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I n t R o d u c t I o n

To understand how ion channels and other proteins 
function at the molecular and cellular levels, one must 
decrypt their kinetic mechanism, defined as a set of in-
terconvertible structural conformations, with transitions 
quantified by rate constants that depend on external 
variables (e.g., membrane potential, ligand concentra-
tion, etc.). Modeling molecular kinetics is not trivial, 
but sophisticated algorithms have been developed that 
can extract the rate constants for a given model from a 
variety of experimental data types, such as single-chan-
nel or whole-cell voltage-clamp currents (Colquhoun 
and Hawkes, 1982; Colquhoun and Sigworth, 1995; Qin 
et al., 1996, 2000; Venkataramanan and Sigworth, 2002; 
Colquhoun et al., 2003; Milescu et al., 2005; Csanády, 
2006; Stepanyuk et al., 2011, 2014), single-molecule  
fluorescence (Weiss, 2000; Milescu et al., 2006a,b; Liu et 
al., 2010), or even current-clamp recordings (Milescu et 
al., 2008). Automated algorithms that can identify the 
model itself have also been attempted (Gurkiewicz and 
Korngreen, 2007; Menon et al., 2009). This abundance 
of data and analysis algorithms is great, but it raises an 
important issue: how do we make sure that a model is 
consistent with all these data, new and old? In other 
words, how do we extract a model that explains new ex-
perimental data but also satisfies existing knowledge?

In the first part of this study (see Salari et al. in this 
issue), we discussed the general principles of enforcing 
prior knowledge using model constraints. We identified 

two main types: parameter constraints and behavioral 
constraints. Parameter constraints represent explicit 
mathematical relationships between model parameters, 
which include the pre-exponential and exponential rate 
constant factors, allosteric and other multiplicative fac-
tors, and any external variables that describe the exper-
imental data and the recording conditions. In part one, 
we presented a unified mechanism that handles both 
equality and inequality linear parameter constraints, 
using relatively simple linear algebra methods that con-
vert the interdependent parameters of the model into 
a reduced set of independent (“free”) parameters that 
can be passed to the optimization engine. Linear rela-
tionships can implement a surprisingly broad range of 
constraints, particularly after some model parameters 
are first transformed by the logarithm function. For 
example, one can scale one rate to another, parame-
terize allosteric relationships, enforce microscopic re-
versibility, restrict a parameter to a range of values, etc. 
Nevertheless, linear parameter constraints are not a 
universal solution.

We present here a complementary modality for en-
forcing prior knowledge, which can be used to enforce 
any type of model behavior, as well as arbitrary parame-
ter relationships. For example, one can fit stationary sin-
gle-channel data using a maximum likelihood method 
but simultaneously use constraints to enforce voltage de-
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pendence or other nonstationary behavior, as obtained 
from other types of data or from the literature. The basic 
idea is to calculate for each applied behavioral constraint 
a penalty that represents the degree by which the model 
deviates from that constraint. The penalty is then added 
to the cost function that measures the error between the 
data and the prediction of the model. As the optimizer 
minimizes the cost function in search for an optimal 
solution, it will generate a model that will not only fit the 
data but will also satisfy all the prior knowledge.

We illustrate here the two types of model constraints 
(linear parameter constraints and behavioral con-
straints) and test their respective computational pro-
cedures with a simple ion channel modeling example. 
First, we simulate stochastic macroscopic data in re-
sponse to a typical voltage-clamp protocol. Then, we fit 
these data while enforcing different combinations of 
model constraints. The calculations are explained step 
by step, and detailed numerical examples are given. All 
computational procedures were implemented in our 
freely available software (Milescu, 2015).

M At e R I A l s  A n d  M e t h o d s

All the mathematical and computational algorithms de-
scribed in this study, as well as the simulation, data pro-
cessing, and model optimization, were implemented, 
tested, and performed with the freely available MLab 
edition of the QuB program, running under the Micro-
soft Windows operating system.

Model parameters
To simulate the test data, the model shown in Fig. 2 A 
was tweaked by hand to generate macroscopic cur-
rents resembling voltage-dependent sodium currents 
(Fig.  3). The simulated data were fitted in multiple 
runs, with different sets of constraints applied to the 
model (Fig.  2  B). The model parameter values (true, 
initial, and estimated) are listed in Table 1.

Stochastic simulations
Ion channel macroscopic traces were simulated stochas-
tically under the voltage-clamp paradigm, using estab-
lished procedures (Milescu et al., 2005). To approximate 
the properties of sodium currents, the single-channel 
conductance was 10 pS and the reversal potential was 
+60 mV. Random Gaussian noise with zero average and 
5-pA standard deviation was added to each trace to ap-
proximate whole-cell recording noise. To generate the 
activation/inactivation time course (Fig. 3 A) and acti-
vation/availability steady-state curves (Fig. 3 B), we used 
a typical voltage-clamp protocol: the channels were first 
equilibrated at −120 mV and then subjected to a 200-
ms conditioning step at potentials ranging from −120 
mV to +40 mV, followed by a 50-ms test step at 0 mV. 
The peak current from each conditioning step was 
extracted and converted to conductance (assuming a 
linear relationship), and the obtained values were used 
to construct the activation curve. Similarly, the peak 
current from the test step was extracted and used to 
construct the availability curve. Together, the currents 
evoked during the first 5 ms of the conditioning step 
in the −50 mV to +40 mV range (Fig. 3 A) and the ac-
tivation and availability curves (Fig. 3 B) were used for 
model optimization.

Model optimization
The algorithms were tested by fitting the data shown 
in Fig. 3. Optimization trials were run on a dual eight-
core 3.3 GHz Intel Xeon processor computer, running 
Windows 7 (64 bit). Each optimization run took less 
than 20 min to complete. The model was optimized 
by minimizing the cost function with a modified ver-
sion of the Davidon–Fletcher–Powell optimizer (dfp-
min; Fletcher and Powell, 1963; Press et al., 1992). 
For efficiency, the cost function was coded for parallel 
computation. The cost function was calculated as the 
sum of square errors between the data and the predic-
tion of the model, normalized to the total number of 

Table 1. Model parameters and properties

Parameters Properties

  k  2,1  0    (s−1)   k  2,1  1    (mV−1)   k  2,3  0    (s−1)   k  2,3  1    (mV−1)   k  3,4  0    (s−1)   k  4,3  0    (s−1)   k  4,3  1    (mV−1) a1 NC PO fR

True 100.00 −0.13 5,000.00 0.02 3,000.00 5.00 −0.01 2.0 5,000 0.4175 0.4292
Initial 100.00 −0.075 1,500.00 0.05 1,500.00 20.00 −0.10 3.0 3,000 0.3198 1.0
Run I 77.08 −0.14 4,841.62 0.02 3,102.51 11.75 0.01 1.99 5,073 0.4062 0.1843
Run II 91.18 −0.13 4,460.68 0.02 3,458.43 9.64 0.00 2.22 5,667 0.3723 0.3946
Run III 82.75 −0.13 3,976.55 0.02 4,129.05 7.24 0.00 2.05 6,623a 0.3125 0.3543
Run IV 95.39 −0.13 6,056.44 0.02 2,414.50 7.52 0.00 1.90 4,061 0.4992a 0.3186
Run V 98.88 −0.13 5,039.69 0.02 3,001.74 2.52 −0.03 1.81 4,919 0.4135 0.7991a

Run VI 112.61 −0.13 6,280.71 0.02 2,416.81 1.88 −0.04 1.72 4,055 0.4995a 0.7998a

The quantities refer to the kinetic model shown in Fig. 2 A.   k  ij  0   and   k  ij  1   represent rate constant parameters, as defined by Eq. 1 from the companion paper (Salari et 
al., 2018; rate constant   k  ij   =  k  ij  0  ×  e    k  ij  1 ×V  ), a1 is an allosteric factor, and NC is the channel count. Po and fR represent model properties, as defined in Fig. 2 B. The “true” 
parameter values were used to simulate the data shown in Fig. 3. The “initial” and the “run” values refer to the starting and the ending of optimization, respectively, 
as plotted in Figs. 4 and 5. Some rate constant parameters are not shown, because they are defined by constraints (e.g.,   k  1,2  0   =  a  1   ×  k  2,3  0   ) and can be easily derived.
aOptimization runs where model parameters and properties were constrained away from the true values.
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points, plus a penalty term for those optimization tri-
als involving a behavioral constraint, as detailed in Re-
sults. The gradients of the cost function with respect 
to the free parameters were calculated numerically. 
The prediction of the model for a given set of param-
eters was obtained by simulating the deterministic re-
sponse of the model to the same stimulation protocols 
as used for simulation. Then, the resulting traces were 
processed to extract the time course and the activa-
tion and availability curves, following the same pro-
cedure as for the simulated test data (Milescu et al., 
2010; Salari et al., 2016).

R e s u lt s

Implementing prior knowledge with model constraints
A theoretical background was given in part one of this 
study (Salari et al., 2018), where we briefly introduced a 
few prerequisite topics (kinetic mechanisms, model to-
pology, and parameter estimation). Then, we presented 
a mathematical formalism and computational proce-
dure for enforcing linear parameter constraints. Here, 
in part two, we continue with a mechanism for enforcing 
model behavior and arbitrary parameter relationships. 
Then, we give a step-by-step numerical example that il-
lustrates the implementation of all types of constraints. 
Because we will make multiple references to the first 
part, the equations introduced here are numbered in 
continuation of those in part one. The mathematical 
symbols that are not explicitly defined here have been 
introduced in part one.

Behavioral constraints and arbitrary parameter relation-
ships.  A good amount of prior knowledge about the 
channel can be expressed as linear relationships be-
tween model parameters, resulting in constraints that 
can be handled with relatively straightforward linear al-
gebra methods. However, some channel behaviors and 
properties cannot be easily formulated as explicit func-
tions of model parameters or they need nonlinear func-
tions that are not so easily tractable. For voltage-gated 
channels, examples of important functional behavior 
include the open probability (PO), the voltage depen-
dence of activation or inactivation, or the use-depen-
dent availability. These properties cannot be easily 
formulated as functions of rate constants, except for 
very simple kinetic mechanisms. Furthermore, they 
must be prescribed in the context of a specific experi-
ment (e.g., a voltage-clamp step protocol).

Expanding the cost function.  Without explicit parame-
ter relationships, we cannot solve behavioral constraints 
simply by converting model parameters into free pa-
rameters, as we did for linear parameter constraints. 
Likewise, we cannot use that formalism to solve any pa-
rameter constraint that cannot be written as a linear re-

lationship between the transformed model parameters, 
as captured by the generalized linear constraint Eqs. 32 
and 33 (Salari et al., 2018). Instead, the solution we pro-
pose here for handling behavioral constraints and arbi-
trary parameter relationships is to include them into 
the cost function. Thus, the cost function F, which is 
minimized by the optimizer in search for an optimal 
solution, can be expanded to include multiple compo-
nents, one for each set of experimental data and one 
for each constraint:

  F =  ∑ i      (    α  i  Y  ×  F  i  Y  )    +  ∑ j      (    α  j  C  ×  F  j  C  )   ,  (60)

where   F  i  Y   represents the cost of data component i and   
F  j  C   represents the cost of behavioral constraint j. The α 
quantities are relative weighting factors that multiply the 
cost function components. Including multiple compo-
nents in the cost function is known in the optimization 
literature as multi-objective fitting (Druckmann et al., 
2007; Bandyopadhyay and Saha, 2013; Fletcher, 2013). 
For example,   F  i  Y   could stand for newly acquired volt-
age-clamp data (e.g., the time course of activation and 
inactivation at different membrane potentials), whereas   
F  j  C   could be data from the literature (e.g., steady-state 
activation and inactivation curves) or a hypothesized 
property (e.g., the open probability PO). The cost func-
tion components that denote constraints should be 
formulated in such a way that they take a value of zero 
when the underlying constraint is satisfied, and a very 
large value (relative to the data cost components) when 
the constraint fails, as explained further.

Formulating behavioral constraints and arbitrary param-
eter relationships.  Some behavioral constraints can be 
formulated as mathematical relationships involving sim-
ple properties of the channel. For example, we could 
constrain the maximum open probability reached 
during a depolarization step to take certain values or to 
fall within a range:

   
 P  O   = 0.5,  or 

    P  O   ≤ 0.4,  or    
0.3 ≤  P  O   ≤ 0.7.

   (61)

An example of a parameter constraint that cannot be 
processed with the formalism developed in part one is 
restricting a rate constant pre-exponential factor   k  ij  0   to a 
range of values:

  1, 000 ≤  k  ij  0  ≤ 10, 000.  (62)

This range constraint cannot be handled as two lin-
ear inequality relationships, because they would be 
mathematically redundant, where both cannot be si-
multaneously satisfied. Another example is parame-
terizing an exponential factor   k  ij  1   as a product of more 
than one variable:
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   k  ij  1  = C × a × b,  (63)

where a and b could stand for the δij and zij parame-
ters in Eq. 2 (Salari et al., 2018) and C is a constant 
equal to F/(R × T). Likewise, this equation cannot be 
handled with the formalism from part one because 
it is nonlinear.

Algebraically, any equality or inequality relationship 
can be converted to "=0" or "≥0," respectively. Thus, the 
above constraints could be rewritten as follows:

   

 P  O   − 0.5 = 0,   

   

0.4 −  P  O   ≥ 0,  

   
 { 

 P  O   − 0.3 ≥ 0
   

0.7 −  P  O   ≥ 0
 } ,  

   

 {  
 k  ij  0  − 1, 000 ≥ 0

   
10, 000 −  k  ij  0  ≥ 0

 } ,  

   

 k  ij  1  − C × a × b = 0.

    (64)

The cost function components FC that correspond to 
the above equality and inequality relationships can be 
formulated as follows:

  

 F   C  = α ×   (    P  O   − 0.5 )     2 ,

   

 F   C  = α ×   (  0.4 −  P  O   )     2 ,

    F   C  = α ×   [     (    P  O   − 0.3 )     2  +   (  0.7 −  P  O   )     2  ]   ,     
 F   C  = α ×   [     (    k  ij  0  − 1, 000 )     

2
  +   (  10, 000 −  k  ij  0  )     

2
  ]   ,  and

     

 F   C  = α ×   (    k  ij  1  − C × a × b )     
2
 ,

     
 (65)

where α is a weighting factor with the following  
properties:

  α > 0,  for equality constraints,  (66)

and

  { α = 0     if constraint ≥ 0    α > 0     if constraint < 0
 } ,  for inequality constraints,   

 (67)

where “constraint” refers to the left-side term of a con-
straint equation (Eq. 37; Salari et al., 2018). Thus, these 
cost function components are equal to zero when the 
underlying constraints are exactly satisfied but take a 
positive and quadratically increasing value when the 
constraint relationships are not satisfied.

Nonparametric behavioral constraints.  In principle, the 
same logic can be applied to any other model property. 
However, some model behaviors cannot be reduced to a 
single value or cannot be easily calculated theoretically. 
For example, many functional aspects, such as the re-
covery from inactivation or the use dependence, can be 
empirically fitted by one or two exponentials. Unfortu-
nately, these apparent time constants cannot be directly 
and easily calculated from the model, which actually 

predicts a larger number of exponentials, equal to the 
state count minus one (Milescu et al., 2005; Salari et al., 
2016). Likewise, the voltage-dependent activation curve 
can be well approximated and fitted by a Boltzmann 
equation with only two parameters, but calculating the 
half-activation and the sensitivity values directly from 
the model is generally not practical.

In cases like these, it is simpler to simulate the re-
sponse of the channel to the same stimulation protocol 
as was used to obtain the experimental (or hypothe-
sized) data. Then, a cost function component can be 
calculated as the sum of square differences between the 
simulated and the experimental data:

   F   C  = α ×   1 __ N    ∑ i       (    y  i   -  x  i   )     2 ,  (68)

where yi and xi are experimental and simulated data 
points, respectively, and N is the number of data 
points. In the above equation, one could use the 
raw data directly, point by point, or one could ex-
tract some properties from the raw data and use the 
points on that property curve. For example, when 
the stimulation protocol is designed to extract the 
time course of a macroscopic current, one would fit 
the raw data directly. In contrast, when the stimu-
lation protocol is designed to extract a behavior, 
such as the recovery from inactivation, one would fit 
the property curve. Although extracting a property 
curve involves additional computation, it has the 
substantial benefit of concentrating the information 
on a very specific aspect of channel behavior. For ex-
ample, in a curve that represents the recovery from 
inactivation, every data point informs directly on the 
apparent time constants of inactivation. Likewise, 
every data point in a voltage-dependent activation 
curve informs directly on the two parameters of the 
Boltzmann equation.

Whether the cost function for these nonparametric 
behavioral constraints is calculated from raw data or 
from property curves or is based on hypothetical values, 
one must consider the presence of random noise and 
other artifacts that contaminate the experimental data. 
Thus, even a perfect model would not generate zero 
cost for the constraints, which may confuse the optimi-
zation engine. A simple solution is to reformulate the 
problem as an inequality:

    1 __ N    ∑ i       (    y  i   -  x  i   )     2  ≤ ε,  (69)

where ε is a positive constant proportional to the noise 
content of the data. Then, the cost function component 
can be written as follows:

   F   C  = α ×   [ε −   1 __ N    ∑ i       (    y  i   -  x  i   )     2 ]    
2
 ,  (70)

where α is a weighting factor with the following property:
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⎧

 
⎪

 ⎨ 
⎪

 
⎩

 
α = 0     if    1 __ N    ∑ i       (    y  i   -  x  i   )     2  ≤ ε

    
α > 0     if    1 __ N    ∑ i       (    y  i   -  x  i   )     2  > ε

 
⎫

 
⎪

 ⎬ 
⎪

 
⎭

 .  (71)

Thus, if the sum of square errors between the simu-
lated and the experimental data is less than ε, then the 
underlying constraint is considered to be satisfied. In 
other words, the model only needs to explain the con-
straining data components “well enough,” as warranted 
by the inevitable noise and artifacts.

A computational framework for solving behavioral 
constraints and arbitrary parameter relationships.  We 
presented above some examples of behavioral con-
straints and arbitrary parameter relationships. In 
general, the problem we must solve is to find a model 
that not only best explains the experimental data but 
also satisfies a set of equality or inequality constraints. 
Mathematically, the problem can be formulated as 
the minimization of a function subject to a set of non-
linear constraints:

   

minimize F  (    ̄  X  )   

   such that:   h  i    (    ̄  X  )    = 0,  i = 1… N  E      
                    g  j    (    ̄  X  )    ≥ 0,  j = 1… N  I  ,

   (72)

where   X ¯    and  F  (   X ¯   )     are the vector of free parameters 
and the cost function, respectively, as defined in part 
one, and   h  i    (   X ¯   )     and   g  j    (   X ¯   )     are two sets of NE equality 
and NI inequality constraints, respectively. In the case 
of maximum likelihood methods, instead of maxi-
mizing the log-likelihood, one can equivalently mini-
mize its negative.

As discussed in the previous section, one possible 
solution to this constrained function minimization is 
to add the constraints to the cost function (Eq. 60). 
This approach is equivalent to the method of penalties 
(Fletcher, 2013), which reformulates the problem as an 
unconstrained optimization, by adding a penalty term 
to the cost function  F  (   X ¯   )    . Thus, the objective becomes 
minimizing a penalized cost function  F’  (    ̄  X , α )    :

  F’  (    ̄  X , α )    = F  (    ̄  X  )    + α ×  ∑ i     [    h  i    (    ̄  X  )     ]     2  +  ∑ j     {    β  j   ×  [    g  j    (    ̄  X  )     ]     2  }  ,    
 (73)

where α and β are penalty factors with the fol-
lowing properties:

   

α > 0,

  
 β  j   =  {  

0     if   g  j    (    ̄  X  )    ≥ 0
   

α     if   g  j    (    ̄  X  )    < 0
 } .

   (74)

Formulating the hi and gj expressions that correspond 
to any of the equality and inequality constraints above 
is straightforward. For example, the first two PO con-
straints given above (Eq. 64) become:

   
 h  i   =  P  O   − 0.5,

    g  j   = 0.4 −  P  O  .    (75)

The gradients of the penalized cost function might be 
required by the optimization engine. These could be 
calculated analytically, as follows:

    
∂ F’  (    ̄  X , α )   

 _______ 
∂    ̄  x    k  

   =   
∂ F  (    ̄  X  )   

 _____ 
∂    ̄  x    k  

   + 2 ×  

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 
α ×  ∑ i     [ h  i    (    ̄  X  )    ×   

∂  h  i    (    ̄  X  )   
 ______ 

∂    ̄  x    k  
  ] +

   
 ∑ j     [ β  j   ×  g  j    (    ̄  X  )    ×   

∂  g  j    (    ̄  X  )   
 ______ 

∂    ̄  x    k  
  ] 

  

⎫

 
⎪

 ⎬ 
⎪

 

⎭

 .  (76)

The derivatives of hi and gj with respect to a free param-
eter    x ¯    k    depend on the specific constraints used, and one 
may need to calculate them using the chain differentia-
tion rule, as in the case of linear constraints. Ultimately, 
if the constraint functions are too complicated, the gra-
dients can be approximated numerically. Whether the 
gradients are calculated analytically or numerically, one 
should keep in mind that inequality penalties are only 
semidifferentiable and may throw off the optimizer. If 
this is the case, then one possibility is to approximate 
the penalty into a differentiable function (Bertsekas, 
1975). The variance of the estimates can also be calcu-
lated using the procedure described in part one.

The main advantage of the penalty method is that 
it can be used with any optimization algorithm that 
was originally designed for nonconstrained problems. 
The main issue, however, is the choice of the penalty 
parameter α. On the one hand, if α is too small, then 
the solution found by the optimizer will be pulled to-
ward  F  (   X ¯   )     and the constraints defined by   h  i    (   X ¯   )     and  
  g  j    (   X ¯   )     may not be exactly satisfied. On the other hand, 
if α is very large, then the solution will satisfy the con-
straints (in principle). However, the optimizer engine 
may have a difficult time finding that solution, be-
cause the penalized cost function  F’  (    ̄  X , α )     may change 
very abruptly in the n-dimensional parameter space. 
Thus, although it is conceptually and computationally 
very simple, using the penalized cost function is not 
exactly a plug-and-play solution, as in the case of lin-
ear constraints.

A possible strategy is to find the solution iteratively, 
starting with a relatively small α, and increasing it until 
some convergence criteria are satisfied (Himmelblau, 
1972). This is the approach we are taking here, as sum-
marized in Fig.  1. Once a model topology is chosen, 
the workflow starts with defining the linear parame-
ter constraints and the behavioral constraints (if any), 
including any other arbitrary parameter constraints. 
The next step is to define the cost function and the 
penalized cost function, according to the specific ap-
plication (e.g., macroscopic fitting, single-channel 
maximum likelihood, etc.). Then, we choose a set of 
model parameters as the starting point, K0. Mathemati-
cally, these parameters do not need to satisfy either set 
of constraints (parameter or behavioral), but starting 
as close as possible is recommended. From the initial 
model parameters K0, we then calculate the initial set 
of free parameters,    X ¯    0   . Finally, we initialize the penalty 



Behavioral constraints in kinetic models | Navarro et al.344

parameter α to α0, equal to a small positive number. In 
practice, this value can be chosen so as to make the data 
and the penalty components of the overall cost function 
be approximately equal.

Once these quantities are defined and initialized, we 
start the optimization procedure, which involves two 
embedded loops, as shown in Fig.  1. An outer loop, 
indexed by p, handles the schedule for updating the 
penalty parameter αp that is used to calculate the penal-
ized cost function  F’  (    ̄  X ,  α  p   )    , and an inner loop, indexed 
by k, handles model optimization for a given αp. The 
penalty parameter αp is progressively increased at each 
outer loop iteration, to increase the relative weight of 
the penalty component in  F’  (    ̄  X ,  α  p   )    . Thus, the behav-
ioral constraints may be only loosely satisfied at the end 
of the first outer loop iteration, but they will get tighter 
each time αp is increased. The outer loop can be run 
for a predefined number of iterations or can be termi-
nated when the behavioral constraints are satisfied, if 
at all possible.

In principle, any type of optimization engine can be 
used in the inner loop. As explained, the optimizer is 
completely model and penalty blind. Essentially, the op-
timizer solves an unconstrained minimization problem, 
operating with a set of free parameters   X ¯   . However, as it 
explores the free parameter space in search for a mini-
mum, the optimizer will require, for a given    X ¯    k   , the pe-
nalized cost function  F’  (    ̄  X ,  α  p   )     and possibly its gradients. 
For this, the transformed model parameters Rk are cal-
culated from    X ¯    k   , and then the model parameters Kk are 
calculated from Rk, as outlined in Fig. 3 of the compan-
ion article (Salari et al., 2018). The model optimization 
in the inner loop can be run for a predefined number 
of iterations or can be terminated when some conver-
gence criteria are satisfied. Typically, convergence re-
quires that there be no substantial changes in the free 
parameter values and in the cost function (and its gra-
dients be close to zero) from one iteration to the next.

Testing the algorithm
To clarify the computational procedures described in 
both parts of this study, we give a step-by-step numerical 
example. For illustration purposes, we chose the model 
shown in Fig. 2 A, which is complex enough to accom-
modate an allosteric factor (Fig. 2 A, a1), an external 
parameter representing the number of active chan-
nels in the recording (NC), and several parameter and 
behavioral constraints. At the same time, the model is 
small enough to allow us to print the vectors and matri-
ces used in the numerical computation. Readers who 
wish to implement their own code can use these exam-
ples for verification. Briefly, we tested the algorithms 
by fitting a stochastically simulated set of macroscopic 
data, generated in response to a typical voltage-clamp 
step protocol. We intentionally chose a relatively small 
dataset (the time course of activation and inactivation 

Figure 1. optimizing a constrained model. The flowchart 
summarizes the computational steps needed to optimize a ki-
netic model, subject to parameter and behavioral constraints. 
Linear parameter constraints are implemented via linear alge-
bra transformations between the model parameters K and the 
free parameters   X ¯   , whereas behavioral constraints or arbitrary 
parameter relationships are handled by a penalized cost func-
tion  F’  (     X ¯    k  ,  α  p   )     that measures the overall error of the model rel-
ative to the data and the constraints. The  K →  X ¯    and   X ¯     → K  
transformations are detailed in Fig. 3 in the companion paper 
(Salari et al., 2018). To calculate the cost function, one needs 
to generate the response of the model (e.g., probability dis-
tributions and macroscopic currents) to the same stimulation 
protocols used to generate the experimental data and formu-
late the behavioral constraints. The inner computational loop, 
indexed by k, optimizes the model for a given penalty factor 
αp, whereas the outer loop, indexed by p, gradually increases 
αp, to more tightly satisfy the behavioral and arbitrary parame-
ter constraints.
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at different voltages and the voltage-dependent steady-
state activation and inactivation curves, as shown in 
Fig. 3) to illustrate potential parameter identifiability 
issues and the effect of constraints. The data were fitted 
in multiple runs, with each run enforcing a different set 
of constraints, as outlined in Fig. 2 B. The simulation, 
data analysis, and fitting procedures are explained in 
Materials and methods.

We define the following set of model parameters K:

  
K =

    {   k  1,2  0  ,  k  1,2  1  ,  k  2,1  0  ,  k  2,1  1  ,  k  2,3  0  ,  k  2,3  1  ,  k  3,2  0  ,  k  3,2  1  ,  k  3,4  0  ,  k  3,4  1  ,  k  4,3  0  ,  k  4,3  1  ,  a  1  ,  q  1   }   ,    
 (77)

where a1 is the allosteric factor and q1 is the channel 
count. Thus, we have a total of 14 model parameters, 
with numerical values given in Table  1. The corre-
sponding vector of transformed model parameters  
R is:

  
R =

    {    ε  1,2  0  ,  k  1,2  1  ,  ε  2,1  0  ,  k  2,1  1  ,  ε  2,3  0  ,  k  2,3  1  ,  ε  3,2  0  ,  k  3,2  1  ,  ε  3,4  0  ,  k  3,4  1  ,  ε  4,3  0  ,  k  4,3  1  ,  ϕ  1  ,  φ  1   }   ,    
 (78)

where

Figure 2. A test model with different sets of constraints. (A) 
A simple kinetic mechanism that generates voltage-gated so-
dium channel-like currents (see Fig.  3). All rate constants are 
as described by Eq. 1 in the companion paper (Salari et al., 
2018;   k  ij   =  k  ij  0  ×  e    k  ij  1 ×V  ); a1 is an allosteric factor, and NC is the 
number of channels. (B) Six sets of constraints were applied to 
the model to test the algorithms (see Figs. 4 and 5). Runs I and 
II test linear parameter constraints implemented with linear al-
gebra–based methods that convert model parameters into free 
parameters, and vice versa. Run I implements only linear rela-
tionships, whereas run II adds two inequalities. Runs III through 
VI test arbitrary parameter constraints and behavioral con-
straints implemented with the penalty mechanism. Run III tests 
a parameter range constraint, whereas runs IV through VI test 
constraints that enforce model properties and behavior: the 
maximum open probability during a depolarization step (PO, 
run IV and VI) and the recovered fraction of available channels 
at 50 ms after a 5-ms inactivation step (fR, runs V and VI). The PO 
and fR quantities are obtained as shown.

Figure 3. test data and model predictions. (A and B) 
Whole-cell currents were simulated stochastically with the 
test model in Fig. 2 A, using a standard activation/inactivation 
protocol. The data were processed to extract the time course 
of activation/inactivation (black traces in A) and the steady-
state activation and availability curves (black symbols in B). 
The time course and steady-state curves were fitted together 
(see Fig.  4). The predictions of the model at the beginning 
and at the end of optimization are shown by the blue and 
red traces, respectively. The fit curves correspond to run I in 
Fig. 2 B, but all runs resulted in virtually identical fits. The true, 
initial, and estimated parameters and properties of the model 
are shown in Table 1.
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  ε  ij  0   = ln (    k  ij  0  )  , 

     ϕ  1   = ln (    a  1   )  ,    

  φ  1   = ln (    q  1   )  . 

    (79)

Applying linear parameter constraints.  The test model 
has allosteric relationships that require two sets of lin-
ear parameter constraints. The first set applies to the 
forward transitions C1 to C2 and C2 to C3:

   k  1,2   =  a  1   ×  k  2,3  .  (80)

As explained in part one (Salari et al., 2018), we apply 
the logarithm on both sides of Eq. 80 and obtain a set of 
two equality relationships:

   { 
 ln (    k  1,2  0   )   = ln (    a  1   )   + ln (    k  2,3  0   )   

    
 k  1,2  1   =  k  2,3  1  

  } .  (81)

The backward transitions C3 to C2 and C2 to C1 have a 
similar allosteric relationship, which results in another 
set of two equality relationships:

   { 
 ln (    k  3,2  0   )   = ln (    a  1   )   + ln (    k  2,1  0   )   

    
 k  3,2  1   =  k  2,1  1  

  } .  (82)

Altogether, we have a set of four linear mathemat-
ical relationships between the transformed model 
parameters in R:

   

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 

 ε  1,2  0   −  ε  2,3  0   −  ϕ  1   = 0

   
 ε  3,2  0   −  ε  2,1  0   −  ϕ  1   = 0

   
 k  1,2  1   −  k  2,3  1   = 0

   

 k  3,2  1   −  k  2,1  1   = 0

  

⎫

 
⎪

 ⎬ 
⎪

 

⎭

 .  (83)

Together, these four equations reduce the number of 
free parameters by four, from 14 down to 10. We must 
point out that the same allosteric relationships could 
be implemented just as well without the explicit use of 
an allosteric factor. Thus, we could write the following 
constraint equation:

    
 k  1,2   ___  k  2,3  

   =   
 k  3,2   ___  k  2,1  

  .  (84)

Again, after taking the logarithm, we obtain a set 
of two equations:

   { 
 ln (    k  1,2  0   )   − ln (    k  2,3  0   )   = ln (    k  3,2  0   )   − ln (    k  2,1  0   )   

     
 k  1,2  1   −  k  2,3  1   =  k  3,2  1   −  k  2,1  1  

  } .  (85)

The first equation in the set enforces the allosteric rela-
tionships at V = 0. However, the second equation is not 
sufficient to enforce the allosteric relationships at any 
arbitrary voltage. To do so, we must add either one of 
the following two equations:

   
 k  1,2  1   =  k  2,3  1  ,  or

   
 k  3,2  1   =  k  2,1  1  .

    (86)

Altogether, this is equivalent to having a set of three 
mathematical relationships:

   

⎧
 

⎪
 ⎨ 

⎪
 

⎩
 

 ln (    k  1,2  0   )   − ln (    k  2,3  0   )   = ln (    k  3,2  0   )   − ln (    k  2,1  0   )   

      k  1,2  1   =  k  2,3  1    

 k  3,2  1   =  k  2,1  1  

  

⎫
 

⎪
 ⎬ 

⎪
 

⎭
 ,  (87)

with the final form:

   

⎧
 

⎪
 ⎨ 

⎪
 

⎩
 
 ε  1,2  0   +  ε  2,1  0   −  ε  2,3  0   −  ε  3,2  0   = 0

    k  1,2  1   −  k  2,3  1   = 0   

 k  3,2  1   −  k  2,1  1   = 0

  

⎫
 

⎪
 ⎬ 

⎪
 

⎭
 .  (88)

This result can be easily verified: the same set of equa-
tions can be obtained by eliminating   ϕ  1    between the 
first two equalities in Eq. 83. Without the explicit use 
of an allosteric factor, the model would have only 13 
model parameters. However, there would be only three 
constraint equations in that case, which means that the 
number of free parameters would still be the same: 
10. In conclusion, adding an allosteric factor does not 
necessarily increase the number of free parameters of 
a model. Instead, it provides a more intuitive way of 
formulating the relationships that may exist between 
rate constants.

Another assumption that we made about our test 
model is that the O3 to I4 transition has the same voltage 
sensitivity as the C2 to O3 transition. This results in one 
mathematical relationship:

   k  3,4  1   −  k  2,3  1   = 0.  (89)

With this relationship, the number of free parameters 
is down to nine. We note that this relationship follows 
from the actual model parameters used to simulate the 
data. However, even if the true model parameters were 
unknown, the savvy investigator would still enforce this 
constraint, motivated by the shape of the activation 
curve, which reaches a constant value toward the more 
positive voltages (Fig. 3 B). For this particular model, 
this aspect of the activation curve suggests that the rates 
of activation and inactivation increase by approximately 
the same factor with voltage. If, for example, the inacti-
vation rate had a stronger voltage dependence than the 
activation rate (  k  3,4  1   >  k  2,3  1   ), the activation curve would 
start turning down at more positive potentials.

The final assumptions we made involve inequality 
constraints. Thus, we constrained the rate of recovery 
from inactivation (I4 to O3) to have negative voltage de-
pendence and the deactivation rates (O3 to C2 and C2 to 
C1) to have a voltage sensitivity greater than −0.15 mV−1:

   
 k  4,3  1   ≤ 0,

  
 k  2,1  1   ≥ − 0.15.

   (90)
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Because the   k  3,2  1    and   k  2,1  1    factors are already constrained to 
be equal, we apply the inequality constraint only to   k  2,1  1   ,  
to avoid redundancy. To handle these two inequality 
constraints, we add two slack variables, z1 and z2, and 
write two equality relationships:

   
 k  4,3  1   = 0.0 −  z  1        2 ,   
 k  2,1  1   = − 0.15 +  z  2        2 .

   (91)

Thus, although we added two constraints, we also added 
two slack variables. As a result, the number of free pa-
rameters remains the same: nine.

We summarize here all the constraint equations:

   

⎧

 

⎪
 ⎨ 

⎪
 

⎩

 

 ε  1,2  0   −  ε  2,3  0   −  ϕ  1   = 0

   

 ε  3,2  0   −  ε  2,1  0   −  ϕ  1   = 0

   

 k  1,2  1   −  k  2,3  1   = 0

    k  3,2  1   −  k  2,1  1   = 0   

 k  3,4  1   −  k  2,3  1   = 0

   

 k  4,3  1   = 0.0 −   z  1     2 

   

 k  2,1  1   = − 0.15 +   z  2     2 

  

⎫

 

⎪
 ⎬ 

⎪
 

⎭

 .  (92)

Linear algebra calculations.  We can now formulate the 
constraint matrix M and vector V, as in Eq. 37 (Salari 
et al., 2018):

As M contains only constant values, it can now 
be decomposed with the singular value decomposi-
tion technique into three matrices, as in Eq. 40 (Sal-
ari et al., 2018):

  U  M   =  

-0.707

  

0

  

0

  

-0.707

  

0

  

0

  

0

     

-0.707

  

0

  

0

  

0.707

  

0

  

0

  

0

     
0

  
0.707

  
0
  

0
  

-0.707
  

0
  

0
     0  0  0.851  0  0  0  -0.526     

0
  

0.707
  

0
  

0
  

0.707
  

0
  

0
     

0

  

0

  

0

  

0

  

0

  

1

  

0

     

0

  

0

  

-0.526

  

0

  

0

  

0

  

-0.851

 ,   
 (94)

   S  M   =   

2

  

1.732

  
1.618

  1.414  
1
  

1

  

0.618

 ,  (95)

From VM, we can now obtain the A matrix, as shown 
in Eq. 41 (Salari et al., 2018):

  A =  

-0.791

  

0

  

0

  

0

  

0

  

0

  

0

     

0

  

0

  

0.559

  

0

  

0.108

  

-0.093

  

0

     

0.158

  

0

  

-0.192

  

0

  

0.580

  

-0.476

  

0

     

0

  

0

  

0

  

0

  

0

  

0

  

0

     

-0.474

  

0

  

-0.067

  

0

  

-0.173

  

-0.604

  

0

     

0

  

0

  

0.559

  

0

  

0.108

  

-0.093

  

0

     -0.158  0  -0.125  0  0.754  0.129  0     
0
  

0
  

0
  

0
  

0
  

0
  

0
     

0

  

1

  

0

  

0

  

0

  

0

  

0

     

0

  

0

  

0.559

  

0

  

0.108

  

-0.093

  

0

     

0

  

0

  

0

  

1

  

0

  

0

  

0

     

0

  

0

  

0

  

0

  

0

  

0

  

0

     

-0.316

  

0

  

0.067

  

0

  

0.173

  

0.604

  

0

     

0

  

0

  

0

  

0

  

0

  

0

  

1

 .  (97)

The A−1 matrix is simply obtained by transposing A, and 
we do not show it here. To obtain the B vector, we must 
first calculate the pseudoinverse of M, M+, as shown in 
Eq. 43 (Salari et al., 2018). First, we calculate the pseu-
doinverse of sM, sM

+:

   S  M        +  =   

0.5

  

0.577

  
0.618

  0.707  
1
  

1

  

1.618

 .  (98)

With sM
+, we can calculate M+:
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   M   +  =   
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0

 .  (99)

The M+ matrix can now be used to calculate the B vec-
tor, as in Eq. 42 (Salari et al., 2018). However, when the 
model contains inequality constraints, the V vector will 
contain elements that depend on the slack variables 
z1 and z2. During optimization, the slack variables are 
changed freely by the parameter estimation engine. 
However, at the beginning of the optimization, they 
must be initialized by solving their corresponding con-
straint equation. In this case, z1 is initialized as follows:

   
 k  4,3  1   = 0 −  z  1        2        ⇒

   
 z  1   =  √ 

______
    k  4,3  1   − 0   =  √ 

____
  0.1   = 0.316,

   (100)

where 0.1 is the initial value of   k  4,3  1   . Likewise, z2 is 
initialized as:

   z  2   = 0.274.  (101)

With the z1 and z2 values, we can now calculate the ini-
tial V and B vectors:

  V =   

0

  

0

  
0
  0  

0
  

− 0.1

  

− 0.075

 ,  (102)

  B =   

0

  

0

  

0

  

-0.075

  

0

  

0

  0  
-0.075

  

0

  

0

  

0

  

-0.1

  

0

  

0

  ,  (103)

To start the optimization, we must initialize the free 
parameters   X ¯   . When the model constraints include in-
equalities, as we have here,   X ¯    is formed by the reunion 
of X and Z vectors (Eq. 44; Salari et al., 2018). Z con-

tains the slack variables, which are initialized as shown 
above, whereas X is initialized from the initial set of 
model parameters R0, using Eq. 39 (Salari et al., 2018). 
Altogether, the initial free parameter values are:

     ̄  X   0   =  

10.640

  

7.313

  

-3.708

  
2.996

  -4.537  
-5.626

  

8.006

  

0.316

  

0.274

  .  (104)

Each time the cost function is requested by the opti-
mization engine, the transformed model parameters R 
are calculated from the free parameters   X ¯    with Eq. 40 
(Salari et al., 2018). Then, the model parameters K are 
calculated from R.

Applying arbitrary parameter constraints and behavioral 
constraints.  In addition to linear parameter constraints, 
we also tested a few simple but useful constraints that 
cannot be implemented with the linear algebra formal-
ism (Salari et al., 2018). First, we tested an arbitrary pa-
rameter constraint that restricts the channel count NC 
to a range of values. The test data were simulated with 
NC = 5,000. However, to test the algorithms under more 
realistic conditions, we enforced a range of values away 
from the true value (6,000–8,000). The same strategy 
was used with all the behavioral constraints introduced 
next. The constraint and the corresponding cost func-
tion component are the following:

  6, 000 ≤  N  C   ≤ 8, 000,  (105)

   F  1  C  =  β  1   ×   (   N  C   − 6, 000 ________ 6, 000  )    
2

  +  β  2   ×   (  8, 000 −  N  C   ________ 8, 000  )    
2

 ,  (106)

where β1 and β2 are numerical factors with the fol-
lowing properties:

   
 { 

 β  1   = 0     if       N  C   ≥ 6, 000   
    

 β  1   = α     if       N  C   < 6, 000 
  } ,

    
 { 

 β  2   = 0     if       N  C   ≤ 8, 000   
    

 β  2   = α     if       N  C   > 8, 000 
  } .

   (107)

The normalization to 6,000 or 8,000 makes this penalty 
component numerically comparable with all the other 
penalty and data components.

The second is a behavioral constraint that enforces 
the maximum open probability reached during a 
brief depolarization step from −120 to 0 mV, as illus-
trated in Fig.  2  B (run IV). With the true parameter 
values, the model predicts a maximum PO of ∼0.42, 
but we constrained it to 0.5. The constraint equation 
and the corresponding cost function component 
are the following:



349JGP Vol. 150, No. 2

   P  O   = 0.5,  (108)

   F  2  C  = α ×   (    P  O   − 0.5 )     2 .  (109)

Finally, we tested a behavioral constraint that enforces 
the time constant of recovery from inactivation. As dis-
cussed earlier, it would be rather difficult to calculate 
this quantity analytically. Instead, we use a surrogate 
value, extracted from a simulation in response to a two-
pulse voltage-clamp protocol. As shown in Fig. 2 B (run 
V), we inactivate the channels with a brief voltage pulse, 
let them recover for 50 ms, and then apply a second 
pulse to test how many channels have recovered. The 
recovered fraction is defined as the maximum open 
probability reached during the second voltage pulse 
relative to the first pulse:

   f  R   =   
  (   P  O   )    pulse 2   _______   (   P  O   )    pulse 1  

  .  (110)

Thus, if we want to enforce a specific recovery time 
constant τR, we can calculate the corresponding   f  R    for a 
recovery interval of arbitrary duration t and use that   f  R    
value in the behavioral constraint:

   f  R   = exp   (  −   t _  τ  R     )   .  (111)

Our test model predicts a recovered fraction   f  R    of 
∼0.43 with a recovery interval t = 50 ms, at −80 mV, 
but we constrained it to 0.8. The constraint equation 
and the corresponding cost function component 
are the following:

   f  R   = 0.8,  (112)

   F  3  C  = α ×   (    f  R   − 0.8 )     2 .  (113)

Optimizing the model.  We illustrate the performance 
of the algorithms with six optimization runs, each im-
plementing a different set of constraints, as described 
in Fig. 2 B. Together, these examples test the full range 
of constraints that the algorithms are designed to han-
dle, as they are likely to occur in practical modeling 
applications: linear equality and inequality parameter 
constraints and model behavior and properties. Fur-
thermore, we test all types of model parameters, as de-
fined in the companion paper: rate constant 
parameters, multiplicative factors (a1), and external 
parameters (NC). The true parameter values, as well as 
the initial and the estimated values obtained in each 
optimization run, are given in Table 1.

In run I, we enforced only equality linear parameter 
constraints (Eq. 83). The cost function that was mini-
mized by the optimizer had the following expression:

  F  (   X ¯   )    =  F  1  D  +  F  2  D  +  F  3  D ,  (114)

where   F  1  D  ,   F  2  D  , and   F  3  D   are the cost components corre-
sponding to the data shown in Fig. 3: time-course traces, 
activation curve, and availability curve, respectively. 
Each of these data components is the sum of square 
differences between the data and the prediction of the 
model, normalized by the total number of data points. 
The time-course component was also normalized to the 
peak current, as follows:

   F  1  D  =   1 ______  N  V   ×  N  t  
    ∑ V,t       (  

 y  V,t   −  I  V,t   ______  y  Peak    )    
2

 ,  (115)

where NV is the number of traces, Nt is the number of 
samples in each trace, yV,t and IV,t are the data point and 
the predicted current, respectively, at voltage V and time 
t, and ypeak is the largest negative peak current in the 
entire dataset. With these normalizations, all three data 
cost components take comparable values. We have not 
done it here but, in principle, one should further nor-
malize the data to account for potentially different levels 
of noise, such as between the time course traces and the 
activation and availability curves. One possibility would 
be to multiply each cost component by a factor inversely 
proportional to its normalized variance, to ensure that 
less noisy datasets will be fitted more tightly by the model. 
This variance can be approximated through fitting each 
dataset with an appropriate mathematical function (e.g., 
a sum of exponentials for the time course data and a 
Boltzmann for the activation and inactivation curves).

In run II, we used the same conditions as for run I, but 
we added the inequality linear parameter constraints 
(Eqs. 90 and 91). In runs III through VI, we applied the 
same linear parameter constraints as in run II, but in 
each of these runs, we added different constraints that 
were implemented via the penalty mechanism: an arbi-
trary parameter constraint that restricts NC to a range of 
values (run III) and behavioral constraints that enforce 
PO (run IV), the recovered fraction fR (run V), or both 
PO and fR simultaneously (run VI). In runs III through 
VI, the optimizer minimized a penalized cost function 
with the following expression:

  F’  (    ̄  X , α )    =  F  1  D  +  F  2  D  +  F  3  D  +  F   C ,  (116)

where   F   C   stands for either   F  1  C   (run III),   F  2  C   (run IV),   F  3  C   
(run V), or   F  2  C  +  F  3  C   (run VI).

The optimization results shown in Fig. 4 demonstrate 
the proper functioning of the algorithm with all types 
of constraints. To test the convergence of the optimizer, 
we intentionally chose starting parameters (Table  1) 
that generate prediction curves that deviate substantially 
from the data, as shown by the blue traces in Fig. 3. In 
all cases, the cost function virtually settled in ∼30 itera-
tions (Fig. 4 A, left), after which most model parameters 
changed little (Fig. 4 B). For run I, the final parameter 
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values are within ∼10% of the true values (Table 1), which 
is to be expected under these conditions (Milescu et al., 
2005). For the other runs, the constraints push some of 
the parameters away from their true values, as intended. 
Although the final parameter values (Table 1) vary across 
the six runs, they all predict virtually identical fit curves, 
all represented by the red traces in Fig. 3 (A and B).

The effect of inequality linear parameter constraints 
can be observed by comparing runs I and II. In run 
I, the   k  4,3  1    parameter is unconstrained and meanders 
to values as large as +0.12 mV−1, finally converging to 
a slightly positive value, even though the true value is 
slightly negative (−0.05 mV−1). The convergence to a 
positive value for   k  4,3  1    is not a failure of the search engine 
but simply a result of the stochastic nature of the data. 
In run II,   k  4,3  1    is constrained to a negative range and, as 
expected, converges to a final value of zero. The conver-
gence to a value that lies on the edge of the constrained 
range would suggest that this solution is suboptimal, 
compared with the solution found in run I. Indeed, the 
cost function value is nominally larger: 0.000533 for run 
II versus 0.000392 for run I, although the difference is 
imperceptible. The   k  2,1  1    parameter is also constrained 
with an inequality in run II. However,   k  2,1  1    hovers com-
fortably above its limit in run I, and, as expected, the 
constraint applied in run II has no effect.

In runs III through VI, the cost function is replaced 
by a penalized cost function, which adds penalty com-
ponents (Eq. 73). In all of these cases, the penalty func-
tion quickly drops by four or five orders of magnitude 
during the optimization (Fig.  4  A, right). In run III, 
where the penalty mechanism enforces a range of values 
for NC, the penalty function occasionally drops to zero 
(Fig.  4  A, right, orange trace), whenever NC is within 
the allowed range and the constraint is exactly satisfied 
(Fig. 5 A). Although the initial value of NC (3,000) was 
outside the acceptable range, the optimizer quickly 
brought NC within the range, in just a few iterations. 
We find it interesting that the convergence value of NC 
does not lie on the edge of its allowed range (6,000), 
as close as possible to the convergence value found in 
run II (5,500). This suggests the existence of multiple 
solutions that predict identical fits.

In runs IV through VI, the penalty mechanism was 
used to enforce equality relationships for PO and fR. Like 
with NC in run III, the initial values of PO and fR were 
quite different from their enforced values. However, a 
few iterations were sufficient to bring PO or fR close to 
their enforced values, as illustrated in Fig. 5 (B and C, 
green and magenta traces). In contrast to run III, the 
penalty function approaches a small value but does not 
reach zero (Fig. 4 A, right, green, blue, and magenta 
traces). Accordingly, the enforced quantities hover in a 
small neighborhood centered on their enforced values 
(Fig.  5, B and C). The size of this neighborhood de-
pends on the numerical value of the penalty parameter 

αp: the larger the αp, the smaller the neighborhood. In 
principle, enforcing the penalty might require several 
cycles, where each cycle increases the value of αp, as il-
lustrated in Fig. 1, and tightens the constraint. However, 
for these relatively simple optimization examples, we 
initialized the penalty factor as α0 = 1, which enforced 
the constraints tightly enough in a single penalty cycle.

As expected, adding these constraints that push PO 
and fR away from their true values also results in slightly 
suboptimal fits in runs IV through VI, compared with 
runs I through III. Furthermore, these constraints ex-
pose correlations between properties of the model (PO 
and fR) and certain model parameters. Thus, PO is in-
versely correlated with NC. Without any constraint, PO 
and NC are estimated as ∼0.42 and 5,100, respectively. 
In contrast, when PO is constrained (runs IV and VI), 
the NC estimate is lowered to 4,000 (Fig. 5 A). Vice versa, 
when NC is constrained to a larger value, the estimated 
parameters predict a lower PO (Fig. 5 B). Likewise, fR is 
correlated with the rate of recovery from inactivation 
(the I4 to O3 transition). Thus, enforcing fR to a larger 
value (0.8) than the true value (0.43) results in a smaller 
estimate for   k  4,3  0    and in a more negative estimate for  
  k  4,3  1    (Fig. 4 B, runs V and VI). Considering these poten-
tial correlations between different parameters or model 
properties, one should be careful not to apply contra-
dictory constraints.

d I s c u s s I o n

We have presented here a set of mathematical and com-
putational tools that can be used to estimate kinetic 
mechanisms that explain new data but also satisfy us-
er-defined prior knowledge. In part one of this study 
(Salari et al., 2018), we derived a procedure for enforc-
ing explicit linear equality and inequality parameter 
relationships. Here, in part two, we introduced a pro-
cedure for enforcing arbitrary model properties and 
behaviors, as well as arbitrary parameter relationships. 
Together, these methods are capable of handling virtu-
ally all types of model constraints that are likely to arise 
in practical situations. To demonstrate our approach, 
we provided a step-by-step numerical example. Inter-
ested readers can use these examples to implement the 
constraint algorithms in their own software and to verify 
correctness. We also implemented these algorithms in 
the freely available QuB software, as maintained by our 
laboratory (Milescu, 2015).

Compatibility with existing optimization frameworks
The procedures described here can be easily adapted 
into a typical optimization package. As illustrated by 
the workflow diagram in Fig.  1, only a few modifica-
tions would be required: adding a function that con-
verts between free parameters and model parameters 
(   X ¯    k   →  K  k   ) and vice versa, modifying the cost function 
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Figure 4. testing optimization with model constraints. The model shown in Fig. 2 A was optimized to fit the data in Fig. 3 (time course 
and steady-state curves), subject to the six sets of constraints shown in Fig. 2 B. (A) The convergence of the overall cost function (left) and 
penalty component (right). (B) Parameter convergence in each of the six test runs. Only the model parameters K are shown, but note that 
the optimizer searches in the free parameter space defined by   X ¯   . To reduce clutter, some model parameters are not displayed, as they are 
defined by constraints (e.g.,   k  1,2  0   = a ×  k  2,3  0   ). For better visualization, the exponential factors   k  ij  1   are plotted on the right axis (dotted lines), 
whereas all the other quantities are on the left axis: preexponential factors   k  ij  0   (log scale, solid lines), channel count NC (log scale, dashed 
black line), and allosteric factor a1 (dashed magenta line). The dashed gray horizontal lines and arrows indicate the boundaries of inequality 
linear constraints for   k  2,1  1    and   k  4,3  1    (runs II through IV) and the boundaries of the range constraint for NC (run III). Note how   k  4,3  1    is estimated as 
a positive value in run I, but it remains less than zero under the inequality constraint in runs II through VI. In each panel, the symbols aligned 
with the last iteration mark the true parameter values.
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to calculate and add the penalty, and implementing a 
schedule to progressively increase the penalty parame-
ter. The first two modifications are trivial because every 
optimizer will have a callback function where the user 
writes custom code to calculate the cost function for a 
given set of free parameters. The third modification is 
potentially more involved, but a simple solution would 
be to increase the penalty parameter by hand and re-
start the optimizer with the parameter values obtained 
in the previous iteration.

Constrained fitting versus multiobjective fitting
There is a certain similarity between constrained fitting 
and simply including those data that underlie the con-
straints into a more comprehensive dataset to be fitted. 
The second approach is generally described as multiob-

jective fitting (Druckmann et al., 2007; Bandyopadhyay 
and Saha, 2013). Although it is not a substitute for the 
reduction method that is used to enforce linear param-
eter constraints, it could be a substitute for the penalty 
method. As the name implies, in this case the optimizer 
would need to find a solution that satisfies multiple ob-
jectives (i.e., datasets). This is conceptually equivalent 
to constrained fitting, but there is also one important 
difference: in multiobjective fitting, the optimal solu-
tion found by the search engine may actually explain 
poorly each and all of the individual datasets, as long as 
it is the best overall compromise. Moreover, to find this 
compromise solution, one must choose a set of weight-
ing factors that encode how much each dataset is worth 
to the model, which is not trivial.

In contrast, the constraining mechanism described 
in this study will give the highest priority to the con-
straints and satisfy them exactly (the linear parameter 
constraints, via the reduction method) or at least very 
closely (all other constraints, via the penalty method). 
Only after the constraints are satisfied will the model 
adapt to explain the data (in as much as it is possible). 
Nevertheless, as we explained in the paper, a certain 
margin of error can be built into the constraints to ac-
commodate noise and potential artifacts, but the con-
straints will stay tightly within this margin. Then, one 
advantage to the constraint approach is that one can 
more easily detect when a model is incompatible with 
the data. Furthermore, one could also detect inconsis-
tent knowledge, as signaled by incompatible constraints.

Model behavior: To enforce or not?
The need for enforcing explicit parameter relationships 
is obvious, if only to consider microscopic reversibility 
or the ratio of sequential activation rates. However, it 
may be less clear to the reader why model behavior and 
properties need to be enforced. Why not derive them 
directly from the data? After all, once model param-
eters are estimated, they can be used to predict any 
model property or behavior. The problem resides in 
the potential lack of model and parameter identifiabil-
ity. In an ideal case, the model would be uniquely iden-
tifiable, which means that no other topology exists that 
can explain the data equally well (Kienker, 1989; Bruno 
et al., 2005). Furthermore, the data would be noise 
and artifact free and the model parameters would be 
fully identifiable, which means that the model admits 
a unique solution and the optimizer is able to find it 
from the data. If this were the case, then it would make 
little sense to enforce a model behavior or property ex-
cept to test the sensitivity of the parameters with respect 
to that behavior.

In reality, however, the true model may never be 
known, and the working model may be just one out of 
many equivalent topologies. Furthermore, the param-
eters may not be fully identifiable, either because the 

Figure 5. enforcing model properties and behavior. (A–c) 
The convergence of the NC estimate (A) and calculated PO (B) 
and fR (C) quantities are shown for each of the six optimization 
runs described in Fig. 2 B. The constrained and the true values 
are indicated by the gray and black dashed lines, respectively. 
As expected, NC and PO are inversely correlated; when one 
is constrained to be larger or smaller than the true value, the 
other one becomes smaller or larger, respectively. Likewise, fR 
is correlated with the rate of recovery from inactivation; when 
fR is constrained to be larger than the true value, the   k  4,3  0    and  
  k  4,3  1    estimates become smaller and more negative, respectively. 
All the enforced quantities quickly reach their enforced range 
(NC) or value (PO and fR). Note that without being constrained, 
fR is not well defined by the test data and does not converge to 
the true value. In contrast, NC and PO are well defined.
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model admits multiple solutions (theoretical parame-
ter identifiability) or because the data are corrupted by 
noise and artifacts that flatten the cost function surface 
(practical parameter identifiability; Milescu et al., 2005; 
Raue et al., 2009; Siekmann et al., 2012; Hines et al., 
2014; Middendorf and Aldrich, 2017). Thus, estimating 
the kinetic mechanism from limited data may result in a 
parameter set that is just one out of many possible solu-
tions and potentially one with poor predictive power.

This is actually the case with our numerical example: 
in all runs, the estimates obtained by the optimizer are 
close to the true values (Table  1), except when oth-
erwise constrained (e.g., NC in run III). However, the 
estimates differ across runs, even though the fits are 
virtually identical between runs and follow closely the 
data (Fig.  3, red lines). How can different sets of pa-
rameters produce the same solution? The explanation 
for this apparent contradiction is that the parameters 
are not uniquely identifiable given the reduced data-
set. Clearly, adding more constraints or enforcing other 
model behaviors would improve parameter identifi-
ability and would select only those parameter solutions 
that are compatible with that behavior. Furthermore, 
it would also improve model identifiability, making it 
easier to discover the correct model. Short of the true 
model, we would at least obtain more robust models, as 
nature always does.
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