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HR = heart rate; MABP = mean arterial blood pressure; PaCO2 = arterial partial carbon dioxide tension; PCO2 = partial carbon dioxide tension;
PeCO2 = esophageal partial carbon dioxide tension.

Abstract

Background Splanchnic perfusion following hypovolemic shock is an important marker of adequate
resuscitation. We tested whether the gap between esophageal partial carbon dioxide tension (PeCO2)
and arterial partial carbon dioxide tension (PaCO2) is increased during graded hemorrhagic
hypotension and reversed after blood reinfusion, using a fiberoptic carbon dioxide sensor.
Materials and method Ten Sprague–Dawley rats were anesthetized, tracheotomized, and cannulated
in one femoral artery and vein. A calibrated fiberoptic PCO2 probe was inserted into the distal third of
the esophagus for determination of luminal PeCO2 during maintained anesthesia (pentobarbital
15mg/kg per hour), normothermia (38±0.5°C), and fluid balance (saline 5ml/kg per hour). Three out
of 10 rats were used to determine the limits of hemodynamic stability during gradual hemorrhage.
Seven of the 10 rats were then subjected to mild and severe hemorrhage (15 and 20–25ml/kg,
respectively). Thirty minutes after severe hemorrhage, these rats were resuscitated by reinfusion of the
shed blood. Arterial gas exchange, hemodynamic variables, and PeCO2 were recorded at each steady-
state level of hemorrhage (at 30 and 60 min) and after resuscitation.
Results The PeCO2–PaCO2 gap was significantly increased after mild and severe hemorrhage and
returned to baseline (prehemorrhagic) values following blood reinfusion. Base deficit increased
significantly following severe hemorrhage and remained significantly elevated after blood reinfusion.
Significant correlations were found between base deficit and PeCO2–PaCO2 (P<0.002) and PeCO2
(P<0.022). Blood bicarbonate concentration decreased significantly following mild and severe
hemorrhage, but its recovery was not complete at 60 min after blood reinfusion.
Conclusion Esophageal–arterial PCO2 gap increases during graded hemorrhagic hypotension and
returns to baseline value after resuscitation without complete reversal of the base deficit. These data
suggest that esophageal capnometry could be used as an alternative for gastric tonometry during
management of hypovolemic shock.
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Introduction
The intestinal tract is highly susceptible to hypoperfusion
because of its greater level of critical oxygen delivery and

countercurrent microcirculation of the villi [1]. There is
increasing evidence that gastrointestinal hypoperfusion plays
an important role in development of systemic inflammatory
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response and multiple organ failure [1,2]. Decreased
splanchnic perfusion precedes the appearance of the usual
indicators of hypovolemic shock, such as hypotension and
lactic acidosis [3–5]. Gastric intramucosal acidosis and
hypercapnia are observed during inadequate organ perfusion
[6–8] and are predictive of poor clinical outcome [9–11].
Therefore, early detection of gastrointestinal hypoperfusion
and effective treatment may improve clinical outcome.
Because gastric intubation is done in most critically ill
patients, gastric tonometry has traditionally been used to
evaluate intramucosal pH or partial carbon dioxide tension
(PCO2) indirectly during the management of critically ill
patients [9–15]. However, gastric tonometers have some limi-
tations. For example, air and saline tonometers may require
10–90 min for equilibration [16–19]. Reliable gastric tonome-
try requires suppression of gastric acid [20], whereas gastric
feedings can influence its outcome [21–23]. Therefore,
several other sites, including esophagus, have been used for
tonometric measurements [8,24–27].

Studies have demonstrated that an increase in veno–arterial
PCO2 gradient could be a reliable marker of tissue hypoperfu-
sion [28–32]. Knichwitz and coworkers [25] demonstrated
that continuous intramucosal PCO2 measurement allows early
detection of regional intestinal ischemia before the onset of
changes in global hemodynamic or metabolic variables. Fur-
thermore, measurement of tissue PCO2 in several organs has
been shown to correlate with gastrointestinal perfusion
[8,26,27,33]. Sato and coworkers [8] studied the relationship
between gastric wall PCO2 and esophageal PCO2 (PeCO2)
before, during, and after reversal of hemorrhagic shock in five
spontaneously breathing rats, using an ion-sensitive field-
effect transistor. They found a high correlation (r = 0.9)
between the gastric wall PCO2 and PeCO2 during hemor-
rhagic hypotension induced reduction in splanchnic blood
flow. The use of tissue PCO2 and arterial PCO2 (PaCO2) differ-
ence is a better marker of ischemia than is either gastric intra-
mucosal pH or intramucosal PCO2 [34] because the gap is
not influenced by alveolar ventilation [35]. Therefore, in the
present study we measured intraluminal PeCO2 using a
rapidly responsive fiberoptic sensor [25,35,36]. The arterial
blood gases were periodically measured for determination of
the PeCO2–PaCO2 gap. Our hypothesis is that the
PeCO2–PaCO2 gap could be significantly increased during
graded hemorrhagic hypotension and will return to baseline
shortly after resuscitation.

Materials and method
Surgical procedures
The experimental protocol for the present study was
approved by the Institutional Animal Care and Use Commit-
tee of Miami Children’s Hospital. Ten young, albino
Sprague–Dawley rats (250–350 g) were initially anesthetized
with 60 mg/kg pentobarbital intraperitoneally. In a supine
position, a tracheostomy was performed and an endotracheal
tube (3.5 cm of a polyethylene tube, 2.4 mm diameter) was

advanced to a position approximately 1 cm above the carina.
Subsequently, a femoral vein and a femoral artery were
exposed and cannulated. Each rat then was placed over an
electric heating blanket. Rectal temperature (TH-5; Physitemp
Thermalert, Clifton, NJ, USA; with a rat size thermal probe),
mean arterial blood pressure (MABP), and heart rate (HR;
2001A, Datascope Corp, Paramus, NJ, USA) were continu-
ously monitored. Normothermia (38 ± 0.5°C) was established
while anesthesia (pentobarbital 15 mg/kg per hour) and fluid
balance (saline 5 ml/kg per hour) were strictly maintained
(Medfusion pump 2010; Medex, Duluth, CA, USA). Rats
breathed room air, spontaneously, during the experiments.

Esophageal capnometry

The esophagus was intubated orally with a 22-gauge,
1.5-inch-long catheter. A fiberoptic carbon dioxide sensor
(Paratrend 7; Diametrics Medical Inc, Roseville, MN, USA)
was introduced through the oral catheter up to 8–10 cm from
the incisor teeth into lower third of the esophagus (at 2–3 cm
above the gastroesophageal junction). The fiberoptic sensor
consisted of two optical fibers for the measurement of PCO2
and pH, a miniature Clark electrode for determination of
partial oxygen tension, and a thermocouple for measuring
temperature. The sensor was automatically calibrated with
precision gases under microprocessor control, as per the
manufacturer’s recommendations, before insertion into the
esophagus.

Baseline measurements

Within 30–60 min after the insertion of the sensor, baseline
values for PeCO2, core temperature, HR, and MABP were
recorded. The rats then were heparinized with 200 U/kg per
hour heparin and an arterial blood sample was taken for base-
line (time 0) gas analysis (ABL-30 Blood Gas Analyzer;
Radiometer, Copenhagen, Denmark), hemoglobin, and arter-
ial oxygen saturation (OSM3 Hemoxymeter; Radiometer).
Measurements of PaCO2 and PeCO2, as well as partial arterial
oxygen tension, were corrected for each animal’s body tem-
perature. Values for bicarbonate and base excess were auto-
matically calculated by the blood gas analyzer’s program.

Hemorrhagic hypotension

Three out of the 10 rats were used to test the limits of hemo-
dynamic stability during hemorrhagic hypotension in this
model. Gradual bleeding up to 15 ml/kg in these three rats
led to a 30–40% reduction in MABP. Additional bleeding up
to 25 ml/kg was tolerated as long as the MABP did not drop
below 30 mmHg. Lower blood pressures, caused by removal
of 25 ml/kg blood, created a deteriorating and irreversible
systemic hypotension, accompanied by severe tachycardia.
Therefore, in the actual experiments (n = 7) we considered
15 ml/kg bleeding over a 30-min period as mild hemorrhagic
hypotension. Removal of 20–25 ml/kg blood, while maintain-
ing a MABP equal to or higher than 35 mmHg, was consid-
ered severe hemorrhagic hypotension. The blood was
collected in a heparinized (400 U) tube and incubated at
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38°C. Thirty minutes after mild hemorrhagic hypotension, all
the baseline variables were again measured. This procedure
was repeated after removal of another 5–10 ml/kg blood (for
generation of severe but reversible hemorrhage). All variables
were recorded during severe hemorrhagic hypotension, and
then the shed blood was reinfused over 20–30 min. All vari-
ables were measured again at 30 and 60 min following termi-
nation of blood reinfusion. At the end of the experiment, the
animals were killed with intravenous pentobarbital and the
exact position of the esophageal probe was verified.

Statistical analysis

Statistical evaluation was performed in the seven rats that
completed mild and severe hemorrhage with resuscitation. All
variables are presented as mean ± SD. The data were com-
puted by repeated measures of analysis of variance followed
by Dunnett multiple comparisons test, using the baseline
values as controls. A linear regression analysis was also per-
formed to evaluate association between PeCO2–PaCO2 gap
and the base deficit. P < 0.05 was considered statistically
significant.

Results
Hemodynamic and gas exchange variables

Mild and severe homorrhagic hypotension created average
reductions of 33% and 53% in MABP, respectively. Reinfu-
sion of the blood restored MABP to the normal range. Blood
hemoglobin concentration followed a pattern similar to that of
blood pressure (Table 1). The HR was significantly increased
following severe hemorrhage (29%). After blood reinfusion,
the HR remained significantly higher than its prehemorrhagic

baseline value (Table 1). The partial arterial oxygen tension
was increased significantly during both mild and severe hem-
orrhagic hypotension, apparently caused by hyperventilation.
The latter also reduced the PaCO2 significantly (Fig. 1). Arter-
ial saturation following blood reinfusion was not significantly
different from baseline. Blood bicarbonate concentrations
decreased significantly following hemorrhage, but recovery
was not complete at 60 min after blood reinfusion (Table 1).

Esophageal–arterial partial carbon dioxide tension
gap and base deficit

The PeCO2–Pa PCO2 was significantly increased after mild
and severe hemorrhage, and returned to baseline values fol-
lowing blood reinfusion (Fig. 1). The base deficit became
slightly more negative after mild hemorrhage but was signifi-
cantly reduced after severe hemorrhage (–5.5 mmol/l and
–14.4 mmol/l, respectively). The base deficit remained signifi-
cantly high after blood reinfusion (–7.2 mmol/l after 60 min).
After blood reinfusion, unlike base deficit, the PaCO2 rapidly
normalized (Table 1). A significant correlation was found
between base deficit and PeCO2–PaCO2 gap during hemor-
rhagic hypotension (Fig. 2; r2 = 0.39, P < 0.002). At the same
time, there was also a significant correlation between base
deficit and PeCO2 (Fig. 3; r2 = 0.24, P < 0.022).

Discussion
A correlation between PeCO2 and gastric PCO2 during hemor-
rhagic shock was previously demonstrated in spontaneously
breathing rats [8]. Our results, using a fiberoptic carbon
dioxide sensor, are generally in agreement with those of Sato
and coworkers [8], who used an ion-sensitive field-effect tran-
sistor sensor. In the present study, unlike that of Sato and
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Table 1

Gas exchange variables, partial esophageal carbon dioxide tension, and hemodynamic variables during mild and severe
hemorrhagic hypotension and following blood reinfusion in anesthetized, spontaneously breathing rats

Hemorrhage Blood reinfusion

Variable Baseline Mild Severe 30 min 60 min

PaO2 (torr) 85.4 ± 7.5 105.2 ± 9.6* 116.0 ± 6.3* 90.4 ± 4.2 88.6 ± 7.2

PaCO2 (torr) 38.0 ± 4.8 28.5 ± 4.8* 17.2 ± 3.0* 33.9 ± 4.0 33.1 ± 4.6

PeCO2 (torr) 46.3 ± 6.2 42.8 ± 5.0 36.9 ± 3.0* 39.8 ± 4.3* 41.2 ± 6.8

Base deficit (mmol/l) –2.9 ± 1.7 –5.5 ± 1.8 –14.4 ± 5.5* –7.2 ± 4.6* –7.2 ± 4.0*

pH 7.371 ± 0.05 7.408 ± 0.05 7.340 ± 0.14 7.331 ± 0.09 7.332 ± 0.1

HCO3
– (mmol/l) 21.3 ± 1.5 17.3 ± 1.6* 9.2 ± 2.7* 16.9 ± 3.1* 16.9 ± 2.1*

SaO2 (%) 94.0 ± 1.3 97.4 ± 1.2 98.0 ± 1.2 91.3 ± 5.4 91.7 ± 6.0

Hb (g/dl) 14.2 ± 1.0 11.6 ± 1.1* 9.6 ± 1.1* 13.8 ± 0.9 13.7 ± 0.8

MABP (mmHg) 106.4 ± 11.8 71.7 ± 9.6* 50.0 ± 17.1* 96.8 ± 24.6 95.8 ± 24.5

HR (beats/min) 347 ± 16 366 ± 29 447 ± 39* 402 ± 20* 398 ± 22*

Values are expressed as mean ± SD. *P < 0.05, by comparing baseline with other measurements by analysis of variance and Dunnett multiple
comparisons test. Hb, hemoglobin; HR, heart rate; MABP, mean arterial blood pressure; PaO2, partial arterial oxygen tension; PaCO2, partial arterial
carbon dioxide tension; PeCO2, partial esophageal carbon dioxide tension; SaO2, arterial oxygen saturation.
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coworkers, PeCO2 did not significantly increase during hemor-
rhage, whereas the PeCO2–PaCO2 gap was significantly
increased. The PeCO2–PaCO2 gap returned to baseline imme-
diately after resuscitation (Fig. 1). Our data also demonstrate
a significant association between the PeCO2–PaCO2 gap and
the corresponding base deficit that occurred during hemor-
rhagic hypotension (Fig. 2). Whereas the PeCO2–PaCO2 gap
rapidly recovered after resuscitation (Fig. 1), the base deficit
did not completely return to baseline after restoration of
blood volume (Table 1).

The animals in our study hyperventilated because of meta-
bolic acidosis, presumably secondary to hypoperfusion. Arter-
ial hypocapnia can impact on the expected rise in tissue PCO2
that occurs as a result of decreased tissue perfusion. There-
fore, intramucosal PCO2 as an indicator of tissue hypoperfu-
sion is not as accurate as PeCO2–PaCO2 [34]. Moreover, the
tissue PCO2 and PaCO2 gap is not influenced by alveolar ven-
tilation [37]. However, when ventilation is controlled, the
change in tissue PCO2 by itself could become a reliable indi-
cator of tissue perfusion. In our spontaneously breathing rats
the PeCO2 was lower after severe hemorrhage. We reason
that the PeCO2 would have been higher if the rats were
mechanically ventilated to maintain a relative arterial normo-
capnia. In ventilated subjects, change in tissue PCO2 is an
indicator of changes in tissue perfusion before any other
global parameters of perfusion are changed [25,38]. In spon-
taneously breathing subjects, continuous measurements of
tissue PCO2 and PaCO2 gap can be used as an early indicator
of tissue hypoperfusion.

Gastric tonometry versus esophageal and sublingual
capnometry

Traditionally, stomach has been used as the organ to
measure intramucosal pH or PCO2 in both animal and human
studies [6–15]. The low pH of stomach may interfere with
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Figure 1

Changes in partial arterial carbon dioxide tension (PaCO2), partial
esophageal carbon dioxide tension (PeCO2) and esophageal–arterial
PCO2 gap in seven anesthetized, spontaneously breathing rats
subjected to mild and severe hemorrhagic hypotension followed by
blood reinfusion. *P < 0.05, by repeated measures of analysis of
variance followed by Dunnett multiple comparison test, using baseline
as controls.

Figure 2

Linear regression analysis of the association between partial
esophageal carbon dioxide tension (PeCO2) minus partial arterial
carbon dioxide tension (PaCO2; i.e. PeCO2–PaCO2 gap) and base
deficit in seven anesthetized, spontaneously breathing rats during mild
and severe hemorrhagic hypotension. Broken lines represent the upper
and lower limits of 95% confidence interval.

Figure 3

Linear regression analysis of the association between partial
esophageal carbon dioxide tension (PeCO2) and base deficit in seven
anesthetized, spontaneously breathing rats during mild and severe
hemorrhagic hypotension. Dotted lines represent the upper and lower
limits of 95% confidence interval.
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tonometry, and therefore gastric acid suppression may be
needed for reliable measurements [20]. Other limiting factors
in gastric tonometry are related to feeding [22,23] and the
large lumen of the stomach, requiring longer time for intralu-
minal contents to equilibrate with intramucosal PCO2. More-
over, in the presence of low gastric pH, secretion of
bicarbonate leads to intraluminal production of carbon
dioxide [39]. The above factors may prevent rapid detection
of changes in intramucosal PCO2. Therefore, several other
sites have been used for tonometry. In animals, ileum has
been used to assess splanchnic perfusion [25,36] – a clini-
cally impractical procedure. Studies have demonstrated that
sublingual capnometry, a relatively noninvasive procedure,
correlates with gastric tonometry [26,40–42]. Practically, it
may be difficult to lodge the sensor securely under the
tongue in uncooperative patients, thereby preventing equili-
bration with tissue PCO2 [27]. Esophageal intubation, which
is commonly used in critically ill patients, can be utilized to
secure placement of the esophageal sensor. Similar to the
gastric environment, bicarbonate is secreted in the esopha-
gus and may enter the esophagus from salivary secretions.
However, a relative alkaline pH in the esophagus, in the
absence of acid reflux, may not lead to generation of a signifi-
cant amount of carbon dioxide. Currently available tonome-
ters have equilibration periods ranging between 10 and
90 min [16–19] and are therefore not efficient for rapid
detection of changes in tissue perfusion on a continuous
basis. Fiberoptic sensors that are used in clinical medicine for
automatic and continuous measurements of blood gases
[43,44] have a rapid response time [45]. Experimental evalua-
tion of a fiberoptic PCO2 sensor, similar to that used in the
present study, has shown a high degree of precision in
detecting short-term changes in intramucosal PCO2 [35].

Capnometry and end-points of resuscitation

An interesting observation in the present study was the
delayed recovery of base deficit after resuscitation (Table 1),
whereas PeCO2, PaCO2, and the gap between them were
actually recovered (Fig. 1). Porter and Ivatury [46] demon-
strated that the use of base deficit, lactate, and/or gastric
intramucosal pH are appropriate end-points of resuscitation
for trauma patients. They also recommended that one or all of
the above markers of tissue perfusion be corrected to normal
range within 24 hours after injury. Povoas and coworkers [42]
reported persistently elevated blood lactate level after reinfu-
sion of blood when all other parameters of tissue perfusion,
such as sublingual PCO2, gastric PCO2, and veno–arterial
PCO2 gradient, were normalized. In the present study, the
delay in normalization of the base deficit in the face of a rapid
normalization of the PeCO2–PaCO2 gap may suggest that the
PeCO2–PaCO2 gap can serve as an early indicator for resusci-
tation end-point rather than base deficit. Physiologically, it
takes time for liver and kidneys to correct metabolic acidosis
following tissue dysoxia. It is therefore anticipated that there
will be a lag phase between restoration of blood volume and
return of base deficit to normal.

Studies indicate that PeCO2–PaCO2 gap can continue to
increase or remain abnormally high after resuscitation
[25,47,48]. In those experiments [47,48], severe hemorrhage
(45–47 ml/kg versus 30 ml/kg) might have contributed to
ischemia/reperfusion injury, leading to persistent mucosal
hypoperfusion and elevated tissue PCO2–PaCO2 gap. In the
presence of ischemia/reperfusion mucosal injury, the
PeCO2–PaCO2 gap may not return to normal even after
restoration of circulatory volume. In such instances, base
deficit (or other global parameters of tissue perfusion) may be
a better index for the end-point of resuscitation.

Conclusion
The data presented here demonstrate that PeCO2–PaCO2 gap
increases during hemorrhagic hypotension and reverses after
resuscitation, without complete recovery of base deficit. We
suggest that esophageal capnometry could be used as an
alternative to gastric tonometry for assessing splanchnic
hypoperfusion.
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