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A B S T R A C T   

Low molecular weight (LMW) thiols contain reducing sulfhydryl groups that are important for maintaining 
antioxidant defense in the cell. Aside from the traditional roles of LMW thiols as redox regulators in bacteria, 
glutathione (GSH) has been reported to affect virulence and bacterial pathogenesis. The role of GSH in virulence 
is diverse, including the activation of virulence gene expression and contributing to optimal biofilm formation. 
GSH can also be converted to hydrogen sulfide (H2S) which is important for the pathogenesis of certain bacteria. 
Besides GSH, some bacteria produce other LMW thiols such as mycothiol and bacillithiol that affect bacterial 
virulence. We discuss these newer reported functions of LMW thiols modulating bacterial pathogenesis either 
directly or indirectly and via modulation of the host immune system.   

1. Introduction 

Low molecular weight (LMW) thiols are molecules containing 
reducing sulfhydryl groups that enable the detoxification of reactive 
oxygen species (ROS), reactive nitrogen species (RNS) and other free 
radicals. LMW thiols are involved in a range of biological functions 
including antioxidant defense as well as cell signaling and the modula-
tion of the immune system in eukaryotes [1,2]. In bacteria, LMW thiols 
can contribute to fitness and survival in adverse conditions such as 
countering oxidative stress as well as modulating pathogenesis [3–5]. 
Although the role of LMWs is traditionally viewed as redox regulators in 
bacteria, there is a slow but steady increase of reports indicating that 
LMW thiols can alter bacterial pathogenesis in more direct ways. The 
predominant LMW thiol in Gram-negative bacteria is glutathione (GSH; 
L-γ-glutamyl-L-cysteinyl-glycine) with concentrations in the millimolar 
range [6]. Only a few Gram-positive bacteria, such as Listeria mono-
cytogenes and Streptococcus agalactiae, produce GSH [7,8]. 

Redox function of LMW thiols affecting bacterial fitness has been 
comprehensively discussed elsewhere [2]. In this review, we discuss the 
influence of LMW thiols on bacterial virulence during infection. How-
ever, some virulence functions described here could still be indirectly 
due to a compromised redox balance affecting bacterial fitness, as many 
studies show how the lack of GSH affects a phenotype associated with 
virulence, without defining how GSH is doing so mechanistically. We 

focus on the major thiols present in bacteria including GSH, widely 
present in Gram-negative bacteria, mycothiol (MSH), the major thiol in 
Actinobacteria, and bacillithiol (BSH), found in many Gram-positive 
bacteria. 

2. GSH as a virulence switch in bacteria 

GSH has not been thought of as a signal used by bacteria for turning 
on or off virulence till in 2015 following two separate reports in Bur-
kholderia pseudomallei and Listeria monocytogenes [9,10]. 

B. pseudomallei is a facultative intracellular bacterium with a broad 
host range and with the ability to infect many eukaryotic cells [11–13]. 
Upon invasion or uptake into host cells, B. pseudomallei escapes from the 
phagosome into the host cytosol mediated by the Type 3 Secretion 
System 3 (T3SS3), a bacterial secretion system found in many patho-
genic Gram-negative bacteria that is able to secrete effectors into host 
cells to interfere with host cell functions [14,15]. B. pseudomallei T3SS3 
is expressed once the bacteria contact host cells [16], while another 
secretion system, Type 6 Secretion System 5 (T6SS5), is only expressed 
when bacteria are intracellular [17]. T6SS5 is necessary for 
B. pseudomallei to fuse host cells together in the formation of multinu-
cleated giant cells (MNGCs) and this facilitates bacterial spreading from 
cell-to-cell [18]. Both T3SS3 and T6SS5 are critical for the pathogenesis 
of B. pseudomallei in mice, where either T3SS3 or T6SS5 mutants are 
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avirulent [17,19]. An intriguing question that arises is how 
B. pseudomallei can sense its intracellular environment in order to turn 
on T6SS5 gene transcription. When exogenous GSH, but not GSSG, was 
added to B. pseudomallei grown in medium, its T6SS5 gene expression 
was upregulated significantly, to more than 100-fold. Inside infected 
RAW264.7 macrophages, both wildtype B. pseudomallei and the mutant 
defective in GSH synthesis (ΔgshB) were able to upregulate T6SS5 gene 
expression to the same extent. Furthermore, HepG2 mutant cell line that 
was grown in cysteine-deficient medium or peripheral blood mono-
nuclear cells (PBMCs) depleted of GSH via diethyl maleate (DEM) 
showed decreased T6SS5 gene expression during bacterial infection 
[10]. These findings confirmed that host GSH, and not bacterial GSH, is 
mediating T6SS5 gene expression. When the bacterium exits the 
oxidizing phagosome and into the cytosol, it is suddenly exposed to a 
reducing environment due to the high concentrations of host GSH [10]. 
GSH entry into the bacterial periplasm through a yet undefined mech-
anism, reduces VirA, the histidine kinase sensor protein present on the 
inner membrane of the bacteria. The reduction of VirA occurs on a 
periplasmically located cysteine residue, resulting in the switch from a 
dimeric to a monomeric form [10]. The monomeric VirA triggers T6SS5 
expression through VirG, its DNA response regulator [17]. Thus, 
B. pseudomallei senses its entry into the cytosol through the action of 
GSH on VirA and VirG, the two-component sensor regulator for T6SS5 
gene expression [10]. This fascinating system uncovers how 
B. pseudomallei is able to exploit host GSH as a spatio-temporal cue to 
transcriptionally turn on its T6SS5 cluster at the precise moment for 
intercellular spreading only when the bacterium has exited the phag-
osome [3]. 

Although Gram-positive, L. monocytogenes synthesizes GSH. GSH 
synthase (gshF) mutants have downregulated virulence gene expression 
and are less virulent in mice [9]. It shares certain virulence features as 
B. pseudomallei such as being facultative intracellular and the ability to 
polymerize actin on one bacterial pole to propel bacterial movement 
intercellularly. It has been previously reported to utilize GSH as a 
signaling molecule for turning on its virulence [9,20]. In the intracel-
lular state, host or external GSH triggers increased bacterial GSH con-
centrations. Bacterial endogenous GSH allosterically binds to PrfA, the 
master virulence transcriptional regulator, and acts as the activating 
co-factor for PrfA [9,20]. GSH binding to PrfA stabilizes the 
helix-turn-helix motif of PrfA in an ordered and active conformation, 
thus priming PrfA for DNA binding [21,22]. This is in fact a common 
feature of the Crp/Fnr family of transcriptional regulators that similarly 
bind to allosteric effector molecules to enable DNA binding. 

However, it remains unclear how GSH-bound PrfA can be regulated. 
It is known that a combination of environmental and endogenous cues 
converges on PrfA to affect its activation. One of them is the growth of 
the bacteria in rich media, which suppresses PrfA activity. However, 
adding activated charcoal or adsorbent resin into the rich media reverses 
and strongly activates PrfA [23]. Through a transposon screen, Krypotou 
et al. found that nutritional peptides in rich media were transported 
through the bacterial Opp transport system into the bacteria and 
competitively bound to PrfA, thereby excluding GSH from binding [24]. 
At the same time, cysteine containing peptides were scavenged by the 
transport system that could increase GSH concentration. Therefore, the 
balance of inhibitory and activating oligopeptides regulate PrfA induc-
tion levels through the binding availability for GSH [24]. 

P. aeruginosa strains defective in GSH synthesis exhibit attenuated 
virulence in several models of infection, including Caenorhabditis elegans 
nematode [25] and Drosophila melanogaster fruitfly [26]. However, 
conflicting results have been reported in the murine models. 
P. aeruginosa ΔgshA, ΔgshB and ΔgshAΔgshB double mutants defective in 
GSH synthesis were attenuated in a mouse model of acute pneumonia 
[27] yet the ΔgshA mutant was equally virulent as the wildtype in sur-
gical wound, abscess and acute burn wound murine infection models 
[28]. In another report, a ΔgshA transposon mutant was found to be 
enriched in a murine wound model [29]. It is important to note that 

some of these studies reporting conflicting phenotypes did not comple-
ment the mutation with a wildtype copy of the gene [28,29]. Therefore, 
it is possible that the inconsistency is due to non-specific or polar effects 
instead of the loss of GSH synthesis. However, several studies which 
complemented their GSH synthesis mutants, had also reported contra-
dictory data [26,27,30]. For instance, twitching motility, another 
important virulence factor for P. aeruginosa, was also identified to be 
impaired in several reports [26,27] although a ΔgshA transposon mutant 
revealed no defects in twitching motility [30]. These ambiguities could 
be attributed to the variability of P. aeruginosa laboratory strains which 
exhibit genomic and phenotypic diversity [31]. While phenotypic 
characterization of the role of GSH synthesis in P. aeruginosa virulence is 
less clear, a more quantitative approach via transcriptomic analyses of 
the ΔgshAΔgshB mutant revealed that GSH regulates the expression of 
three categories of virulence-related genes [27]. These three categories 
include type IV pili biogenesis genes known to contribute to twitching 
motility, T6SS, a known virulence factor with diverse functions [27, 
32–34] and T3SS. T3SS was downregulated in the double ΔgshAΔgshB 
mutant and its expression could be rescued by addition of exogenous 
GSH [27]. In wildtype bacteria, addition of GSH also upregulated T3SS. 
The authors showed that GSH upregulates T3SS gene expression via the 
global transcription factor Vfr, which acts on the T3SS central regulator 
ExsA [27]. Mutations in the cysteine residues on Vfr revealed the 
involvement of all 5 cysteine residues in the sensing of GSH [27]. The 
redox state of the cysteines in Vfr isolated from wildtype bacteria were 
shown to be in the reduced state. When Vfr was oxidized with hydrogen 
peroxide, it could be reduced by GSH in vitro, suggesting that GSH 
synthesis in P. aeruginosa is important for maintaining the redox state of 
Vfr for modulation of T3SS expression [27]. While the regulatory 
mechanism of Vfr is somewhat similar to VirA, where an inactive reg-
ulatory factor is activated via reduction by GSH, it is important to note 
that P. aeruginosa relies on bacterial GSH rather than host intracellular 
GSH as is the case for B. pseudomallei. Furthermore, one would assume 
that under normal conditions, the bacteria will be producing GSH and 
Vfr would be in a reduced state. As P. aeruginosa T3SS is induced by 
several conditions including low Ca2+ and host cell contact through 
ExsA [35–37], the redox control of T3SS via Vfr could be another layer of 
modulation where oxidizing condition could dampen T3SS induction. At 
this moment, the mechanism of redox control of Vfr is not known. It is 
possible that pKa of each cysteine in Vfr is different depending on its 
surrounding context and has a different propensity to be reduced by 
GSH. It would be interesting to determine what conditions favor all 5 
cysteines to be in the reduced state for Vfr to be fully active, versus when 
some of them may be differentially modified e.g. through S-gluta-
thionylation or S-nitrosylation. 

In the examples of B. pseudomallei, L. monocytogenes and 
P. aeruginosa, GSH acts by reducing disulfide bonds or as an allosteric 
activator of a transcriptional regulator directly controlling virulence 
genes (Fig. 1). However, GSH has also been shown to directly control 
virulence function through post-translational modification (PTM). 

3. Glutathionylation as a control of bacterial virulence 

Glutathionylation is a PTM where GSH is added to cysteine residues 
in a protein. PTMs modulate the structure and function of proteins and 
thus may be important for the function of virulence related proteins. 

Listeriolysin O (LLO), a major virulence factor of L. monocytogenes, is 
a pore-forming hemolytic toxin enabling L. monocytogenes to escape 
from phagolysosomal killing. LLO retrieved from L. monocytogenes 
grown in broth culture were found to be naturally glutathionylated at 
cysteine residue 484 [38]. In the presence of GSH, hemolytic activity of 
LLO in vitro was eliminated [38]. The modification of LLO at cysteine 
residue at position 484 to alanine (LLOC484A) rendered LLO insensitive 
to GSH, where LLOC484A retained full hemolytic activity despite the 
presence of GSH [38]. S-glutathionylation of LLO was shown to prevent 
association of LLO to its target membrane, thereby inactivating the 
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Fig. 1. GSH induction of virulence 
genes during B. pseudomallei, 
L. monocytogenes and P. aeruginosa 
infection 
(a) In B. pseudomallei, exogenous GSH 
reduces VirA, a histidine kinase sensor 
present on the bacterial inner mem-
brane. Reduction of cysteine residue 
62 (C62), predicted to be present at the 
periplasm, results in a switch from a 
dimer into a monomeric form. Mono-
meric VirA activates T6SS5 gene 
expression via its cognate DNA 
response regulator VirG. 
(b) In L. monocytogenes, exogenous 
GSH drives gshF expression by an un-
known mechanism and increases bac-
terial GSH synthesis. Exogenous GSH 
and bacterial synthesized GSH binds 
allosterically to master virulence 
regulator PrfA. GSH binding stabilizes 
PrfA in an active confirmation which 
primes PrfA for DNA binding. Active 
PrfA activates the transcription of 
PrfA-regulated genes (PRGs). 
(c) In P. aeruginosa, bacterial synthe-
sized GSH reduces all 5 cysteine resi-
dues (cysteine residues at position 20, 
38, 97, 156, and 183) on global tran-
scription factor Vfr. Reduced Vfr acti-
vates exsA gene transcription. ExsA, in 
turn, regulates T3SS expression.   
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protein [38]. The compartmentalisation of LLO activity has been pre-
viously demonstrated to be important for virulence. Disruptions in the 
optimal activity of LLO in the phagosome and minimized activity in the 
host cytoplasm reduced virulence [39]. Thus, S-glutathionylation serves 
as an additional control to limit LLO’s cytolytic activity in the 
phagosome. 

Yersinia pestis LcrV, the cap protein of T3SS, is glutathionylated at 
cysteine residue 273 (C273) [40]. Glutathionylation of LcrV at C273 
enhances bacterial virulence as mice and rats infected with Y. pestis 
lcrVC273A mutant, which cannot be glutathionylated, survived better 
than those infected with wildtype bacteria [40]. The rate of T3SS 
secretion of effectors is moderated by LcrV glutathionylation [40]. 
Glutathionylation of LcrV also promotes interaction of LcrV with ribo-
somal protein S3 (RPS3) which is involved in the regulation of DNA 
repair, apoptosis and innate immune responses [40]. The association of 
RPS3 with glutathionylated LcrV suppresses apoptotic cell death and 
triggers the release of inflammatory cytokines IL-1β and IL-18. IL-1β and 
IL-18 have been shown to contribute to disease pathology [41]. 

In Streptococcus mutans, S-glutathionylation of cysteine residue 41 
(C41) in a thioredoxin-like protein (Tlp) was found to be important for 
interspecies competition [42]. Relative abundance of S. mutans tlp-C41A 
mutant in the biofilm was reduced to 20.9% as compared to wildtype 
S. mutans (34.7%) in a tri-species biofilm containing S. mutans, Strepto-
coccus sanguinis and Streptococcus gordonii [42]. Interestingly, Δtlp only 
had a mild reduction in relative abundance (32.7%) within the 
tri-species biofilm. As compared to wildtype, S. mutans tlp-C41A and Δtlp 
mutants were both more susceptible to hydrogen peroxide (H2O2), 
which was produced by S. sanguinis [42]. However, S. mutans Δtlp 
mutant was about 2000-fold less susceptible to H2O2 compared to 
tlp-C41A. It is possible that the complete loss of Tlp triggers compen-
satory oxidative resistance mechanisms. Regardless, the decreased 
abundance of S. mutans tlp-C41A mutant in the tri-species biofilm and 
higher susceptibility of tlp-C41A mutant to H2O2 suggests that S-gluta-
thionylation of Tlp C41 is likely important for Tlp to function as a thi-
oredoxin in S. mutans, contributing to resistance against oxidative stress 
and interspecies competition. Additionally, S. mutans tlp-C41A mutant in 
a rat model of dental caries produced less severe carious lesions on all 
molar surfaces, indicating that glutathionylation of Tlp has a role in 
virulence [42]. 

4. Role of GSH in biofilm formation and disruption 

Biofilms are organized communities of microorganisms attached to 
an abiotic or biotic surface often embedded in a matrix. Biofilm for-
mation is associated with enhanced resistance against antibiotics and 
also virulence [43–45]. The role of bacterial GSH synthesis in biofilm 
formation has been best documented in P. aeruginosa. Phenotypic ex-
aminations of biofilm formation via crystal violet staining were con-
tradictory even though the same laboratory strain was utilized, with 
reports of GSH synthesis mutants increasing [26] and decreasing [27, 
30] biofilm formation. In particular, the ΔgshA transposon mutant in 
minimal media had decreased growth rate compared to the wildtype, 
indicating that culture conditions were critical [30]. Interestingly, 
P. aeruginosa ΔgshA mutants had decreased pyocyanin production [26, 
30]. Pyocyanin has been reported to mediate aggregation of 
P. aeruginosa and promote the release of extracellular DNA, a biofilm 
component. As discussed in the previous section, GSH upregulates type 
IV pili and T6SS gene expression [27], both of which have been reported 
to affect biofilm formation [32–34]. Since the use of GSH synthesis 
mutants could result in secondary effects which affect biofilm formation, 
the issue could be complex. Additionally, biofilm architecture instead of 
crude biofilm biomass as measured by crystal violet assay should be 
examined. In a separate study, the ΔgshAΔgshB mutant in a single-species 
biofilm had comparable growth and biofilm biomass to the wildtype 
S. mutans strain [46]. However, the ΔgshAΔgshB mutant was differen-
tially organized within the biofilm with formation of microcolonies, 

compared to the wildtype strain which were evenly distributed [46]. 
The ΔgshAΔgshB mutant had enhanced extracellular polysaccharide 
(EPS) production and upregulated expression of EPS synthesis genes 
such as glucosyltransferases gtfB, gtfC, and gtfD [46]. The authors 
speculate that the increased EPS production and microcolony formation 
served as protection from oxidative stress. Thus, analysis of the crude 
biofilm biomass is not sufficient for one to make conclusions on the 
changes in biofilm formation. Given the complex composition and 
structure of biofilms, caution should be exercised in the interpretation of 
bacterial synthesized GSH and their effects on biofilm formation. 

On the other hand, exogenous GSH has been described in many 
studies to be capable of disrupting biofilms of various bacterial strains 
and improving antibiotic efficacy. The effects of GSH disruption of 
biofilms have been reported at high concentrations, ranging from 1 mM 
to 30 mM and for monomicrobial biofilms of P. aeruginosa, S. pyogenes, 
S. aureus, K. pneumoniae, Enterobacter sp., E. coli and A. baumannii, 
including clinical and multidrug resistant (MDR) strains [47–49]. 
Several studies also investigated the potential mode of action of exog-
enous GSH on biofilm disruption and the enhancement of antibiotic 
effectiveness, examining transcriptome changes [48] or the effect on 
MDR efflux pumps or beta-lactamase activity post-GSH treatment [49]. 
These findings, however, should be examined prudently as GSH at high 
concentrations is highly acidic (i.e. 20 mM of GSH has a pH of 3.92 and 
3.89 when dissolved in Luria Broth (LB) or Phosphate buffered saline 
(PBS) respectively) [3,47]. A study reported that 30 mM GSH at neutral 
pH of 7.2 did not decrease the viability of MDR A. baumannii biofilm 
(76–94%) whereas 30 mM GSH at unbuffered intrinsic pH significantly 
decreased biofilm viability (16–38%) [47]. The intrinsic acidic pH of 
GSH was also shown to destabilise and cleave dsDNA, which likely 
contributes to biofilm disruption [47]. We highlight the importance of 
considering acidity when performing experiments with exogenous GSH. 
It remains to be clarified if GSH does indeed play a role in biofilm 
disruption apart from its acidity. 

5. GSH catabolism to hydrogen sulfide (H2S) and its role in 
virulence 

Although H2S has been described to protect bacteria from oxidative 
stress, it is also involved in the virulence of several bacteria [50–53]. The 
production of H2S via GSH catabolism for virulence has been reported 
for Treponema denticola, an oral spirochete bacterium associated with 
periodontal disease. T. denticola utilizes a three-step pathway involving 
γ-glutamyltransferase (ggt) for catabolism of GSH to H2S [54]. The high 
levels of H2S in periondontal pockets, hemoxidation and hemolysis ac-
tivity against red blood cells and ability to induce apoptotic cell death 
are thought to contribute to periodontal pathology [55–57]. Exogenous 
addition of GSH led to H2S production as well as hemolysis and 
hemoxidation activities [58]. In a separate study, Δggt, which does not 
produce H2S, induced lower gingival fibroblast cell death compared to 
wildtype bacteria [51]. Addition of exogenous GSH led to higher levels 
of H2S production, which corresponded with higher levels of gingival 
fibroblast death [51]. Although the acidity of exogenous GSH was not 
considered in these experiments, the GSH concentration used in the in 
vitro cell death assay was 2 mM, which approximates a pH of >6 in 
non-buffered solutions. Given that the physiological pH of the oral 
cavity ranges pH 6.2 to 7.6 [59], it is unlikely that the gingival fibro-
blasts were undergoing cell death due to the slightly acidic pH. Thus, it is 
conceivable that the higher level of gingival fibroblast cell death was 
due to GSH conversion to H2S. In a murine abscess model, animals 
inoculated with wildtype T. denticola supplemented with GSH experi-
enced larger lesion sizes as compared to animals challenged with Δggt 
and GSH [51]. This shows that GSH conversion to H2S contributes to soft 
tissue destruction and plays a role in T. denticola virulence. It remains to 
be investigated whether other pathogenic bacteria utilize GSH for 
virulence through its conversion to H2S. However, since H2S can be 
derived from other substrates besides GSH, the role of GSH catabolism to 
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H2S for virulence is unlikely to be conserved across pathogenic bacteria. 
For commensals such as E coli, the tnaA gene that is annotated as a 

tryptophanase and reported to break down tryptophan to indole and 
pyruvate [60–62], has also been reported to be important for catalyzing 
the metabolism of cysteine to H2S [63]. This gene has homologs in many 
Enterobacteriaceae and one intriguing possibility is that these 
commensal intestinal bacteria would be able to produce H2S due to high 
concentrations of GSH in the largely anaerobic gut. GSH metabolism has 
been shown to be important at the intestinal interface [64]. It has been 
reported that during intestinal dysbiosis, blooms of Proteobacteria occur 
[65,66]. Besides the H2S already produced by colonic gut microbiome, 
the increase in Proteobacterial species with ability to catabolize GSH to 
H2S could increase total H2S concentrations in the gut. H2S can be 
converted to thiosulfate in the gut to prevent toxic build-up that is 
injurious to cells normally. But during mild inflammation, thiosulfate 
could be oxidized to tetrathionate, which enteric pathogens such as 
Salmonella could use as a terminal electron acceptor for respiration [67]. 
Therefore, it will be interesting to explore whether GSH catabolism to 
H2S by opportunistic bacterial species in the gut could impact gut health. 

6. GSH and its functional equivalents’ contribution to virulence 

MSH and BSH are the GSH functional equivalent in some bacteria 
which do not produce GSH. MSH is the major LMW thiol produced by 
actinobacteria which includes Mycobacteria [68]. On the other hand, 
BSH, the α-anomeric glycoside of L-cysteinyl-D-glucosamine with L-malic 
acid, is an abundant thiol produced by some firmicutes including clin-
ically relevant pathogens Bacillus anthracis, Bacillus cereus, Staphylo-
coccus aureus, Staphylococcus saprophyticus, and S. agalactiae [69]. 
Notably, S. agalactiae synthesizes GSH that was shown to be important 
for its pathogenesis [70]. Mice infected with the ΔgshAB mutant defec-
tive in GSH synthesis in a sepsis model of infection had higher survival 
and reduced bacterial loads in the blood [70]. S. agalactiae ΔgshAB 
mutants exhibited a minimal to moderate protection against ROS 
stressors H2O2 and HOCl indicating that GSH synthesis in S. agalactiae 
neutralizes ROS stress [70]. It is possible that S. agalactiae GSH synthesis 
contributes to its pathogenesis by enhancing resistance against oxidative 
stress. It is not known whether GSH could be involved more directly in 
S. agalactiae virulence and the role of GSH in S. agalactiae pathogenesis 
remains to be clarified. 

Mycobacterium tuberculosis utilizes the inhibition of phagosome 
maturation and resistance to acidic pH as virulence strategies to estab-
lish chronic infections [71]. Acidic pH was shown to affect cytoplasmic 
MSH redox potential which is sensed by the WhiB3 redox sensor for 
modulating virulence gene expression [72]. This includes the upregu-
lation of polyketide biosynthesis genes and ESX-1 secretion, which re-
stricts phagosomal acidification and induces phagosomal rupture 
respectively [72]. This could explain why the M. tuberculosis ΔmshA 
mutant defective in mycothiol synthesis has lower expression of ESX-1 
secretion system genes [73], and significantly lower intracellular bac-
terial loads in murine macrophages at later timepoints of a low dose of 
infection [74]. This demonstrates that M. tuberculosis utilizes the MSH 
redox system to respond to the acidic pH of the phagosomal compart-
ment for its virulence. Aside from ESX-1 secretion system genes, a lack of 
MSH in M. tuberculosis results in differential expression of VapC toxins, 
metabolic genes and cytochrome biogenesis [73]. It remains to be 
investigated how MSH deficiency contributes to these transcriptome 
changes and whether the differential gene expression contributes to 
virulence and fitness for M. tuberculosis infection. 

As discussed in an earlier section, biofilm formation is a virulence 
factor for pathogenesis of various bacteria. Mycobacterium smegmatis 
form pellicular biofilms at the air-media interface [75–77]. M. smegmatis 
mutants defective in MSH synthesis have decreased biofilm formation 
compared to the wildtype bacteria [78]. This suggests that MSH syn-
thesis is required for effective formation of biofilms by M. smegmatis 
although it remains unclear how MSH influences the process. 

BSH has been demonstrated to play a role in survival of S. aureus in 
host cells. S. aureus ΔbshA mutant defective in BSH synthesis survived 
less well than the wildtype strain in whole blood containing neutrophils, 
macrophages, and complement [79]. It is important to note that 
S. aureus is a Gram-positive bacterium which is believed to be resistant 
to complement killing via membrane attack complex due to the thick 
peptidoglycan cell wall [80]. Thus, the reduced bacterial numbers of 
ΔbshA retrieved from whole blood [79] is likely due to poorer survival in 
the midst of blood cells rather than increased susceptibility to comple-
ment. More direct evidence was shown in another study which exam-
ined members of the S. aureus NCTC8325 lineage that is incapable of 
producing BSH [81]. Reconstitution of BSH synthesis in S. aureus strain 
8325-4 resulted in higher bacterial loads in murine macrophages and 
human upper airway epithelial cells [81]. A study characterising YpdA, 
a putative BSH disulfide reductase that recycles oxidized bacillithiol 
disulfide (BSSB) to reduced BSH, also provided evidence that BSH 
enhanced survival of S. aureus in host cells [82]. YdpA mutant, which 
had lower levels of BSH and higher levels of BSSB, had reduced survival 
in human neutrophils [82]. Conversely, cells overexpressing YdpA sur-
vived better than cells with the empty vector control [82]. Diphenyle-
neiodonium (DPI) treatment abrogated the poorer survival of YpdA 
mutant in human neutrophils [82]. DPI was used as an inhibitor of 
oxidative burst, leading the authors to conclude that BSH functions to 
protect S. aureus from oxidative burst in human neutrophils [82]. 
However, aside from inhibiting nitric oxide synthesis, DPI has been 
demonstrated to possess antibacterial activity [83] and induce oxidative 
stress in murine glial cells [84]. Thus, stronger evidence is required to 
confirm if BSH indeed confers protection to S. aureus via resistance to 
oxidative burst for enhanced survival in the human neutrophils. On a 
related note, transcriptome analyses revealed that S. aureus ΔbshA mu-
tants had differential gene expression of a variety of genes involved in 
metabolism, transporters, transcription regulators and virulence [79]. 
So far, the documented role of MSH and BSH in virulence is mainly in-
direct and could be due to protection against oxidative stress encoun-
tered in biofilm or mediated by the host. It would be exciting to see if 
they are involved in redox regulation of virulence regulators as seen in 
B. pseudomallei, L. monocytogenes and P. aeruginosa. 

7. GSH as an immune modulator in bacterial infection 

Much of the work done in examining the effect of GSH on the im-
mune response against bacterial infections is in tuberculosis (TB) and 
melioidosis. 

GSH has been previously shown to have direct antimycobacterial 
effects [85–87] likely due to reductive stress experienced by the mi-
crobes. Mycobacteria lack GSH and possess the alternative thiol, 
mycothiol, to regulate redox homeostasis. Therefore, physiological 
concentrations of GSH (in millimolar) inside the macrophages can cause 
reductive stress leading to growth inhibition of M. tuberculosis [85–87]. 
Both GSH and N-acetylcysteine (NAC) were also reported to diminish TB 
pathology and inflammation [88–92]. GSH’s and NAC’s potent 
anti-inflammatory effects are thought to be through dampening the 
activation of nuclear factor-kB (NF-kB) as well as the specific inhibition 
of other proinflammatory cytokine synthesis [93–95]. In both experi-
mental animal models as well as clinical studies, NAC has been shown to 
have a protective effect against liver damage from anti-TB medications 
[96]. Furthermore, Vilchèze et al. demonstrated that the synergistic 
combination of cysteine or other small thiols with first-line TB antibi-
otics such as isoniazid or rifampicin prevented the formation of 
drug-tolerant and drug-resistant M. tuberculosis cultures by shifting the 
menaquinol/menaquinone balance toward a reduced state [97]. This 
stimulates bacterial respiration and converts persister cells to metabol-
ically active cells which become susceptible to antibiotics [97]. Teskey 
et al. further showed that NAC with suboptimal levels of isoniazid and 
rifampicin could also clear M. tuberculosis infection from in vitro derived 
granulomas [98]. 
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Melioidosis, a disease caused by B. pseudomallei, shows some simi-
larity to TB in that both are caused by intracellular bacteria and in-
fections could turn chronic. Even more so than TB, the most important 
risk factor in melioidosis is Type 2 diabetes, where up to 60% of 
melioidosis patients are diabetic [99–102]. In trying to discover the 
underlying susceptibility to disease in the diabetics, it was previously 
reported that PBMCs obtained from diabetic patients with poor glycemic 
control (HbA1c > 8) had a GSH deficiency, where ratios of GSH to 
oxidized glutathione (GSSG) were decreased as compared to healthy 
individuals and diabetics with good glycemic control although total 
concentrations did not appear to differ [103]. Lowered GSH:GSSG ratios 
correlated with impaired IL-12 and IFN-γ production and poor intra-
cellular bacterial control in macrophages [103]. IL-12p70 consists of 
two protein subunits, IL-12p35 and IL-12p40. Low IL-12 production is 
contributed by a reduction in the transcription of the IL-12p35 subunit, 
which is the rate limiting step in IL-12 production [103]. There is no 
direct evidence indicating how GSH affects IL-12p35 transcription. IL-12 
then induces IFN-γ production from natural killer (NK) cells , and IFN-γ 
in turn activated monocytes and macrophages to increase bactericidal 
activity. GSH deficient mice treated with DEM or buthionine sulfox-
imine (BSO) succumbed to B. pseudomallei infection at rates faster than 
those without treatment [103]. The reason that could explain the poor 
infection outcome of GSH deficient mice is that the GSH:GSSG ratio 
directly affected the production of IL-12 from macrophages and this 
caused a reduction of IFN-γ production from NK or T cells, which could 
in turn activate the microbicidal activity of macrophages to kill the 
intracellular bacteria [104]. In a separate study, the ratio of GSH:GSSG 
in polymorphonuclear neutrophils (PMNs) isolated from diabetic in-
dividuals receiving glibenclamide therapy (a treatment for diabetics in 
the region the study was conducted) was lower than healthy or diabetic 
individuals who did not receive glibenclamide. The reduction in GSH in 
the neutrophils correlated with decreased IL-8 and IL1-β production in 
response to B. pseudomallei infection [105]. Supplementation with GSH 
or GSH precursor NAC prior to B. pseudomallei infection in the 
glibenclamide-treated neutrophils restored cytokine responses and 

improved neutrophil migration [106]. These studies support the role of 
GSH in modulating protective immune responses against B. pseudomallei 
(Fig. 2). One caveat with all these studies using addition of NAC, GSH or 
DEM to modulate intracellular GSH is that the GSH:GSSG couple may 
not be the only redox pairs affected within the cells. Unless one is able to 
identify how GSH specifically modifies genes or effectors, the effect of 
GSH could be through indirect effects on immune response genes. 

While it may seem intuitive to boost intracellular GSH levels to 
reduce susceptibility towards B. pseudomallei infection, targeting GSH: 
GSSG ratio is not straightforward. A previous attempt to enhance the IL- 
12 protective response against B. pseudomallei via oral supplementation 
of NAC in diabetic patients resulted in only an increase in free GSH and 
GSSG but not the overall GSH:GSSG ratio [104]. B. pseudomallei infec-
tion of the isolated PBMCs also revealed unaltered IL-12, IFN-γ responses 
and intracellular bacterial loads [104]. This could be because the un-
derlying cause of high oxidative stress in diabetes is not removed, and 
more exogenous GSH is simply converted to GSSG without a change in 
the redox ratio. Given that host GSH turns on B. pseudomallei virulence 
[10], there is the additional complexity where modulating GSH levels 
could potentially boost the virulence of the pathogen. However, since 
diabetics with lower GSH:GSSG levels are more susceptible to 
B. pseudomallei infection, it is likely that a low GSH threshold exists for 
triggering the T6SS5 virulence program (cytoplasmic concentrations are 
in millimolar range even in diabetics) and that boosting GSH levels 
benefit the host more than the bacterium. 

In Lyme disease caused by the spirochete Borrelia burgdorferi, GSH 
metabolism was increased 10-fold in macrophages upon infection [107]. 
The increased GSH levels resulted in increased IL-1β processing and 
secretion and decreased TNFα mRNA translation. The authors deduced 
these alterations could be through glutathionylation. However, the 
targets of these modifications are unknown. Nevertheless, this study 
shows that bacterial infection can modify GSH metabolism in the host 
that translates into modulation of cytokine responses against the 
infection. 

In fact, ROS responses triggered by infection alter GSH metabolism in 

Fig. 2. GSH modulation of the immune response against B. pseudomallei infection. A low GSH:GSSG ratio as depicted leads to low IL-1β and IL-8 production in the 
neutrophils, as depicted by dotted arrows. The low production of these cytokine and chemokine in response to infection impairs neutrophil migration. The low GSH: 
GSSG ratio in monocytes and macrophages results in impaired IL-12 production (dotted arrows) and leads to a corresponding decrease in IFNγ production in NK cells 
(dotted arrows). IFNγ is necessary for activating macrophages to be microbicidal and efficient in killing of intracellular bacteria. Created with BioRender.com. 
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T cells. GSH was shown to be essential for T cell effector function 
through metabolic programming [108]. GSH deficient T cells initially 
underwent normal activation but could not meet their increased energy 
and biosynthetic requirements [108]. GSH deficiency compromised the 
activation of mammalian target of rapamycin-1 (mTOR) and expression 
of NFAT and Myc transcription factors, abrogating the energy utilization 
and Myc dependent metabolic reprogramming that allows activated T 
cells to switch to glycolysis and glutaminolysis [108]. As a result, this 
impacts anti-viral immunity [108]. The dependence on GSH to mediate 
T cell effector functions will similarly affect adaptive immune response 
to bacterial infections. A very recent report also demonstrated how 
metabolism affects T regulatory cell maintenance. Presence of GSH 
limits serine metabolism and maintains FoxP3 expression, necessary for 
T regulatory cell function [109], which would be important for pre-
venting too much inflammation. Although not directly related to bac-
terial infections, this is another piece of evidence on how GSH has broad 
effects on the immune system that can impact immune function when 
under attack by pathogens. Furthermore, activity of macrophages are 
also regulated by GSH, as reviewed [110]. Besides the obvious role of 
GSH as an antioxidant in these cells capable of much ROS production, 
GSH through glutathionylation on the enzyme peroxiredoxin-2 could 
drive TNFα release, and inhibit caspase-1 activation also through glu-
tathionylation [110]. 

8. Conclusion 

It is perhaps not surprising that GSH, being the most important redox 
systems in many bacteria to maintain metabolism and homeostasis, play 
a role in bacterial pathogenicity by maintaining optimal bacterial 
growth and survival. What has been less obvious is how a handful of 
bacteria use GSH as a reducing moiety or allosteric regulator of their 
transcription factors to directly upregulate virulence pathways. Some 
bacteria could also control many post-translational responses via glu-
tathionylation of bacterial virulence factors. Furthermore, GSH modu-
lates the immune system in many complex ways that influence infection 
outcomes. GSH can modify redox sensitive transcription factors in both 
bacteria and host cells to effect transcriptional changes. Many of these 
changes could be via glutathionylation of enzymes and transcription 
factors, and through changes in energy metabolism that are only now 
beginning to be explored. These complex changes will influence how an 
infection progresses in the mammalian host. The research area on how 
GSH modulates immune responses to infections is currently under-
studied. We predict that with further investigations, more examples will 
be uncovered to demonstrate how diverse bacterial pathogens could use 
GSH to regulate their virulence, and how the host could use GSH to 
modulate its response against these bacterial incursions. 
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