraded in lysozyme
media of different pH, based on the evaluation by fractal analysis, showed that the evolution
of the values of fractal dimension and lacunarity (d = 1.9131 ± 0.10211 and lacunarity
λ = 0.5995 for image A, fractal dimension d = 1.9171 ± 0.10422 and lacunarity λ = 0.6581
for image B and fractal dimension d = 1.9213 ± 0.10675 and lacunarity λ = 0.6069 for image
C) fitted well on the values of mass loss, confirming once more that the biodegradation rate
is modulated by pH.
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8. Kamińska, M.; Cybulska, A.; Skonieczna-Żydecka, K.; Augustyniuk, K.; Grochans, E.; Karakiewicz, B. Effectiveness of Hydrocol-
loid Dressings for Treating Pressure Ulcers in Adult Patients: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public
Health 2020, 17, 7881. [CrossRef]

9. Fan, F.; Saha, S.; Hanjaya-Putra, D. Biomimetic Hydrogels to Promote Wound Healing. Front. Bioeng. Biotechnol. 2021, 9.
[CrossRef]

http://doi.org/10.1038/nature07039
http://www.ncbi.nlm.nih.gov/pubmed/18480812
http://doi.org/10.1186/s13287-019-1203-3
http://www.ncbi.nlm.nih.gov/pubmed/30876456
http://doi.org/10.1080/10408444.2018.1493085
http://www.ncbi.nlm.nih.gov/pubmed/30226392
http://doi.org/10.31344/ijhhs.v4i4.221
http://doi.org/10.1016/j.phrs.2021.105841
http://www.ncbi.nlm.nih.gov/pubmed/34419563
http://doi.org/10.1080/14712598.2022.2008353
http://www.ncbi.nlm.nih.gov/pubmed/34793282
http://doi.org/10.1515/revce-2021-0003
http://doi.org/10.3390/ijerph17217881
http://doi.org/10.3389/fbioe.2021.718377


Gels 2022, 8, 107 14 of 14

10. Savencu, I.; Iurian, S.; Porfire, A.; Bogdan, C.; Tomut,ă, I. Review of advances in polymeric wound dressing films. React. Funct.
Polym. 2021, 168, 105059. [CrossRef]

11. Duceac, I.A.; Verestiuc, L.; Dimitriu, C.D.; Maier, V.; Coseri, S. Design and Preparation of New Multifunctional Hydrogels
Based on Chitosan/Acrylic Polymers for Drug Delivery and Wound Dressing Applications. Polymers 2020, 12, 1473. [CrossRef]
[PubMed]

12. Albuquerque, P.B.S.; de Oliveira, W.F.; Silva, P.M.D.S.; Correia, M.T.D.S.; Kennedy, J.F.; Coelho, L.C.B.B. Skincare application of
medicinal plant polysaccharides—A review. Carbohydr. Polym. 2021, 277, 118824. [CrossRef] [PubMed]

13. Liu, H.; Wang, C.; Li, C.; Qin, Y.; Wang, Z.; Yang, F.; Li, Z.; Wang, J. A functional chitosan-based hydrogel as a wound dressing
and drug delivery system in the treatment of wound healing. RSC Adv. 2018, 8, 7533–7549. [CrossRef]

14. Alven, S.; Aderibigbe, B.A. Chitosan and Cellulose-Based Hydrogels for Wound Management. Int. J. Mol. Sci. 2020, 21, 9656.
[CrossRef] [PubMed]

15. Golmohammadi, R.; Najar-Peerayeh, S.; Moghadam, T.T.; Hosseini, S.M.J. Synergistic Antibacterial Activity and Wound Healing
Properties of Selenium-Chitosan-Mupirocin Nanohybrid System: An in Vivo Study on Rat Diabetic Staphylococcus aureus
Wound Infection Model. Sci. Rep. 2020, 10, 2854. [CrossRef]

16. Ono, S.; Imai, R.; Ida, Y.; Shibata, D.; Komiya, T.; Matsumura, H. Increased wound pH as an indicator of local wound infection in
second degree burns. Burns 2015, 41, 820–824. [CrossRef]

17. Andreica, B.-I.; Ailincai, D.; Sandu, A.-I.; Marin, L. Amphiphilic chitosan-g-poly(trimethylene carbonate)—A new approach for
biomaterials design. Int. J. Biol. Macromol. 2021, 193, 414–424. [CrossRef]

18. Marin, L.; Ailincai, D.; Mares, M.; Paslaru, E.; Cristea, M.; Nica, V.; Simionescu, B.C. Imino-chitosan biopolymeric films. Obtaining,
self-assembling, surface and antimicrobial properties. Carbohydr. Polym. 2015, 117, 762–770. [CrossRef]

19. Ailincai, D.; Marin, L.; Morariu, S.; Mares, M.; Bostanaru, A.-C.; Pinteala, M.; Simionescu, B.C.; Barboiu, M. Dual crosslinked
iminoboronate-chitosan hydrogels with strong antifungal activity against Candida planktonic yeasts and biofilms. Carbohydr.
Polym. 2016, 152, 306–316. [CrossRef]

20. Lungu, R.; Anisiei, A.; Rosca, I.; Sandu, A.-I.; Ailincai, D.; Marin, L. Double functionalization of chitosan based nanofibers
towards biomaterials for wound healing. React. Funct. Polym. 2021, 167, 105028. [CrossRef]

21. Anisiei, A.; Bostanaru, A.-C.; Mares, M.; Marin, L. Imination of chitosan nanofibers in a heterogeneous system. Synthesis
optimization and impact on fiber morphology. Cellul. Chem. Technol. 2021, 55, 785–793. [CrossRef]

22. Anisiei, A.; Rosca, I.; Sandu, A.-I.; Bele, A.; Cheng, X.; Marin, L. Imination of Microporous Chitosan Fibers—A Route to
Biomaterials with “On Demand” Antimicrobial Activity and Biodegradation for Wound Dressings. Pharmaceutics 2022, 14, 117.
[CrossRef] [PubMed]

23. Satapathy, S.; Prabakaran, P.; Prasad, E.; Satapathy, S. Augmenting Photoinduced Charge Transport in a Single-Component Gel
System: Controlled In Situ Gel-Crystal Transformation at Room Temperature. Chem.—A Eur. J. 2018, 24, 6217–6230. [CrossRef]
[PubMed]

24. Satapathy, S.; Prasad, E. Charge Transfer Modulated Self-Assembly in Poly(aryl ether) Dendron Derivatives with Improved
Stability and Transport Characteristics. ACS Appl. Mater. Interfaces 2016, 8, 26176–26189. [CrossRef] [PubMed]
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