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Carmina Jiménez-Ramı́rez1, Daniel Gilbert WeberID
2, Guadalupe Aguilar-Madrid3,

Alexander Brik2, Cuauhtémoc Arturo Juárez-Pérez4, Swaantje CasjensID
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Abstract

Malignant pleural mesothelioma (MPM) is a cancer associated with asbestos exposure and

its diagnosis is challenging due to the moderate sensitivities of the available methods. In this

regard, miR-103a-3p was considered to increase the sensitivity of established biomarkers

to detect MPM. Its behavior and diagnostic value in the Mexican population has not been

previously evaluated. In 108 confirmed MPM cases and 218 controls, almost all formerly

exposed to asbestos, we quantified miR-103-3a-3p levels in leukocytes using quantitative

Real-Time PCR, together with mesothelin and calretinin measured in plasma by ELISA.

Sensitivity and specificity of miR-103-3a-3p alone and in combination with mesothelin and

calretinin were determined. Bivariate analysis was performed using Mann-Whitney U test

and Spearman correlation. Non-conditional logistic regression models were used to calcu-

late the area under curve (AUC), sensitivity, and specificity for the combination of biomark-

ers. Mesothelin and calretinin levels were higher among cases, remaining as well among

males and participants�60 years old (only mesothelin). Significant differences for miR-

103a-3p were observed between male cases and controls, whereas significant differences

between cases and controls for mesothelin and calretinin were observed in men and

women. At 95.5% specificity the individual sensitivity of miR-103a-3p was 4.4% in men,

whereas the sensitivity of mesothelin and calretinin was 72.2% and 80.9%, respectively.

Positive correlations for miR-103a-3p were observed with age, environmental asbestos

exposure, years with diabetes mellitus, and glucose levels, while negative correlations were

observed with years of occupational asbestos exposure, creatinine, erythrocytes, direct bili-

rubin, and leukocytes. The addition of miR-103a-3p to mesothelin and calretinin did not
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increase the diagnostic performance for MPM diagnosis. However, miR-103a-3p levels

were correlated with several characteristics in the Mexican population.

Introduction

Malignant pleural mesothelioma (MPM) is a lethal cancer of the pleura caused by exposure to

asbestos fibers, which is considered a group I carcinogen by the International Agency for

Research on Cancer (IARC) and has been banned in more than 60 countries worldwide [1,2].

Three different MPM subtypes exist: epithelioid (the most frequent), sarcomatoid, and

biphasic [3]. MPM shows a latency period of 20 to 50 years after asbestos exposure and is usu-

ally diagnosed at later stages of the disease, due to non-specific symptoms and moderate sensi-

tivity of current diagnostic methods [3,4]. Moreover, response to current treatments is poor,

and thus, survival is commonly low. Nonetheless, the combination of ipilimumab and nivolu-

mab showed an increased survival of patients with diagnosed MPM [5]. Currently, diagnosis

of MPM is based on histopathology and immunohistochemistry (IHC), despite the low sensi-

tivity of these methods [3,4]. Therefore, it has been proposed that certain combinations of

non-invasive biomarkers might improve MPM diagnosis [6–9]. Among those, mesothelin and

calretinin showed promising results [6]. Mesothelin is a 41 KDa glycoprotein present in meso-

thelial cells derived from the MSLN gene, which also encodes megakaryocyte potentiating fac-

tor (MPF) [10]. Elevated plasma mesothelin levels have been reported among MPM cases in

several studies, which placed this biomarker as the most prominent biomarker for MPM diag-

nosis [11]. However, mesothelin alone has a relatively low sensitivity [10,12–14]. On the other

hand, its combination with calretinin, a 29 kDa calcium-binding protein that is also found in

mesothelial cells and functions as a diagnostic biomarker of MPM, has already been evaluated

[6,8,15]. In this sense, Jiménez-Ramı́rez et al. reported a sensitivity of 82.7% in men and 86.8%

in women of a Mexican population when both molecules were used jointly for MPM diagnosis

[6,8]. The combination of calretinin and mesothelin was additionally shown to be feasible for

the early detection of mesothelioma using plasma samples of mesothelioma patients up to 15

months prior to MPM diagnosis [15]. Yet, there is still room for improvement by including

additional biomarkers to this evaluated combination.

In this regard, microRNAs (miRNAs) have also gained interest in the diagnosis of several

diseases, including MPM. MicroRNAs are non-coding RNA molecules of about 22 nucleotides

(nt), which can be determined in the bloodstream (plasma, serum, and leukocytes). These

miRNAs regulate several biological processes such as cell differentiation, proliferation, and

apoptosis, through imperfect pairing with messenger RNA (mRNA), thus under- or over-

expression can occur in different health or disease conditions [12,16,17]. Furthermore, miR-

16, miR-132-3p, miR-103a-3p, miR-548a-3p, miR-20, miR-16, miR-17, miR-126, miR-486,

miR-548a-3p, miR-20a, miR-486, miR-625-3p, miR-32-3p, miR-197-3p and miR-1281, have

been proposed as likely non-invasive plasma biomarkers for MPM [18–24]. Mainly miR-103a-

3p, which can be detected in the cellular fraction of blood, might be a promising candidate bio-

marker for MPM diagnosis due to its increased sensitivity for MPM diagnosis in combination

with mesothelin [25]. Testing the effectiveness of these biomarkers is crucial for populations

with current asbestos exposure–despite being proven as human carcinogen, such as in Mexico,

where more than 500 MPM cases occur each year since 2010, and an underreporting of 71%

has been estimated, causing an MPM epidemic [26,27]. Therefore, the aim of this study was to

evaluate miR-103a-3p in leukocytes, together with mesothelin and calretinin in plasma, as an

additional biomarker for MPM diagnosis. Likewise, the role of clinical and sociodemographic

variables that could modify miR-103a-3p levels in a Mexican population was explored.
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Methods

A total of 108 cases and 218 controls, matched by sex and age (± one year), were analyzed in

this study, including 82 cases and 212 controls from a previous study by Jiménez-Ramı́rez

et al. [6]., and 32 new participants (26 cases and 6 controls). Cases were defined as patients

who attended medical examinations at the Mexican Social Security Institute (IMSS) and the

National Institute of Respiratory Diseases (INER) in Mexico City, who had a confirmed MPM

diagnosis by IHC. Controls were recruited from the National System of IMSS beneficiaries

(SINDO)–a registry for retirees, and the National Institute for the Elderly (INAPAM)–an

elderly general population registry [9]. Each participant signed an informed consent form

prior to recruitment in the study. Socio-demographic data, detailed history of asbestos expo-

sure, biochemical parameters such as glucose, creatinine, cholesterol, triglycerides, and a com-

plete blood count were included. This project was approved by IMSS’ National Scientific and

Ethical Research Commission, with registration number R-2011-785-069, and by INER’s Sci-

ence and Bioethics in Research Committee with the registration number C30-12.

Blood samples collection

Six milliliters (mL) of venous blood were obtained using EDTA tubes and centrifuged at 2,500

xg for 10 minutes, within 30 minutes after blood collection. Plasma and leukocyte fraction

were separated and frozen immediately at -70˚C.

Aliquots of plasma and leukocytes were shipped to Germany under stringent frozen condi-

tions for determination of calretinin and miR-103a-3p.

Determination of mesothelin and calretinin

Mesothelin and calretinin were measured in plasma using commercial enzyme-linked immu-

nosorbent assays (ELISA) for mesothelin (DY3265, R&D Systems, Minneapolis, MN) and cal-

retinin (DLD Diagnostika GmbH, Hamburg, Germany) according to manufacturer’s

instructions. All samples were analyzed in duplicate, and a 5% coefficient of variation was

allowed.

Determination of miR-103a-3p

RNA was isolated from 100 μl leukocytes using the NucleoSpin miRNA kit (Macherey-Nagel

GmbH & Co KG, Düren, Germany) according to manufacturer’s instructions. Subsequently,

miR-103a-3p was determined as described elsewhere with miR-125a as reference using quanti-

tative Real-Time PCR (qRT-PCR) [19]. Most of the samples (N = 275) were analyzed in 2015

using the 7300 Real-Time PCR System (Thermo Fisher Scientific, Darmstadt, Germany),

whereas 51 samples were analyzed in 2021 using the QuantStudio 7 Pro PCR system (Thermo

Fisher Scientific, Darmstadt, Germany). Differences between cases and controls were similar

in 2015 and 2021 (S1A Fig). Although group differences between years exist, all miR-103a-3p

levels measured in 2021 were within the range of the measurements from 2015 (S1B Fig).

Indeed, Matias-Garcia et al. reported that miR-103a-3p is not altered by long-term frozen stor-

age or freeze-thaw cycles [28]. Thus, all miR-103a-3p values were integrated in subsequent

analyses.

Statistical analysis

As previously reported [6], biomarker levels differ between males and females. Consequently,

biomarker concentrations were analyzed separately according to sex. Biomarker concentra-

tions were reported as medians and interquartile range (IQR). Mann-Whitney U, Chi-squared
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or Fisher’s exact test were used to compare medians and proportions between groups, consid-

ering an alpha level of 0.05. Spearman’s rank correlation coefficients were reported between

variables. Receiver operating characteristics (ROC) curves were constructed to calculate the

area under the curve (AUC) for each biomarker, sensitivities were calculated at fixed specifici-

ties for each individual biomarker and in combination. Stata 14 SE (StataCorp LLC, TX, USA)

and GraphPad Prism 6 (GraphPad Software, La Jolla, CA, USA) were used for analyses and

graphical presentation of data.

Results

The main characteristics of the study group are depicted in Table 1. In summary, 90 MPM

cases and 179 controls were men, and 18 cases and 39 controls were women. Median age of

the subjects was 62 years in cases and controls. Epithelioid mesothelioma was the most com-

mon subtype accounting for 94.4% (N = 102) of all cases. For most cases (96.3%; N = 104) and

controls (91.3%; N = 199), a former exposure to asbestos (occupational or environmental) was

recorded.

miR-103a-3p, mesothelin, and calretinin levels

The three biomarkers were determined in a total of 326 samples. The median level of miR-

103a-3p in cases was 217.52 and in controls 298.17 (Table 2). Marginally significant differences

(p = 0.05) were observed between male cases and controls (217.52 vs. 298.17, respectively) but

not within females (Fig 1). Among controls, statistically significant differences were observed

between age groups (�60 years: 203.15 vs.>60 years: 379.03) (Table 2), which remained for

men and women (Fig 2).

Statistically significant differences were also found among male controls with environmen-

tal exposure to asbestos (without exposure: 202.25 vs. with exposure: 359.53), urea nitrogen

levels and direct bilirubin (Table 2). Also, statistically significant differences were observed in

male cases according to different erythrocytes levels (�4.5 x106/mm3: 293.80 vs>4.5 x 106/

mm3: 151.16). Moreover, miRNAs did not differ by drinking habits (non-drinker: 820.35 vs.

drinker: 201.09; p = 0.053) and by blood pressure levels in controls (280.13 vs. 387.70 between

blood pressure below/equal to and above 120/80 mmHg, respectively; p = 0.286). Finally,

among female cases differences were found by glucose levels below and above 120 mg/dL

(164.27 vs. 708.74) still not statistically significant (Table 2).

Median mesothelin levels were higher in cases compared to controls (2.34 and 0.55 nmol/L;

S1 Table), which remained statistically significant after sex stratification–male cases 2.34

nmol/L and controls 0.56 nmol/L; female cases 2.28 nmol/L and controls: 0.53 nmol/L (Fig 1).

Likewise, male controls >60 years presented higher mesothelin levels compared to those�60

years (0.62 vs. 0.48 nmol/L; p = 0.001) (S1 Table). Respecting calretinin, cases presented signif-

icantly higher levels compared to controls (1.52 vs. 0.13 ng/mL), which remained between

males and females (Fig 1). Noteworthy, calretinin levels were significantly higher between men

and women only within controls (0.11 ng/mL vs. 0.27 ng/mL) (S1 Table).

miR-103a-3p correlations with different variables

Mir-103a-3p levels showed no linear correlation with mesothelin and calretinin concentra-

tions (Fig 3). MiR-103a-3p was negatively correlated with age in male cases (Spearman -0.08;

95% CI -0.29–0.13) and positively correlated in male controls (Spearman 0.18; 95% CI 0.04–

0.32). Likewise, positive correlations with environmental asbestos exposure were observed

among females. Similarly, the correlations with diabetes mellitus duration among male
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Table 1. Main characteristics of malignant pleural mesothelioma cases and healthy controls by gender in a Mexican population.

Variables Total sample Men Women

Cases

N (%)

Controls

N (%)

Cases

N (%)

Controls

N (%)

Cases

N (%)

Controls

N (%)

Total sample 108 (33.1) 218 (66.9) 90 (33.5) 179 (66.5) 18 (31.6) 39 (68.4)

Age (years) [Median (IQR)] 62 (55–71) 62 (55–71) 63 (55–71) 62 (55–71) 60 (53–68) 61 (53–68)

�60 years 48 (44.4) 96 (44.0) 39 (43.3) 77 (43.0) 9 (50.0) 19 (48.7)

>60 years 60 (55.6) 122 (56.0)� 51 (56.7) 102 (57.0)� 9 (50.0) 20 (51.3)�

Histological subtypes Epithelioid 102 (94.4) - 84 (93.3) - 18 (100) -

Biphasic 2 (1.9) - 2 (2.2) - - -

Sarcomatoid 4 (3.7) - 4 (4.5) - - -

Asbestos exposure No 4 (3.7) 19 (8.7) 2 (2.2) 16 (8.9) 2 (11.1) 3 (7.7)

Yes 104 (96.3) 199 (91.3) 88 (97.8) 163 (91.1)�� 16 (88.9) 36 (92.3)

Occupational exposure No 26 (24.1) 90 (41.3) 13 (14.4) 57 (31.8) 13 (72.2) 33 (84.6)

Yes 82 (75.9) 128 (58.7)� 77 (85.6) 122 (68.2)� 5 (27.8) 6 (15.4)

Years of occupational exposure [Median (IQRa)] 11.5 (2–28) 17.5 (5–27.5) 12 (2–28) 18 (5–29) 10 (8–10) 9.5 (3–24)

Environmental exposure No 31 (28.7) 73 (33.5) 28 (31.1) 60 (33.5) 3 (16.7) 13 (33.3)

Yes 77 (71.3) 145 (66.5) 62 (68.9) 119 (66.5) 15 (83.3) 26 (66.7)

Years of environmental exposure [Median (IQRa)] 30 (18–42) 35 (20–46) 29.5 (16–42) 32 (17–49) 31 (30–42) 37.5 (21–42)

Previous chemotherapy No 82 (75.9) - 69 (76.7) - 13 (72.2) -

Yes 26 (24.1) - 21 (23.3) - 5 (27.8) -

Smoking status Non-smoker 39 (36.1) 89 (40.8) 27 (30.0) 63 (35.2) 12 (66.7) 26 (66.7)

Current/ever smoker 69 (63.9) 129 (59.2) 63 (70.0) 116 (64.8) 6 (33.3) 13 (33.3)

Drinking habit Non-drinker 11(10.2) 31 (14.2) 4 (4.4) 11 (6.1) 7 (38.9) 20 (51.3)

Current/ever 97 (89.8) 187 (85.8) 86 (95.6) 168 (93.9) 11 (61.1) 19 (48.7)

Blood pressure�120/80 mmHg 83 (76.9) 152 (69.7) 70 (77.8) 126 (70.4) 13 (72.2) 26 (66.7)

>120/80 mmHg 25 (23.1) 66 (30.3) 20 (22.2) 53 (29.6) 5 (27.8) 13 (33.3)

Glucose levels�120 mg/dL 77 (79.4) 153 (81.8) 66 (80.5) 129 (82.2) 11 (73.3) 24 (80.0)

>120 mg/dL 20 (20.6) 34 (18.2) 16 (19.5) 28 (17.8) 4 (26.7) 6 (20.0)

Years with diabetes mellitus [Median (IQR)] 10 (3–17) 7 (3–12) 10 (4–16) 7.5 (3–12) 4 (2–20) 6.5 (4–14)

Ureic nitrogen <20 mg/dL 74 (77.9) 163 (86.7) 63 (77.8) 137 (86.7) 11 (78.6) 26 (86.7)

�20 mg/dL 21 (22.1) 25 (13.3) 18 (22.2) 21 (13.3) 3 (21.4) 4 (13.3)

Creatinine <1.25 mg/dL 92 (94.9) 176 (94.1) 78 (94.0) 146 (93.0) 14 (100) 30 (100)

�1.25 mg/dL 5 (5.1) 11 (5.9) 5 (6.0) 11 (7.0) 0 (0.0) 0 (0.0)

Total proteins <6 /dL 14 (21.2) 0 (0.0)�� 14 (24.6) 0 (0.0)�� 0 (0.0) 0 (0.0)

�6 g/dL 52 (78.8) 184 (100) 43 (75.4) 154 (100) 9 (100) 30 (100)

Total bilirubin <1.45 mg/dL 66 (100) 178 (96.2) 55 (100) 148 (95.5) 11 (100) 30 (100)

�1.45 mg/dL 0 (0) 7 (3.8) 0 (0.0) 7 (4.5) 0 (0.0) 0 (0.0)

Direct bilirubin�0.3 mg/dL 56 (88.9) 176 (95.1) 48 (88.9) 146 (94.2) 8 (88.9) 30 (100)

>0.3 mg/dL 7 (11.1) 9 (4.9) 6 (11.1) 9 (5.8) 1 (11.1) 0 (0.0)

Cholesterol <200 mg/dL 16 (84.2) 95 (50.8) 15 (88.2) 80 (51.0) 1 (50.0) 15 (50.0)

�200 mg/dL 3 (15.8) 92 (49.2)�� 2 (11.8) 77 (49.0)�� 1 (50.0) 15 (50.0)

Triglycerides�150 mg/dL 28 (82.3) 92 (49.5) 23 (82.1) 83 (52.9) 5 (83.3) 9 (31.0)

>150 mg/dL 6 (17.7) 94 (50.5) � 5 (17.9) 74 (47.1) � 1 (16.7) 20 (69.0)��

Erythrocytes�4.5 x106/mm3 24 (27.9) 5 (2.7) 22 (30.1) 3 (1.9) 4 (30.8) 2 (6.9)

>4.5 x106/mm3 62 (72.1) 182 (97.8)�� 51 (69.9) 154 (98.1)�� 9 (69.2) 27 (93.1)

Platelets�150,000/mm3 4 (4.1) 11 (5.9) 3 (3.8) 10 (6.4) 1 (5.9) 1 (3.55)

>150,000/mm3 93 (95.9) 175 (94.1) 77 (96.3) 147 (93.6) 16 (94.1) 28 (96.5)

Leukocytes �11,000/mm3 85 (86.7) 184 (98.4) 70 (85.4) 155 (98.1) 15 (93.7) 29 (100)

(Continued)

PLOS ONE miR-103a-3p for malignant pleural mesothelioma diagnosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0275936 October 14, 2022 5 / 17

https://doi.org/10.1371/journal.pone.0275936


controls and blood glucose levels among female controls were moderately to strongly positive

(Fig 3) (S2 Table).

On the other hand, years of occupational exposure presented a negative correlation within

male controls, yet the correlation was weak (ρ = -0.128, p = 0.029). Moreover, leukocyte levels,

creatinine levels among female controls, direct bilirubin levels and erythrocytes among males

were negatively correlated with miR-103a-3p (Fig 3) (S2 Table).

Individual and combined sensitivity and specificity of miR-103a-3p,

mesothelin, and calretinin

At a fixed specificity of 95.5% for men and 97.4% for women, miR-103a-3p in both males and

females presented low AUCs [0.426 (95% CI 0.355–0.497) and 0.437 (95% CI 0.284–0.589),

respectively], with a sensitivity of 4.4% in men and 0% in women. Among males, an AUC of

0.894 (95% CI 0.847–0.941) and a sensitivity of 72.2% at 95.5% specificity was reported for

mesothelin, whereas for calretinin an AUC of 0.931 (95% CI 0.889–0.972) and a sensitivity of

80.9% at 95.5% specificity was observed. Regarding females, mesothelin had a better perfor-

mance, with an AUC of 0.947 (95% CI: 0.870–1.024) and a sensitivity of 88.9% at 97.4% speci-

ficity, in contrast to calretinin [AUC = 0.829 (95% CI: 0.706–0.951), 61.1% sensitivity and

97.4% specificity]. When mesothelin and calretinin were combined, sensitivity reached 80.9%

in men (95.5% specificity) and 83.3% in women (97.4% specificity). When miR-103a-3p was

included together with both biomarkers, there was no increase in sensitivity (Fig 4 and

Table 3). Regarding age-related differences of miR-103a-3p levels, additional analyses were

conducted in males >60 years (51 cases and 102 controls) and�60 years (39 cases and 77 con-

trols), revealing improved performance of miR-103a-3p when stratified by age in terms of a

larger area under the curve in the group of older men (0.6584 vs. 0.5361)–among participants

>60 years miR-103a-3p cutoff�39.671 resulted in a sensitivity of 9.8% and a specificity of

95.1%, whereas among participants aged�60 years, with miR-103a-3p cutoff >1438.152

resulted in a sensitivity of 12.8% and a specificity of 94.8% (S3 Table). Despite a doubling of

the sensitivity of miR-103-3p as an individual marker in the subpopulation, the addition of

miR-103a-3p to the marker combination of mesothelin and calretinin did not lead to an

improved performance.

Discussion

Several studies in different populations have analyzed the combination of certain biomarkers

at different molecular levels to improve MPM diagnosis [6–8,20,25,29]. In this regard, our

study aimed to assess miR-103a-3p in leukocytes in addition to mesothelin and calretinin in

Table 1. (Continued)

Variables Total sample Men Women

Cases

N (%)

Controls

N (%)

Cases

N (%)

Controls

N (%)

Cases

N (%)

Controls

N (%)

>11,000/mm3 13 (13.3) 3 (1.6)�� 12 (14.8) 3 (1.9)�� 1 (6.3) 0 (0.0)

IQR, interquartile range.

�Chi square test (p<0.05).

��Fisher’s exact test (p<0.05).

���Erythrocytes value considered in women was 4.2 x106/mm3.

https://doi.org/10.1371/journal.pone.0275936.t001
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Table 2. Distribution of miR-103a-3p levels in leukocytes among malignant pleural mesothelioma cases and population controls according to sex groups in a Mexi-

can population.

Variables Total sample Men Women

Cases

Median (IQR)

Controls

Median (IQR)

Cases

Median (IQR)

Controls

Median (IQR)

Cases

Median (IQR)

Controls

Median (IQR)

mir 103a-3p 217.52 (94.03–

466.33)

298.17 (120.25–855.13)

p = 0.036

217.52 (95.00–

474.41)

298.17 (121.93–855.13)

p = 0.050

226.79 (93.05–

404.50)

248.38 (106.89–

872.44)

Subtypes

Epithelioid 213.80 (90.50–

474.41)

- 213.83 (89.57–

485.81)

- 226.79 (93.05–

404.50)

-

Biphasic 413.10 (121.93–

704.27)

- 413.10 (121.93–

704.27)

- - -

Sarcomatoid 225.55 (162.08–

234.92)

- 225.55 (162.08–

234.92)

- - -

Age

�60 years 224.42 (103.71–

668.60)

203.15 (73.77–663.98) 230.58 (108.38–

704.27)

229.12 (74.02–689.78) 194.01 (93.05–

326.28)

166.57 (35.50–

407.31)

>60 years 213.80 (89.57–

381.71)

379.03 (162.01–1038.29)

p = 0.001

210.83 (88.64–

377.41)

379.03 (173.64–1009.90)

p = 0.012

259.57 (137.74–

596.34)

423.64 (142.03–

1121.23)

p = 0.041

Occupational

exposure

No 292.28 (124.49–
809.00)

384.13 (140.06–872.44) 304.43 (191.34–

1060.11)

418.76 (194.01–868.4) 278.20 (124.49–

596.34)

315.17 (117.78–

872.44)

Yes 188.06 (90.50–
386.02)

254.25 (101.26–786.95) 190.01 (90.50–

410.14)

262.32 (106.89–797.86) 137.74 (93.05–

164.27)

141.55 (65.34–

349.70)

p = 0.082
Environmental

exposure

No 219.79 (87.42–

410.14)

202.25 (87.24–666.28) 202.95 (87.73–

366.00)

196.79 (87.73–678.03) 809.00 (72.00–

843.35)

349.70 (65.34–

621.66)

Yes 216.76 (108.38–

474.41)

359.53 (158.16–910.17)

p = 0.024

217.52 (108.38–

526.39)

398.93 (173.64–910.17)

p = 0.027

194.01 (93.05–

326.28)

243.61 (135.29–

995.99)

Previous

Chemotherapy

No 219.03 (88.64–

458.25)

- 218.27 (88.64–

458.25)

- 259.57 (124.49–

404.50)

-

Yes 157.72 (106.15–

526.39)

- 151.16 (108.38–

526.39)

- 164.27 (93.05–

326.28)

-

Smoking status

Non-smoker 177.29 (80.44–

386.02)

298.17 (121.93–689.78) 177.29 (80.44–

386.02)

298.17 (121.93–689.78) 221.24 (101.64–

461.31)

271.35 (117.78–

872.44)

Current/ever

smoker

219.79 (108.38–

474.41)

308.68 (119.42–897.64) 219.79 (108.38–

497.22)

308.68 (121.10–903.90) 226.79 (93.05–

404.50)

248.38 (106.89–

407.31)

Drinking habit

Non-drinker 278.20 (85.03–

809.00)

359.53 (135.29–995.99) 820.35 (275.36–

1609.58)

600.49 (76.00–1074.91) 164.27 (78.79–

596.34)

332.43 (137.68–

934.21)

Current/ever 210.83 (95.00–

410.14)

280.13 (119.42–797.86) 201.09 (90.50–

458.25)

292.06 (122.36–805.14) 259.57 (124.49–

404.50)

227.54 (106.09–

621.66)

Blood pressure

�120/80 mmHg 194.01 (90.50–

404.50)

280.13 (118.60–773.36) 217.52 (90.50–

497.22)

284.07 (119.42–770.68) 164.17 (93.05–

304.43)

243.61 (117.78–

1082.38)

(Continued)
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Table 2. (Continued)

Variables Total sample Men Women

Cases

Median (IQR)

Controls

Median (IQR)

Cases

Median (IQR)

Controls

Median (IQR)

Cases

Median (IQR)

Controls

Median (IQR)

>120/80 mmHg 259.57 (109.89–

596.34)

387.70 (135.29–922.88) 217.98 (108.02–

434.19)

418.76 (161.60–1009.90) 596.34 (259.57–

809.00)

315.17 (106.09–

621.66)

Glucose levels

�120 mg/dL 218.27 (88.64–

377.41)

393.44 (166.57–995.99) 222.88 (88.64–

526.39)

393.44 (162.01–922.88) 164.27 (85.03–

278.20)

383.42 (170.71–

1121.2)

>120 mg/dL 252.63 (104.47–

708.74)

399.70 (188.70–739.29) 205.23 (104.47–

398.08)

472.58 (198.92–775.85) 708.74 (344.69–

832.25)

137.20 (31.34–

621.666)

Ureic nitrogen

<20 mg/dL 206.14 (90.50–

386.02)

436.54 (177.29–1038.29) 218.27 (90.50–

474.41)

486.86 (188.70–989.11) 194.01 (85.03–

326.28)

383.42 (140.06–

1160.07)

�20 mg/dL 280.13 (185.33–

704.27)

221.07 (106.89–380.65)

p = 0.016

299.45 (185.33–

704.27)

221.07 (94.35–380.65)

p = 0.020

259.57 (93.05–

843.35)

242.50 (121.09–

672.85)

Creatinine

<1.25 mg/dL 214.55 (94.03–

442.28)

396.18 (170.10–995.99) 219.03 (95.00–

497.22)

403.12 (184.82–989.11) 179.14 (93.05–

304.43)

359.53 (139.10–

1082.38)

�1.25 mg/dL 280.13 (109.89–

324.43)

229.12 (133.43–486.86) 280.13 (109.89–

324.43)

229.12 (133.43–486.86) - -

Total proteins

<6 g/dL 215.31 (88.64–

301.99)

- 215.31 (88.64–

301.99)

- - -

�6 g/dL 279.17 (141.87–

746.03)

390.52 (164.29–955.99) 280.13 (146.01–

955.42)

396.18 (177.29–916.07) 259.57 (137.74–

304.43)

359.53 (139.10–

1082.38)

Total bilirubin

<1.5 mg/dL 245.57 (109.89–

666.28)

390.52 (166.57–922.88) 247.27 (109.89–

704.27)

396.18 (181.05–913.12) 194.01 (93.05–

304.43)

359.53 (139.10–

1082.38)

�1.5 mg/dL - 242.19 (87.24–1038.29) - 242.19 (87.24–1038.29) - -

Direct bilirubin

<0.3 mg/dL 265.08 (128.58–

685.28)

403.12 (170.10–995.99) 275.36 (132.72–

820.02)

411.59 (184.82–989.11) 226.79 (108.26–

291.32)

359.53 (139.10–

1082.38)

�0.3 mg/dL 190.01 (88.03–

670.92)

187.40 (87.24–364.55) 149.95 (88.03–

670.92)

187.40 (87.24–364.55) 596.34 -

p = 0.036 p = 0.032

Cholesterol

<200 mg/dL 320.30 (173.65–

668.60)

418.76 (191.34–872.44) 354.58 (280.13–

670.92)

413.04 (191.34–846.33) 41.64 436.54 (166.57–

1082.38)

�200 mg/dL 191.34 (39.67–

821.15)

357.06 (131.20–1024.09) 115.50 (39.67–

191.34)

p = 0.073

377.41 (151.16–1009.90) 821.15 349.70 (84.44–

1160.07)

Triglycerides

�150 mg/dL 245.57 (131.11–

453.68)

370.98 (188.74–891.30) 247.27 (146.01–

410.14)

380.65 (192.67–922.88) 137.74 (124.49–

596.34)

248.38 (139.10–

436.54)

>150 mg/dL 154.03 (39.67–

194.01)

403.12 (146.01–1038.29) 116.73 (39.67–

191.34)

403.12 (151.16–916.07) 191.01 423.64 (137.68–

11340.11)

Erythrocytes

�4.5x106/ mm3 282.87 (194.01–

526.39)

162.01 (87.24–359.53) 293.80 (225.97–

526.39)

162.01 (87.24–296.11) 179.14 (102.96–

507.58)

249.80 (112.25–

1721.14)

>4.5x106/ mm3 190.01 (88.34–

390.95)

p = 0.035

407.31 (173.64–995.99) 151.16 (84.44–

377.41)

p = 0.007

411.59 (177.29–922.88) 304.43 (259.57–

404.50)

407.31 (166.57–

1082.38))

Platelets

(Continued)
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plasma. However, the addition of this third miRNA marker did not increase the performance

of mesothelin and calretinin for MPM diagnosis in a Mexican population.

Initially, miR-103a-3p was described as a biomarker for mesothelioma using the cellular

fraction of blood [19]. A further study by Weber et al. confirmed that miR-103a-3-p was lower

in individuals with MPM in comparison to asbestos-exposed controls and controls from the

general population, but there were no differences according to histological subtypes [25]. In

our study miR-103-3p was also detectable in leukocytes and lower levels were observed in

MPM cases compared to controls. However, differences were present only among males,

whereas among females no differences in miR-103-3p were observed between cases and con-

trols. In contrast, Weber et al. reported no differences in miR-103a-3p levels between men and

women, regardless of case and control status, probably due to small sample size–five female

cases and one asbestos-exposed control [19]. Hence, more research efforts in bigger study

groups are needed to evaluate the expression of miR-103a-3p in women. Regarding smoking

status, our results for miR-103a-3p were consistent with those reported by Weber et al. with

no differences between smokers and non-smokers [19]. We also observed a higher expression

of miR-103a-3p among controls aged >60 years, which could be explained by the presence of

non-communicable diseases such as high blood pressure, diabetes mellitus, osteoporosis,

arthritis, decreased kidney function, and cardiovascular diseases, which cause certain miRNAs

to be over- or under-expressed [30]. Nonetheless, this overexpression among males >60 years

did not improve the diagnostic performance of the combination mesothelin plus calretinin.

Particularly, high miR-103a-3p plasma levels have been reported among individuals with high

blood pressure and kidney injury [31,32]. This might be relevant because reduced renal func-

tion can be an influencing factor of circulating biomarkers as has been shown for calretinin

and mesothelin [33]. In our study, only one individual presented with chronic kidney disease

and unfortunately no markers of early renal damage were determined to evaluate the behavior

of miR-103a-3p in this clinical condition. In the case of high blood pressure, we did not find

differences in miR-103a-3p expression, possibly because this information was obtained by

questionnaire and not by measurement. The differences found in male controls in relation to

urea nitrogen levels in our study could support this issue. However, in order to clarify the

mechanisms behind kidney function and miRNA expression, it is necessary to evaluate miR-

103a-3p in different metabolic conditions. For instance, in our study these conditions were

only evaluated by questionnaire or determined indirectly by biochemical parameters such as

Table 2. (Continued)

Variables Total sample Men Women

Cases

Median (IQR)

Controls

Median (IQR)

Cases

Median (IQR)

Controls

Median (IQR)

Cases

Median (IQR)

Controls

Median (IQR)

�150000/ mm3 544.57 (235.07–

1227.55)

491.14 (184.82–2105.57) 280.13 (190.01–

1646.10)

434.27 (184.82–1715.60) 809.00 3082.74

>150000/ mm3 218.27 (99.04–

410.14)

380.65 (161.60–922.88) 218.27 (97904–

474.41)

387.61 (162.01–916.07) 226.79 (108.77–

365.39)

359.53 (139.58–

1039.19)

Leukocytes

�11000/mm3 210.83 (90.50–

497.22)

393.27 (170.10–992.55) 213.80 (88.64–

526.39)

398.93 (177.29–922.88) 194.01 (93.05–

404.50)

359.53 (140.06–

1082.38)

>11000/mm3 218.27 (185.33–

280.13)

119.42 (8.39–812.42) 204.80 (146.85–

299.45)

119.42 (8.39–812.42) 259.57 -

IQR, Interquartile range.

All comparisons were tested with Mann-Whitney U test.

https://doi.org/10.1371/journal.pone.0275936.t002
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glucose, blood ureic nitrogen, and creatinine. Likewise, it was not possible to compare our

results by histological subtype, since the number of cases with biphasic and sarcomatoid sub-

types was too small.

Although miR-103a-3p has been reported to be upregulated in newly diagnosed diabetes

mellitus (less than 5 years old), high blood pressure and kidney damage [31,32,34], in our

study no significant changes in the expression of this miRNA were observed in relation to glu-

cose levels >120 mg/dL. However, there were positive correlations in male controls with

respect to years of diabetes mellitus and with glucose levels in female cases. It was previously

reported that the miR-103a family could function as a biomarker of diabetes [35]. Considering

that the prevalence of diabetes mellitus in Mexico in the population aged 60–69 years is 25.8%,

and that in 2020 it was ranked third among all causes of mortality, its application could be

explored as a marker for early diagnosis or surveillance in diabetic people in the Mexican pop-

ulation [36]. The negative correlation of miR-103a-3p with creatinine levels in the control

group of women could suggest an involvement in kidney damage, as previously reported by

Fig 1. Distribution of medians of mesothelin (A), calretinin (B) and miR-103a-3p (C) in malignant pleural mesothelioma cases and population controls in a

Mexican population. Black bars represent cases and gray bars represent controls.

https://doi.org/10.1371/journal.pone.0275936.g001
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Lu et al [37]. Remarkably, a positive correlation was found with environmental exposure for

female controls but negative for males with occupational asbestos exposure. This might suggest

that miR-103a-3p could possibly be useful as a marker of asbestos exposure rather than an

MPM hallmark. Another finding in our study was that miR-103a-3p was positively correlated

with age and was significantly different between participants >60 years and�60 years within

the control group, similar to previously reported results [38].

Although it has been reported that miR-103a-3p can discriminate between MPM patients

and people exposed to asbestos using extracellular plasma vesicles, when exploring its use as a

prognostic biomarker in patients with MPM and after chemotherapy in the same biological

matrix, the results have been conflicting [39,40]. Therefore, there is a need for further research

to clarify the role of miR-103a-3p as a prognostic biomarker in patients with MPM. On the

other hand, in other types of cancer such as colon cancer, breast cancer, and prostate cancer,

miR-103a-3p has been considered a good candidate biomarker for diagnostics. In case of

breast cancer, miR-103a-3p has shown to be upregulated in patients with breast tumors and

after surgery the expression levels of this miRNA decreases, suggesting a potential role as a

marker for treatment follow-up [41–43]. Within some other diseases such as endometriosis

and fibromyalgia, it has also been considered as a promising non-invasive diagnostic candidate

[44,45].

An analysis of a possible correlation of miR-103a-3p with other miRNAs that have shown

diagnostic potential with MPM was not part of the current study but might be of interest in

this context. We and others have previously tested miR-126 and miR-132-3p with MPM cases

and controls [20,29]. Using data from a recent publication [46] we could not see a positive cor-

relation between miR-103a-3p and either miR-126 or miR-132-3p.

For mesothelin and calretinin, we found significant differences in cases and controls, which

remained after stratified analysis by sex and age. In the case of calretinin, significant

Fig 2. Distribution of miR-103a-3p medians between malignant pleural mesothelioma cases and controls grouped by age and sex [men (A) and women (B)] in

a Mexican population. Black dots represent cases, and gray dots controls.

https://doi.org/10.1371/journal.pone.0275936.g002
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differences were observed within controls as expected, since most of the samples corresponded

to a subsample of the study by Jiménez-Ramı́rez et al. [6].

Weber et al. reported that the combination of miR-103a-3p with mesothelin increased the

sensitivity for MPM diagnosis up to 81% with 95% specificity, but this could not be shown in

this Mexican study group. However, the previous study group was older (median age 72 years

in cases and 73 years in controls) in contrast to 62 years in cases and controls in this study

group, for which is also an association of miR-103a-3p with age is shown. For Mexican men

>60 years an improvement of the sensitivity of miR-103a-3p could be observed. Thus, in

future studies it is indicated to analyze the association of miR-103a-3p with age in more detail.

Generally, further research involving a different population with a larger sample size is needed,

including more female participants [25]. With respect to our results, low AUC and sensitivity

for miR-103a-3p were found. In addition, miR-103a-3p in leukocytes could not differentiate

between MPM cases and healthy participants, possibly due to the analyzed matrix, i.e., isolated

leukocytes instead of the whole cellular fraction of blood, and the corresponding different iso-

lation procedures. As Podolska et al. previously reported, miRNAs were sensitive to the used

Fig 3. Correlation of miR-103a-3p with different variables in malignant pleural mesothelioma cases and population controls in a Mexican population.

https://doi.org/10.1371/journal.pone.0275936.g003
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isolation procedure [47]. Also, the inclusion of miR-103a-3p in any combination with

mesothelin or calretinin did not substantially improve sensitivity, despite our larger study

group compared to the study by Weber et al. [25]. These differences could be determined by

ethnicity, along with the variability in a specific miRNA within the same population, which

might hinder miRNAs’ use as a potential biomarker [48].

In the present study the combination of mesothelin and calretinin showed good sensitivities

for both males and females (80.9 and 83.3, respectively). By including miR-103a-3p, the sensi-

tivity for MPM diagnosis was not improved, because its performance as an individual marker

was already negligible. In addition, the performance of mesothelin and calretinin was clearly

better in the Mexican population compared to the German study group used by Weber et al.,

with no improvement by adding a third biomarker. It is likely that miR-103a-3p has greater

utility in the Mexican population as an indicator of metabolic conditions rather than as a diag-

nostic biomarker of MPM. However, it would be important to evaluate this miRNA in a larger

number of women in order to assess the correlation with other characteristics, such as weight,

height, kidney function, glycosylated hemoglobin, etc. Finally, future studies should consider

screening for miRNAs in the Mexican population to determine which miRNAs are deregu-

lated, in order to evaluate these candidate biomarkers for MPM diagnosis.

In conclusion, the addition of miR-103a-3p to the established biomarker panel comprising

of mesothelin and calretinin did not improve the diagnostic performance for MPM diagnosis.

Still, miR-103a-3p levels were correlated with several characteristics not yet explored in a Mex-

ican population, which could be useful for other purposes rather than diagnostics. Further

research should aim to explore the potential clinical use of miR-103a-3p for diagnostic and

Fig 4. ROC curves for mesothelin, calretinin and miR-103a-3p in men and women. Areas under the curve are shown for each biomarker,

individually and in combination.

https://doi.org/10.1371/journal.pone.0275936.g004
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prognostic purposes including chronic diseases or aberrant biochemical parameters in the

Mexican population.
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Table 3. Sensitivity and specificity of biomarkers among malignant pleural mesothelioma cases and population controls according to sex groups in a Mexican

population.

Biomarkers Men

Cut-off AUC (95% CI) Sensitivity

(%)

Specificity

(%)

TP (N) TN (N) FP (N) FN (N)

Mesothelin 1.379 nmol/L 0.894 (0.847–0.941) 72.2 95.5 62 174 5 28

Calretinin 0.369 ng/ml 0.931 (0.889–0.972) 80.9 95.5 70 173 6 19

miR-103a-3p 1782 0.426 (0.355–0.497) 4.4 95.5 4 171 8 86

Mesothelin, calretinin, miR-103a-3p 0.945 (0.910–0.979) 80.9 95.5 72 174 5 17

Mesothelin and calretinin 0.943 (0.909–0.977) 80.9 95.5 71 174 5 18

Mesothelin and miR-103a-3p 0.894 (0.848–0.941) 72.2 95.5 62 174 5 28

Calretinin and miR-103a-3p 0.932 (0.893–0.971) 80.9 95.5 70 173 6 19

Biomarkers Women

Cut-off AUC (95% CI) Sensitivity

(%)

Specificity

(%)

TP (N) TN (N) FP (N) FN (N)

Mesothelin 1.275 nmol/L 0.947 (0.870–1.024) 88.9 97.4 16 38 1 2

Calretinin 0.726 ng/ml 0.829 (0.706–0.951) 61.1 97.4 11 38 1 7

miR-103a-3p 3082 0.437 (0.284–0.589) 0 97.4 0 39 0 18

Mesothelin, calretinin, miR-103a-3p 0.958 (0.907–1.000) 83.3 97.4 15 38 1 3

Mesothelin and calretinin 0.951 (0.886–1.016) 83.3 97.4 15 38 1 3

Mesothelin and miR-103a-3p 0.954 (0.893–1.014) 72.2 97.4 14 38 1 4

Calretinin and miR-103a-3p 0.864 (0.758–0.970) 55.6 97.4 11 36 3 7

TP, true positives; TN, true negatives; FP, false positives; FN, false negatives; AUC, area under the curve; CI, confidence interval.

AUC, cut-offs, and sensitivity of individual biomarkers were calculated with ROC curves, at a specificity of 95%.

https://doi.org/10.1371/journal.pone.0275936.t003
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