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ABSTRACT

Objective: To rapidly develop, validate, and implement a novel real-time mortality score for the COVID-19 pan-

demic that improves upon sequential organ failure assessment (SOFA) for decision support for a Crisis Stand-

ards of Care team.

Materials and Methods: We developed, verified, and deployed a stacked generalization model to predict mortal-

ity using data available in the electronic health record (EHR) by combining 5 previously validated scores and ad-

ditional novel variables reported to be associated with COVID-19-specific mortality. We verified the model with

prospectively collected data from 12 hospitals in Colorado between March 2020 and July 2020. We compared

the area under the receiver operator curve (AUROC) for the new model to the SOFA score and the Charlson Co-

morbidity Index.

Results: The prospective cohort included 27 296 encounters, of which 1358 (5.0%) were positive for SARS-CoV-

2, 4494 (16.5%) required intensive care unit care, 1480 (5.4%) required mechanical ventilation, and 717 (2.6%)

ended in death. The Charlson Comorbidity Index and SOFA scores predicted mortality with an AUROC of 0.72

and 0.90, respectively. Our novel score predicted mortality with AUROC 0.94. In the subset of patients with

COVID-19, the stacked model predicted mortality with AUROC 0.90, whereas SOFA had AUROC of 0.85.

Discussion: Stacked regression allows a flexible, updatable, live-implementable, ethically defensible predictive
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analytics tool for decision support that begins with validated models and includes only novel information that

improves prediction.

Conclusion: We developed and validated an accurate in-hospital mortality prediction score in a live EHR for au-

tomatic and continuous calculation using a novel model that improved upon SOFA.

Key words: crisis triage, mortality prediction, COVID-19, decision support systems, clinical, machine learning

INTRODUCTION

The SARS-CoV-2 virus has infected >70 million and killed >1.5

million people in the year since its origination (December 2019).1

The resulting pandemic has overwhelmed some regions’ health care

systems and critical care resources, forcing the medical community

to confront the possibility of rationing resources.2,3 In the United

States, critical care triage guidance in the setting of resource scarcity

is produced at the state-level through Crisis Standards of Care (CSC)

protocols.4,5 These protocols attempt the difficult task of ethically

allocating scarce resources to individuals most likely to benefit, with

the aim of saving the most lives.6–8 To accomplish this, CSC proto-

cols use organ dysfunction scores and chronic comorbidity scores to

assess patient survivability. Ideally, scoring would avoid systematic

bias and be generalizable, accurate, flexible to circumstance, and

computable within electronic health record (EHR) systems with

data collected in real time.9

At the foundation of most CSC protocols is the Sequential Or-

gan Failure Assessment (SOFA) score.10,11 SOFA and other acuity

scores (eg, Simplified Acute Physiology Score and APACHE) are

well-validated but have significant limitations. They were devel-

oped over 20 years ago before widespread use of EHRs, are rigid

regarding context, and were designed to measure severity of illness

and predict mortality based on a few data points.12–17 Although

SOFA predicts mortality from influenza pneumonia poorly, it was

operationalized for use in patients with COVID-19.18,19 Optimiz-

ing the accuracy of mortality predictions is critical for medical tri-

age because the decision to withhold or withdraw life-sustaining

therapies is heavily influenced by a single score in many states’

CSC protocols.11

The COVID-19 pandemic created an emergent need for a novel,

accurate, and location- and context-sensitive EHR-computable tool

to predict mortality in hospitalized patients with and without

COVID-19. Because developing a new score can take years, a pre-

dictive model must rely on well-validated scores. In contrast,

COVID-19 is a novel disease for which existing scores may be of

limited but unknown predictive value. As such, a predictive frame-

work relying on multiple previously validated scores that can incor-

porate new information, but only keeps the new inputs that

explicitly improve performance, is required. Stacked generalization

provides a solution.20 A stacked model is built upon 1 or more base-

line model(s) (eg, SOFA) and incorporates additional models only

when they improve prediction.21

We rapidly developed, validated, and deployed a novel mor-

tality score for triage of all hospitalized patients during the

COVID-19 pandemic by stacking SOFA, qSOFA, a widely used

pneumonia mortality score, an acute respiratory distress syn-

drome (ARDS) mortality model, and a comorbidity score.22–26

We then integrated recently reported predictors that may reflect

COVID-19 pathophysiology. To test the novel model, we con-

ducted a prospective cohort study of acutely ill adults with and

without COVID-19 disease.

OBJECTIVE

To create a live, predictive analytics scoring system to support CSC

(triage) decisions. The system should have the following characteris-

tics: ethically defensible, continuously adaptable/updatable with

new data and model information; temporally dependent; as person-

alized as possible; formed with both well-established/validated scor-

ing models and novel models based on potentially preliminary data

and information sources; quickly computable so that refreshed

scores can be generated on the order of minutes; and computable

with data available in a real-time EHR system.

MATERIALS AND METHODS

Because model development and training began before we had accu-

mulated a large number of COVID-19 patients, we started by devel-

oping the novel mortality score using a multihospital retrospective

cohort of 82 087 patient encounters (Figure 1B). As we accumulated

COVID-19 patients, we conducted a prospective cohort study to

validate the novel mortality score in patients with and without

COVID-19. Our work was anchored by 4 goals. First, to use SOFA

as a baseline and address its limitations through stacked generaliza-

tion, adding other models with the potential to improve robustness

and predictive performance. Second, to integrate and test potential

COVID-19-specific predictors. Third, to rapidly deploy the new

model in a live EHR across a 12-hospital system that serves more

than 1.9 million patients. Fourth, to validate model performance

prospectively. The Colorado Multiple Institutional Review Board

approved this study.

Study overview and model deployment
We originally developed, validated, and deployed the model using

estimates from retrospective data, while simultaneously building

technical capacity to transition to a model estimated on prospective

data. The time from conception (March 2020) to deployment of the

new model across the health system (April 2020) was 1 month. The

model now generates a mortality risk estimate every 15 minutes for

every inpatient across the health system. We then prospectively ob-

served model performance through the end of July 2020. This study

design is consistent with recent learning health system studies.27 Be-

cause of the rapidly evolving pandemic, we built a data pipeline for

the stacked mortality model to update as new data were captured

from the EHR.

Rapid development and implementation of a new score in a real-

time EHR requires a full clinical and informatics pipeline including

skilled data warehousing, data wrangling, machine learning, health

system information technology (IT), and clinical and ethics person-

nel working in sync.28–30 All data flowed to the study team from

UCHealth’s Epic instance through Health Data Compass, the enter-

prise data warehouse for the University of Colorado Anschutz Medi-

cal Campus (Figure 1A).31 HDC is a multiinstitutional data

warehouse that links inpatient and outpatient electronic medical
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data, state-level all-payer claims data, and the Colorado Death Reg-

istry.

Retrospective cohort for initial model training
The retrospective cohort included all encounters of patients >14

years old hospitalized at any of UCHealth’s 12 acute care hospitals

between August 2011 and March 4, 2020, whose hospital stay in-

cluded admission to either an intensive care unit (ICU) or intermedi-

ate care unit. We restricted the retrospective data to encounters

completed before March 5, 2020, the date of the first reported

COVID-19 case in Colorado. We excluded encounters with a “do

not attempt resuscitation” order placed within 12 hours of admis-

sion or a duration exceeding 14 days, as mortality after prolonged

hospitalization likely represents different physiology than mortality

from an acute event.

The retrospective cohort included 82 087 encounters by 63 290

unique patients. Of these encounters, 59 733 (72.8%) required ICU-

level care, 14 847 (18.1%) required invasive mechanical ventilation,

and 5726 (7.0%) ended in death. Patients had an average age of

58.1 6 17.8 years and 35 826 (43.6%) were female. Demographics,

clinical characteristics, and hospital course are shown in Supplemen-

tary eTable 1. Model inputs are shown in Supplementary eTables 2

and 3.

Prospective cohort
The prospective cohort included all encounters of patients >14 years

old hospitalized at any of UCHealth’s 12 hospitals between March

15, 2020 (the date UCHealth halted elective procedures) through

July 2020. Because CSC protocols apply to all hospitalized patients

during a crisis, we included all inpatients regardless of level of care

or COVID-19 status. We excluded encounters with a “do not at-

tempt resuscitation” order placed within 12 hours of admission,

patients who were still admitted, and encounters longer than 30

days.

The prospective cohort included a total of 28 538 encounters be-

tween March 15th, 2020 and July 2020 (Figure 1C). Of these, 1148

(4.0%) were excluded because the patient remained in hospital at

the time of data censoring: in-hospital survival could not be

CDW team (HDC)
     - Variable Identification
     - Data Integration
     - Terminology Standardization
     - Honest Broker

Data
Delivery

Training
Data

Warehouse

UCHealth Epic EHR

DS team
     - Data Cleaning
     - Data Visualization
     - Model Development and Testing
     - Statistical Analyses

Reporting
Database

Live EHR Database

Model
Implementation

OPS team

A

B C

Figure 1. Study data flow and cohort identification. A) Data flow through the EHR and research team, B) Retrospective Cohort selection for model development,

C) Prospective Cohort selection for model evaluation and validation.
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assessed. Additionally, we excluded 70 and 24 encounters, respec-

tively, due to active DNR and encounter length >30 days. Of the

remaining 27 296 encounters, 1358 (5.0%) were positive for SARS-

CoV-2, 4494 (16.5%) included intensive care unit (ICU)-level care,

1480 (5.4%) included invasive mechanical ventilation, and 717

(2.6%) died during the hospitalization. Of the 717 patients who re-

ceived mechanical ventilation, 408 (27.6%) died. Additional demo-

graphics are shown in Table 1, Supplementary eTables 1 and 2.

Of the 1358 encounters positive for COVID-19, 407 (30.0%) re-

ceived ICU-level care, 239 (17.6%) were intubated, and 166

(12.2%) patients died. Of the 239 patients requiring mechanical

ventilation, 83 (34.7%) died.

Model methodology
We developed a model using stacked generalization to predict mor-

tality.32–34 A stacked regression model takes other component mod-

els as covariates and estimates weights in accordance with their

predictive power.34 We chose ridge regularized logistic regression as

the top-level model to limit overfitting and to address correlation be-

tween the component models. Stacking allows for robust, accurate,

and interpretable evaluation of the underlying models. In our case,

because the second model level was a regularized logistic regression,

we could observe the contribution of the first-level models explicitly.

Importantly, the stacked model never performs worse than the most

accurate component model by construction (see eMethods).20,34

Our stacked regression construction takes 6 logistic regression

mortality models as covariates (Figure 2). Four are validated organ

dysfunction or pneumonia/ARDS mortality prediction tools, a fifth

is a comorbidity score, and a sixth is novel and COVID-specific.

These models include: (1) SOFA,12 (2) qSOFA,22 (3) the CURB-65

adult pneumonia mortality score,25 (4) a modified version of an

ARDS mortality model,24 (5) a Charlson Comorbidity Index (CCI),

and (6) a model made up of laboratory measures associated with

COVID-19 disease severity or mortality (Supplementary eMethods,

eTable 3).26,35 This model includes, for example, D-dimer, lactate

dehydrogenase (LDH), absolute lymphocyte count, and creatinine

kinase (CK) (Supplementary eMethods, eTable 3).36–38 The ARDS

mortality model was attenuated to include the subset of predictors

reliably available in structured form in live EHRs. We fit multiple

forms of qSOFA, SOFA, and CURB-65 in an attempt to find the

best balance of parsimony and knowledge gained (Figure 2). Varia-

bles such as gender, race, and disability status were not included in

any models as per bioethics recommendations to avoid potential

bias. Only the summary score from the CCI was included; no indi-

vidual comorbidities were input into the models in order to avoid so-

cioeconomic bias associated with some diagnoses (eg, diabetes).

Training models to predict real-time mortality conserva-

tively
Probability of mortality varies over the hospital course (Supplemen-

tary Appendix B) and can be estimated at any time during the hospi-

talization. In order to estimate and validate the model, we selected a

single reference time point against which to make a prediction—

when the SOFA score reached its maximum for the encounter. The

retrospective data used to estimate the model included only patients

with a definitive outcome—either discharge or death.

In order to train the models on retrospective data, we needed an

effective “normalizing” point, a single point in time to predict even-

tual mortality, acknowledging that patients are nonstationary and

enter the hospital in 1 state and continuously change until they leave

in that state or another. If we estimated the models from retrospec-

tive data using every time point of every patient, we would impose a

severe selection bias (patients with long stays would more heavily in-

fluence the model than those with short stays). Instead, we needed

to select a single reference time point per patient to use to estimate

the models. To be conservative and to avoid assuming knowledge

Table 1. Prospective cohort characteristics and hospital course

All Encounters

(N¼ 27 296)

COVID-19 Negative

(N¼ 25 938)

COVID-19 Positive

(N¼ 1358)

P value

Age (SD) 54.3 (20.4) 54.2 (20.5) 56.8 (18.4) P< .001

Female 15 660 (57.4%) 15 057 (58.0%) 603 (44.4%) P< .001

Race P< .001

White or Caucasian 20 430 (74.8%) 19 848 (76.5%) 582 (42.9%)

Black or African American 1964 (7.2%) 1790 (6.9%) 174 (12.8%)

Other 4481 (16.4%) 3901 (15.0%) 580 (42.7%)

Unknown 421 (1.5%) 399 (1.5%) 22 (1.6%)

Ethnicity P< .001

Non-Hispanic 22 496 (82.4%) 21 755 (83.9%) 741 (54.6%)

Hispanic 4398 (16.1%) 3795 (14.6%) 603 (44.4%)

Unknown 402 (1.5%) 388 (1.5%) 14 (1.0%)

Supplemental O2 16 052 (58.8%) 14 859 (57.3%) 1193 (87.8%) P< .001

High Flow Nasal Cannula 1398 (5.1%) 1057 (4.1%) 341 (25.1%) P< .001

Non-Invasive Ventilation 1482 (5.4%) 1382 (5.3%) 100 (7.4%) P< .001

Median Hospital Days (IQR) 3.0 (2.0, 5.2) 3.0 (1.9, 5.0) 5.5 (3.0, 9.6) P< .001

Overall Mortality 717 (2.6%) 551 (2.1%) 166 (12.2%) P< .001

All Mechanical Ventilation 1480 (5.4%) 1241 (4.8%) 239 (17.6%) P< .001

Median Hospital Days (IQR) 8.4 (4.6, 15.1) 7.7 (4.1, 13.3) 15.2 (8.2, 21.0) P< .001

Median ICU Days (IQR) 3.6 (1.6, 7.8) 2.9 (1.4, 6.2) 9.1 (5.3, 15.0) P< .001

Median Ventilator Days (IQR) 1.8 (0.7, 5.7) 1.4 (0.6, 3.9) 7.5 (4.5, 12.6) P< .001

Mortality 408 (27.6%) 325 (26.2%) 83 (34.7%) P¼ .009

Note: Reported P values are to assess differences between COVID-19 negative and COVID-19 positive encounters.

Abbreviations: ICU, intensive care unit; IQR, interquartile range; SD, standard deviation.
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about the future health trajectory of current patients the models

were being applied to, we assumed that in production the current

score (at each time step) of the current hospital patients was the

worst SOFA score (most organ dysfunction) they would experience.

To estimate the models to apply to that situation, we computed the

SOFA for every patient in the retrospective training dataset along

their entire stay. We then found the time point when the SOFA

reached its peak for each patient. We then used that time point as

the reference and trained the models using the covariates from that

time point.

Operationally, this framework allows for real-time mortality

prediction under the conservative assumption that the current mea-

sured state of the patient is the worst state the patient will experi-

ence. While this assumption will not be correct for all moments in

time, it effectively underestimates the patient’s overall mortality, re-

ducing the chance for premature limitation of critical care resources

if used for triage decisions.

Model training, evaluation, and validation
We divided the retrospective data 40%-40%-20% for estimating

the baseline logistic regression models, estimating the stacked

model, and evaluating the stacked model, respectively (Figure 2).

We estimated the stacked models with regularized (ridge) logistic re-

gression and used 3-fold cross-validation to select a regularization

parameter. The final stacked model was evaluated using empirical-

bootstrap-estimated confidence intervals (CIs) and a primary metric

of area under the receiver operator curve (AUROC). We validated

the stacked model using the prospective cohort and the AUROC.

We chose AUROC as the accuracy metric because the primary

goal of the mortality score was to generate a rank-ordered list of

patients with associated survival probabilities to inform the alloca-

tion of scarce resources. The AUROC is an estimate of the probabil-

ity of correctly ranking a case compared to a noncase. We also

estimated other accuracy metrics including positive predictive value

(PPV), sensitivity, specificity, accuracy, and F1 measure (Supplemen-

tary eTable 7), as well as area under the precision-recall curve

(AUPRC, Table 3 and Supplementary eTable 5). We evaluated cali-

bration using Brier’s score and Cox calibration regression (Supple-

mentary eTable 8).

To evaluate the impact of COVID-19 on mortality prediction,

we retrainedthe model using the same training strategy but limited

training data to the prospectively collected data (sensitivity analysis

1, Figure 2) and to the prospectively collected data from patients

with COVID-19 (sensitivity analysis 2, Figure 2). We divided the co-

hort of patients with COVID-19 40%-40%-20% for estimating the

baseline logistic regression models, estimating the stacked model,

and evaluating the stacked model, respectively.

Data availability
The data underlying this article were provided by UCHealth by per-

mission and cannot be shared. Analytic code will be made available

on GitHub upon request to the corresponding author.

Ethical considerations
This novel score was developed with the purpose of optimizing mor-

tality prediction for decision support for crisis triage. Consequently,

the score parameters needed to fall with the ethical framework de-

veloped for crisis triage. In catastrophic circumstances, the goal of a

resource allocation process should be to provide the most benefit to

as many people as possible and to do so in ways that sustain social

Figure 2. Stacked model development. Primary analysis/production model: we used retrospective data to train the component models (40%) and the ensemble/

stacked model (40%) and to assess (blue) the ensemble/stacked model (20%). This ensemble/stacked model was used to predict mortality for the whole prospec-

tive (red) and prospective COVID-19 (green) datasets. Sensitivity Analysis 1 (not shown): same workflow as primary analysis but the prospective data were used

to train and test the models (same 40/40/20 split). The final model was used to predict the entire prospective COVID-19 dataset. Sensitivity Analysis 2 (not shown):

same workflow as primary analysis but the prospective COVID-19 data were used to train and test the models (same 40/40/20 split). We fit multiple qSOFA (4),

SOFA (2), and CURB-65 (2) component models in health system-guided attempts for parsimony. The different forms of qSOFA, SOFA, and CURB-65 are shown in

Supplementary eTable 3. All 11 component models were fed into the model stacking process. The novel COVID-19 model included laboratory results reported to

be associated with COVID-19 mortality including D-dimer, LDH, absolute lymphocyte count, BUN, troponin, CK, ALT, and lactate(Supplementary eTable 2).
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cohesion and trust in the healthcare system. To maintain trust, rec-

ommendations for rationing of resources must be made prospec-

tively, transparently, and consistently across the institution and

region and by decision-makers independent of the care team. For

this reason, the target users at our health system were members of a

triage team that would be activated if CSC became necessary. The

triage team would be made up of a hospital administrator, a physi-

cian, a nurse, and an ethicist. Neither the physician nor the nurse

would be part of any care teams at the time. The triage teams are

shown the values of the various features but are not shown the

model weights. The stacked model coefficients (Supplementary

eTable 5) may be difficult for the average clinical or administrative

user to understand in real time. Moreover, any decision to ration

resources must embrace a commitment to fairness and a proscrip-

tion against rationing based on nonclinical factors such as race, gen-

der, sexual orientation, disability, religious beliefs, citizenship

status, or “VIP,” socioeconomic, or insurance status.39–42 Conse-

quently factors, such a race and potential proxies of race, were ex-

cluded from score development, even if they had the potential to

improve accuracy. Ethical considerations for score development are

more fully described in Supplementary Appendix C.

RESULTS

Prospective cohort characteristics and hospital course
Compared to patients without COVID-19, patients with COVID-19

were more likely to be male (55.6% vs 42.0%, P< .001); be His-

panic (44.4% vs 14.6%, P< .001); receive ICU-level care (30.0% vs

15.8%, P< .001); be intubated (17.6% vs 4.8%, P< .001); have a

longer duration of mechanical ventilation (8.7 days vs 3.0 days,

P< .001) and a longer hospital length of stay (7.6 days vs 4.3 days,

P< .001); and not survive (12.2% vs 2.1%, P< .001). Patients with

COVID-19 had higher SOFA and CURB-65 scores and LDH, ferri-

tin, and D-dimer levels than patients without COVID-19 (all

P< .05, Table 2). Mean troponin levels were lower in patients with

COVID-19 compared to patients without COVID-19 (P¼ .002, Ta-

ble 2). However, absolute lymphocyte count and CK levels were not

dissimilar between groups (all P> .05, Table 2).

Compared to those in the retrospective cohort, patients in the

prospective cohort were less likely to receive ICU-level care (16.5%

vs 72.8%, P< .0001); less likely to be intubated (5.4% vs 18.1%,

P< .0001); and less likely to die (2.6% vs 7.0% vs, P< .0001) (Sup-

plementary eTable 1). This is likely because the prospective cohort

included all admissions and not just ICU or intermediate care admis-

sions.

Point-wise mortality estimates
When validated using the prospective cohort, the individual com-

ponent models predicted point-wise mortality (estimates of mortal-

ity risk ranging from 1%–99%) with AUROCs ranging from 0.72

(CCI) to 0.90 (SOFA) (Table 3). The stacked model predicted

point-wise mortality better than any individual model: AUROC

0.94 (Figure 3). Most prospective encounters (95.7%) had pre-

dicted point-wise mortalities less than 10%. Within this group, ob-

Table 2. Mortality model inputs

All encounters

(N¼ 27 296)

COVID-19 negative

(N¼ 25 938)

COVID-19 positive

(N¼ 1358)

P value

Scores

Median qSOFA (IQR) 0.0 (0.0, 1.0) 0.0 (0.0, 1.0) 0.1 (0.0, 1.0) P< .001

Median SOFA (IQR) 2.0 (2.0, 4.0) 2.0 (2.0, 3.0) 3.0 (2.0, 5.0) P< .001

Median CURB-65 (IQR) 1.0 (0.1, 2.0) 1.0 (0.1, 2.0) 1.0 (0.0, 2.0) P¼ .44

Charlson Comorbidity Index (IQR) 1.0 (0.0, 3.0) 1.0 (0.0, 3.0) 1.0 (0.0, 2.0) P¼ .38

ARDS Mortality Model

Transfusion FFP 59 (0.2%) 59 (0.2%) 0 (0.0%) P¼ .14

Transfusion PRBC 396 (1.5%) 392 (1.5%) 4 (0.3%) P< .001

GCS � 8 264 (1.0%) 246 (0.9%) 18 (1.3%) P¼ .21

Lactate > 2 2676 (9.8%) 2503 (9.6%) 173 (12.7%) P< .001

Creatinine � 2 2486 (9.1%) 2323 (9.0%) 163 (12.0%) P< .001

Mean Bilirubin (SD) 0.7 6 2.0 0.7 6 2.0 0.6 6 0.8 P¼ .003

Mean Arterial pH (SD) 7.4 6 0.0 7.4 6 0.0 7.4 6 0.1 P¼ .001

Mean PF (SD) 335.7 6 212.7 340.7 6 215.8 239.6 6 102.0 P< .001

Mean SpO2 (SD) 94.7 6 2.4 94.7 6 2.4 93.4 6 3.1 P< .001

Novel Model

Mean D-Dimer (SD) 405.0 6 3,699.8 326.4 6 2,440.3 1,906.2 6 12,614.9 P< .001

Mean LDH (SD) 229.1 6 214.9 223.1 6 207.4 343.5 6 305.5 P< .001

Mean ALC (SD) 1.4 6 2.0 1.5 6 2.0 1.3 6 1.6 P¼ .001

Mean BUN (SD) 19.4 6 15.1 19.3 6 14.9 21.2 6 18.4 P< .001

Mean Troponin (SD) 0.5 6 9.0 0.6 6 9.2 0.2 6 3.9 P¼ .002

Mean CK (SD) 173.7 6 1,612.7 170.5 6 1,567.2 235.4 6 2,316.0 P¼ .31

Mean ALT (SD) 21.1 6 20.6 21.1 6 21.0 20.9 6 10.4 P¼ .47

Mean Lactate (SD) 1.0 6 1.1 1.0 6 1.1 1.2 6 1.6 P< .001

In this table, the summary measures for the covariates of each component model in the stacked model are calculated at a single point in time—the time of maxi-

mum SOFA score for each encounter.

Abbreviations: ALC, absolute lymphocyte count; ALT, alanine aminotransferase; BUN, blood urea nitrogen; CK, creatinine kinase; FFP, fresh frozen plasma;

GCS, Glasgow comas score; IQR, interquartile range; LDH, lactate dehydrogenase; PF, PaO2 to FiO2 ratio; PRBC, packed red blood cells, SD, standard devia-

tion.
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served mortality was only 1.0%, suggesting that the stacked model

accurately identifies patients with low mortality (Supplementary

eTable 4).

In patients with COVID-19, the AUROC for SOFA, CURB-65, the

CCI, and novel variables was 0.85, 0.90, 0.75, and 0.91 respectively. In

this subset of patients, the stacked model predicted mortality with an

AUROC of 0.90. Additional performance metrics, including precision

and recall, are shown in Figure 4. The stacked model predicted mortal-

ity with narrowest 95% CIs at the extremes of predicted mortality (Fig-

ure 5). Even at moderate predicted mortalities, 95% CIs were generally

narrower than 10 percentage points.

When trained with retrospective data and evaluated on patients

with COVID-19, the novel model and the stacked model performed

within their respective CIs (AUROCs of 0.91 and 0.90, respectively).

However, retraining the stacked model only on patients with

COVID-19 improved its COVID-19-specific AUROC to 0.95 (Sup-

plementary Appendix B). The stacked model outperformed all other

models for patients with COVID-19. This highlights the importance

of flexible modeling constructs in highly fluid situations, such as at

the onset of pandemics or when new diseases are encountered, and

suggests that patients with COVID-19 have predictors of mortality

that differ from average previously encountered patients.

Figure 3. Stacked model receiver operator characteristic curves. The retrospective cohort was used for training and validation (in a 40%-40%-20% split). The pro-

spective and COVID-19 positive cohorts were used to validate the retrospectively trained model.

Table 3. Model area under the receiver operator curve and precision recall curve for each of the component models and the final stacked

model. Models were trained and validated on the initial retrospective cohort. The models were then validated on the prospective cohort

and on the subset of patients with COVID-19. The AUROC and AUPRC for the retrospective cohort were based on a 20% holdout of the

encounters for testing and evaluation. The prospective validation cohort reflects expected performance when running in a live EHR for both

COVID-19 positive and negative patients. Bootstrapped 95% confidence intervals are shown for both AUROC and AUPRC.

Retrospective Validation Cohort (N 5 16

418)

Prospective Validation Cohort (N¼ 27

296)

COVID-19 Positive Validation Cohort

(N¼ 1358)

AUROC AUPRC (baseline

0.07)

AUROC AUPRC (baseline

0.03)

AUROC AUPRC (baseline

0.12)

SOFA 0.90 (0.89, 0.90) 0.55 (0.55, 0.57) 0.90 (0.89, 0.91) 0.42 (0.38, 0.46) 0.85 (0.82, 0.88) 0.56 (0.48, 0.63)

qSOFA 0.83 (083, 0.84) 0.35 (0.33, 0.36) 0.84 (0.82, 0.86) 0.26 (0.23, 0.29) 0.79 (0.74, 0.83) 0.43 (0.36, 0.51)

CURB-65 0.81 (0.81, 0.82) 0.33 (0.31, 0.33) 0.87 (0.86, 0.88) 0.26 (0.23, 0.29) 0.90 (0.87, 0.92) 0.59 (0.52, 0.67)

ARDS Mortality 0.85 (0.85, 0.86) 0.51 (0.51, 0.54) 0.88 (0.87, 0.90) 0.40 (0.36, 0.44) 0.86 (0.83, 0.89) 0.60 (0.52, 0.67)

CCI 0.63 (0.63, 0.66) 0.11 (0.11, 0.12) 0.72 (0.70, 0.73) 0.05 (0.05, 0.06) 0.75 (0.71, 0.78) 0.26 (0.21, 0.33)

Novel Variables 0.83 (0.83, 0.84) 0.45 (0.44, 0.46) 0.88 (0.87, 0.90) 0.33 (0.29, 0.36) 0.91 (0.89, 0.93) 0.61 (0.54, 0.68)

Stacked Model 0.93 (0.93, 0.94) 0.65 (0.65, 0.67) 0.94 (0.93, 0.95) 0.54 (0.50, 0.57) 0.90 (0.87, 0.92) 0.65 (0.59, 0.71)

Abbreviations: ARDS, acute respiratory distress syndrome; AUPRC, area under the precision-recall curve; AUROC, area under the receiver operator curve;

CCI, Charlson Comorbidity Index; qSOFA, a widely used pneumonia mortality score; SOFA, sequential organ failure assessment.
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Time-integrated mortality estimates
On average, patients who died had estimates of mortality probabil-

ity that were high at admission and remained high (Figure 6).

Patients who survived tended to have, on average, a much lower

probability of mortality and a relatively smooth trajectory.

In sensitivity analyses, we generated models predicting mortality

at 3 and 7 days after admission (instead of overall mortality). See

Supplementary Appendix A/eMethods for the approach taken and

Supplementary Appendix C, Ethical Considerations, for an explana-

tion of the motivation behind these sensitivity analyses. These mod-

Figure 4. Stacked model performance metrics across all potential probability thresholds. The purpose of the main stacked model was to create a ranked patient

list by probability of mortality. If the model was to be used as part of a clinical decision support alert, then a threshold for the estimated probability would need to

be used to define when an alert fires. Figure 4 shows common model performance metrics as a function of the threshold.

Figure 5. Confidence intervals around point-wise predicted mortality. This figure shows the width of 95% confidence interval (y-axis) around the stacked model

mortality probabilities estimates at each potential value for estimated probability. Confidence intervals were narrowest at the extremes of mortality probability

(likely the most actionable predictions, thus the predictions with the highest stakes).
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els performed relatively well, although worse than the point-wise

stacked models: AUROC 0.84 (3 days) and 0.82 (7 days) in the ret-

rospective cohort. In the prospective cohort and COVID-19 positive

patients, accuracy was similar: AUROC 0.83 and 0.77 (3 days) and

0.84 and 0.80 at 7 days, respectively (Supplementary eTable 5).

DISCUSSION

We developed a new, accurate mortality prediction score that is adapt-

able to different diseases and settings. Improving upon SOFA and the

CCI to predict mortality, our score allows more accurate and granular

rank-ordering of patients likely to benefit from intensive care. We rap-

idly deployed the novel score in our EHR during the COVID-19 pan-

demic for potential real-time use in making triage decisions. We

demonstrated that reliability was maintained in a prospective cohort of

patients with and without COVID-19. Fortunately, we have not needed

to use these scores for triage, but our development process forges a new

path for leveraging EHRs, clinical expertise, and machine learning to

provide real-time, situation-critical clinical decision support.

This article adds significantly to the literature regarding CSC and

ethically allocating scarce medical resources. Like ours, most other scor-

ing systems are based on the SOFA score, which was developed 20 years

ago with simplicity, and not triage, in mind. SOFA does not always gen-

eralize well: for example, it predicted influenza H1N1 mortality

poorly.18,19 While others have attempted to build novel scores that are

simple and accurate ,6,7 our contribution is methodological. We show

how to leverage many models—novel and well-worn—to create a ro-

bust, adaptable, model-averaged score. Our work builds on recent

reports demonstrating in patients with COVID-19 that SOFA, CURB-

65, Pneumonia Severity Index, Acute Physiology and Chronic Health

Evaluation (APACHE II), and novel, COVID-specific COVID-GRAM

scores predict mortality variably but reasonably well: AUROC 0.59–

0.87, 0.84–0.85, 0.87, 0.96, and 0.78–0.88, respectively.43–47 Although

APACHE II outperforms other scores, it includes data that are not easily

extracted from an EHR in real-time. By stacking multiple models and

using data extracted in real-time from the EHR, we demonstrate similar

AUROC (0.94) to APACHE II in a large prospective cohort of patients

for whom a CSC-based triage plan would operate: those with and with-

out COVID-19. Finally, CSC protocols have collapsed SOFA scores to

rank patients in just a few categories, reflecting the difficulty of knowing

when SOFA scores are sufficiently different to make a meaningful dif-

ference for triage. Our approach generates 1%–99% risk of mortality

and the ability to statistically differentiate between patients (or deter-

mine statistical ties) by calculating 95% CI for each score.

Our stacked model’s ability to predict mortality is tailored to our pa-

tient population in Colorado and could easily be tailored to smaller pop-

ulations. This is important given the varied experiences with COVID-19.

Our in-hospital (12% vs 21%) and ventilator mortality rates (35% vs

88%) were substantially lower than a New York cohort from the first

wave of the pandemic.48 Our mortality rates approach those expected

for moderate–severe ARDS.49,50 There are potentially many explanations

for these differences, including younger age, difference in comorbidities,

differences in therapeutic interventions, and learning from the experience

of earlier effected areas. Moreover, the utilization of ICU level of care

and mechanical ventilation varies widely across the world: in New York,

14.2% of patients were treated in an ICU and 12.2% of patient received

mechanical ventilation. In contrast, in a cohort of patients in China,

50.6% of patients were admitted to an ICU and 42.2% received me-

chanical ventilation.37,38,43 Such differences may affect the predictive

characteristics of a mortality score. Moreover, we found that patients

with COVID-19 have unique characteristics and may benefit from spe-

cific mortality prediction models. Therefore, utilizing EHR data streams

allows for flexibility to add additional components and retrain the

stacked model as new knowledge and clinical experience accumulates.

Figure 6. Average predicted mortality over the course of the hospitalization, stratified by actual mortality. This figure shows smoothed average probability of mor-

tality over the course of the hospitalization, stratified by actual mortality. On average, patients who died had mortality probability estimates much higher than

those who did not die, even shortly after admission.
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Importantly for generalization, the model can be tuned in real time to

other local patient populations and disease characteristics.

Several aspects of the informatics infrastructure and workflow

are important. First, such a rapid development process would have

been impossible without a robust data warehouse staffed by experts

with deep knowledge of EHR data and common clinical data mod-

els. The availability of high-quality data is known to be among the

largest challenges in clinical applications of machine learning.51 Sec-

ond, our data science team was in place and had substantial shared

experience with data from the health system. It would be extremely

challenging to either rapidly hire or outsource the necessary exper-

tise during a pandemic. Third, our data science team already had ac-

cess to highly capable cloud-based and on-premises HIPAA-

compliant computational environments. Establishing the processes

and controls for such an environment takes time and expert human

resources; our campus had already made those investments. Fourth,

our multidisciplinary team included leadership, a variety of potential

end users, and experts from ethics, clinical informatics, machine

learning, and clinical care.28 This diversity critically grounded the

project in ethical principles and pragmatic clinical realties and

allowed us to quickly iterate to a practical, implementable, and in-

terpretable model. Because of urgent operational needs, we also had

full institutional and regulatory support. Finally, we evaluated the

model prospectively, an important gold-standard not often met by

new machine learning-based informatics tools.28 Of note, there are

many reports in the literature describing development of predictive

models using EHR data, but very few reports of the implementation

of those models in a live EHR for clinical use. In this case, the total

elapsed time from including data extraction, model construction,

and implementation to deployment within the EHR across the 12

UCHealth hospitals was 1 month, illustrating the potential capacity

for novel predictive model development. Now that we have demon-

strated a workflow to rapidly develop new informatics tools in our

health system, we anticipate that many other tools will follow.

This manuscript has several limitations. First, all scores are calcu-

lated from EHR data. While this allows for real-time score calculation,

it introduces the possibility of artifactual data skewing mortality predic-

tion. This was partially addressed by placing acceptable ranges on phys-

iologic variables (see Supplementary Appendix A). Second, missing data

or data collected at different time intervals is inherent in the analysis of

EHR data. To overcome this, we developed a system of imputation and

last known value carry forward (see Supplementary Appendix A). Such

assumptions may introduce systematic and unmeasured bias but are un-

avoidable operationally. Third, more sophisticated machine learning

techniques (eg, Gaussian process regressions or attributable component

analysis) may allow for more accurate mortality predictions.52–54 How-

ever, we chose methods that were robustly estimable and would allow

for transparent interpretation of underlying model contributions to the

overall score. Fourth, in-hospital mortality may not be the optimal met-

ric to make triage decisions. One-year mortality or other related out-

come measures may be a better metrics but, given the desire to validate

a mortality predictor quickly, longer-term outcomes were not available.

Fifth, our data and patient population are specific to Colorado, and

results may differ geographically. Sixth, while a multidisciplinary group

of experts designed this score to minimize potential bias from race, eth-

nicity, or socioeconomic status, this has not been rigorously validated

and is the focus of ongoing research. Finally, some clinical indicators of

illness severity were not included in the models (eg, prone positioning,

continuous renal replacement therapy, and radiographic results). These

data may improve mortality prediction but are difficult to routinely and

reliably autoextract from the EHR.

CONCLUSION

We developed a novel and accurate in-hospital mortality score that

was deployed in a live EHR and automatically and continuously cal-

culated for real-time evaluation of patient mortality. The score can

be tuned to a local population and updated to reflect emerging

knowledge regarding COVID-19. Moreover, this score adheres to

the ethical principles necessary for triaging.39–42 Further research to

test multicenter score performance, refine mortality prediction over

longer periods of time, and investigate the optimal methods to use

such a score in a CSC protocol is needed.
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