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Reduced intraepidermal nerve fiber density after
a sustained increase in insular glutamate: a proof-
of-concept study examining the pathogenesis of
small fiber pathology in fibromyalgia
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Abstract
Introduction: Neuroimaging reveals increased glutamate within the insula of patients with fibromyalgia (FM), suggesting a link
between FM symptoms and increased central excitatory neurotransmission. Many patients with FM also present with decreased
intraepidermal nerve fiber density (IENFD), consistent with small fiber pathology. It remains unknown, however, whether either of
these mechanistic findings represent a cause or a consequence of the other. This study tests the hypothesis that an excitatory
imbalance within the insula leads to small fiber pathology.
Objectives: This is a proof-of-concept study to examine whether a chronic, bilateral increase in insular glutamate can be a causal
factor in the development of small fiber neuropathy in FM.
Methods: The glutamate transport inhibitor L-trans-Pyrrolidine-2,4-dicarboxylic acid (PDC), which increases endogenous levels of
glutamate, was dissolved in Ringer solution and bilaterally delivered into the insula of rats for 6weeks. Naive rats that did not undergo
any surgery or treatment and rats administered Ringer vehicle solution into the insula served as controls. Multimodal nociceptive
sensitivity was assessed weekly. Hind paw tissue biopsies were collected for IENFD assessment, at the end of the experiment.
Results: Compared with controls, increasing endogenous glutamate in the insula with PDC caused sustained decreases in
mechanical paw withdrawal threshold and thermal paw withdrawal latency, increased aversion to noxious mechanical stimulation,
and a decrease in IENFD. Cold reactivity was not altered by PDC administration.
Conclusion: Bilateral insular PDC administration produced a persistent increase in multimodal pain behaviors and a decrease in
peripheral nerve fibers in rat. These preclinical findings offer preliminary support that insular hyperactivity may be a casual factor in
the development of small fiber pathology in FM.
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1. Introduction

Fibromyalgia (FM) is a chronic pain condition with well-described
central nervous system (CNS) mechanisms.49 Over a decade,
human neuroimaging has revealed augmented activation of, and

functional connectivity between, pronociceptive brain regions,
including the insula and anterior cingulate cortex (ACC),
contribute to FM pain.12,24,31,41 Elevated levels of excitatory
neurotransmitters (ie, glutamate) and decreased levels of in-
hibitory neurotransmitters (ie, gamma-aminobutyric acid) have
also been identified in the insula of patients with FM,17,26–28

suggesting that an excitatory inhibitory neurochemical imbalance
may also play a role in FM. In support of this hypothesis,
pregabalin, a treatment efficacious in FM, reduced glutamate
levels and polysensory activation in the FM insula.25,29 Preclinical
studies substantiate insular involvement in nociception1,40 and
that the balance of excitatory and inhibitory neurotransmission in
the insula contributes to the modulation of nociceptive re-
activity.33,55 Together, these findings suggest that insular
hyperactivity may be a prominent underlying feature of FM and
similar chronic pain conditions.8,53

In addition to these findings in the CNS, we and others have
also identified reductions in intraepidermal nerve fiber density
(IENFD) in FM.5,35,39 Debate continues with respect to the
meaning of these findings.9 Some suggest that these changes
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Figure 1. Chronic elevation of endogenous insular glutamate produced a sustained increase in pain behavior. For the assessment of pain behavior, rats were
acclimated to experimental apparati weekly before and during the experiment for a minimum of 30 minutes on nontest days. Baseline behavioral responses were
measured before surgery (week 0). Tests began between 9.30 and 10.30 hours.Mechanical pawwithdrawal threshold (PWT)was assessed by sequentially testing
von Frey monofilaments in ascending or descending intensity order, based on negative or positive pawwithdrawal responses, respectively (up-downmethod).6,55

Once 6 responses were recorded, an equation was used to determine the 50%PWT in grams (g); 15 g was recorded as the PWT after 4 negative responses to the
15-g filament. Thermal paw withdrawal latency was assessed using a Plantar Analgesia Meter with a heated glass floor (30˚C). For this test, the thermal source is
focused onto the plantar surface of a hind paw and then the light source and a timer are simultaneously activated. Immediately on paw withdrawal, the thermal
source and timer are deactivated. Each test includes 10measurements (5 on each paw, alternating paws for eachmeasurement). To evaluate cold sensitivity, 100
mL of acetonewas applied to the plantar surface of the hind paw. The duration of time the pawwas elevated in response to acetone over the course of aminute was
recorded for analysis. Pain affect was assessed using the Mechanical Conflict Avoidance System. The conflict was a choice between (1) escaping an aversive but
nonnoxious stimulus (light compartment) by crossing a field of noxious mechanical probes to reach a dark compartment or (2) remaining in the light compartment
to avoid noxious stimulation. Bilateral administration of L-trans-Pyrrolidine-2,4-dicarboxylic acid (n 5 4) significantly decreased PWT (A) and paw withdrawal
latency (B) in both hind paws compared with Ringer (n5 6) administration over the course of the 6-week experiment. No difference in cold reactivity was observed
(C). Latency to escape the Mechanical Conflict Avoidance System light compartment (D) and duration to cross noxious mechanical probes (E) significantly
increased in rats receiving bilateral infusions of L-trans-Pyrrolidine-2,4-dicarboxylic acid, suggesting that rats with increased insular glutamate perceived the
noxious field as more nociceptive than the rats receiving Ringer vehicle solution. *P # 0.024 compared with Ringer’s.
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are evidence of peripheral pathology driving the pain of FM. By
contrast, we hypothesize that small fiber pathology is a conse-
quence of FM that represents a functional reorganization of the
peripheral nervous system in response to CNS hyperactivity.

We directly evaluated this hypothesis in the present pilot study
by experimentally increasing glutamate in the rat insula for 6
weeks through infusion of L-trans-Pyrrolidine-2,4-dicarboxylic
acid (PDC),4,32 an excitatory amino acid transporter inhibitor that
increases endogenous glutamate, and measuring hind paw
IENFD and multimodal pain behavior.

2. Methods

Experiments were approved by the University of Michigan
Institutional Animal Care and Use Committee (IACUC) and
followed established guidelines.11,58 Adult, male Crl:CD(SD)
(Sprague Dawley) rats (n 5 20; Charles River Laboratories;
275–300 g on delivery) were housed in an environmentally
controlled facility (12 hour light/dark cycle, 0600 lights on) with
free access to food andwater. Anesthesia was isoflurane in 100%
O2 (3% for induction, 1.5%–2.2% for maintenance). Each rat was
implanted with 2 subcutaneous, bilateral Alzet model 2006
osmotic pumps that were attached using PVC tubing to 2 bilateral
microinjectors aimed for the insula (from bregma in mm:
anterior–posterior [AP] 5 2.52, medial-lateral [ML] 5 63.8,
dorsal-ventral [DV]526.8).44 Microinjectors were anchored with
6 screws and dental acrylic.55,56 The pumps were filled with
Ringer solution (in millimolar (mM): 150 NaCl, 2.68 KCl, 1.1
MgSO4, 1.22 CaCl2, 0.5 NaH2PO4, 1.55 Na2HPO4) or Ringer
containing 2mM of PDC (49 ng/h). Each pump delivered at a flow
rate of 0.15 mL/h for 6 weeks.

Mechanical paw withdrawal thresholds were assessed using
the von Frey up–down method.6,55 Paw withdrawal latency to
a noxious thermal stimulus was determined using an IITC
(WoodlandHills, CA) Plantar AnalgesiaMeter.23,55 Cold sensitivity
was tested using paw response duration to acetone applica-
tion.55 The affective-motivational aspect of nociceptive behavior
was assessed using the Mechanical Conflict Avoidance System
(Coy Laboratory Products, Grass Lake, MI).30,37 See Figure 1
legend for details on behavioral assays.

After the final experiment, brains were harvested, immediately
frozen, coronally sectioned (40 mm), mounted on chrom-alum
coated slides, fixed with 80˚C paraformaldehyde vapor, and
stained with cresyl violet.55 Hind paw epidermal biopsies were
also collected for IENFD assessment at this time (see Fig. 2 and
Ref. 50 for details). Microinjection sites were compared with
a stereotaxic atlas of the rat brain44 to determine coordinates of
each microinjector.

Two-way repeated analyses of variance followed by Šı́dák
multiple comparisons tests were used to compare the behavioralFigure 2. Chronic elevation of endogenous insular glutamate decreased

intraepidermal nerve fiber density (IENFD). Immediately following animal
dispatch, the most distal papillae from glabrous skin of both hindpaws was
removed with a razor blade and placed in 2% Zamboni’s fixative for 4–6 hours.
Tissue was rinsed in 30% sucrose in 1X PBS overnight and embedded in OCT
in 4565 Tissue-Tek molds the next day. Thirty micron cross-sections from the
largest area of the papillae were sectioned and stained with protein gene
product 9.5 (PGP9.5) at 1/2500, visualized with Donkey Anti-Rabbit IgG
H&L (Alexa Fluor® 488; Thermofisher; Pittsburgh; PA; Cat #: A-11034)
preadsorbed (ab150065), and mounted on slides with prolong gold with
49,6-diamidino-2-phenylindole (DAPI). A technician blinded to experimental
group, using a Nikon microphot FXA upright microscope with the X-Cite 120Q
light source and 40x Plan Apo lens, counted images manually. Fibers that
cross over the basement membrane and into the epidermis were counted as
positive fibers (A; denoted by white dots on each image). Distance was
measured inmmand final data is presented as fibers permm. Hind paw IENFD
was compared between experimental groups (B): Naı̈ve (n57; blue circles;
no surgery/treatment; mean 6 SEM: 14.36 6 3.42), Ringer’s (n56; black

squares; insula-administered Ringer’s vehicle solution; 13.03 6 2.65), and
PDC1 (n56; at least one microinjector in the insula delivering PDC; 11.22 6
2.29) or PDC2 (n54; both microinjectors in the insula delivering PDC; 9.23 6
1.33). In the PDC1 column, the yellow triangles indicate rats that received
unilateral injections and the red triangles represent rats that received bilateral
injections from the PDC2 group. For each rat, IENFDwas not different between
left and right hind paws. A nonsignificant reduction in IENFD was observed in
PDC1 rats compared to the Naı̈ve and Ringer’s groups (H(3) 5 3.25, p 5
0.201). In a secondary analysis restricted to PDC2 rats, IENFDwas significantly
reduced following PDC administration (H(3)5 6.33, p5 0.034), signifying that
bilateral insular administration of PDC is necessary to significantly reduce
hindpaw IENFD. Post hoc analysis revealed a decrease in IENFD in the PDC2
group compared to the Naı̈ve group (p 5 0.047). No other post hoc
comparisons were significant.
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effects of bilateral PDC to Ringer administration. A Kruskal–Wallis
test followed by Dunn multiple comparisons test was used to
compare IENFD between the no treatment (Naive), vehicle-
treated (Ringer), and PDC-treated groups. Analyses were
performed in Prism 7.0a (Graphpad Software).

3. Results

L-trans-Pyrrolidine-2,4-dicarboxylic acid was used to increase
endogenous levels of glutamate within the insula for 6 weeks.
Compared with Ringer treatment, a bilateral increase in insular
glutamate caused a significant decrease in mechanical paw
withdrawal threshold (Fig. 1A) and thermal paw withdrawal
latency (Fig. 1B), but had no effect on cold reactivity (Fig. 1C), in
both hind paws starting at week 1. Aversion to noxious
mechanical stimulation was also significantly increased starting
at week 4 (Fig. 1D).

Based on histological findings, rats receiving PDCwere divided
into 2 groups: rats with at least 1 microinjector localized to the
insula (PDC1) and rats with both microinjectors localized to the
insula (PDC2). Rats in PDC1 included all rats from the PDC2
group. A partial but nonsignificant reduction in IENFD was
observed in PDC1 rats compared with the Naive and Ringer
groups (Figs. 2 and 3A); however, when examining only the
subset of ratswith bilateral insula placements (PDC2), a significant
reduction in IENFD was observed after PDC infusion (Fig. 2B),
signifying that bilateral insular administration of PDC is
necessary to significantly reduce hind paw IENFD. Nerve fiber
length was also reduced by PDC relative to the Ringer and
Naive groups (Fig. 2A). A rat with both injectors outside the
insula (Fig. 3A) had no apparent reduction in IENFD (15.15
fibers/mm), suggesting that the PDC effect may exhibit
anatomical specificity to the insula. High-magnification photo-
micrographs after 6 weeks of PDC treatment showed no

Figure 3. Chronic infusions of Ringer solution and L-trans-Pyrrolidine-2,4-dicarboxylic acid (PDC) did not produce significant morphological differences in the insula
(INS) or anterior cingulate cortex (ACC). The histological localization of eachmicroinjector site is diagramed in (A). Numbers indicate distance frombregma inmillimeter.
The letters indicate the following: a, ventral agranular insula; b, dorsal agranular insula; c, disgranular insula; andd, granular insula. (B) shows representative cresyl-violet
stained photomicrographs of intracerebral microinjector placements. The top image shows a bilateral insula placement for PDC (AP5 2.76 mm from bregma). The
bottom image inB showsa high-magnification viewof theACCand insula froma rat that receiveda chronic infusionofRinger (left side) and one that receivedPDC (right
side). Black arrows represent indicate where the bottom of the microinjector was located. Apparent morphological features are not substantially different between the
ACCand insula of either rat. The AP span of all microinjection sites included in this study is depicted in (C). Schematic diagramsof the rat brain weremodified from a rat
brain atlas.44 This figure was published in The rat brain in stereotaxic coordinates. 7th ed, Paxinos G, Watson C. © Elsevier (2014).
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substantial morphological differences in the insula and ACC
relative to Ringer administration (Fig. 3B), providing pro-
visional evidence that the effect of PDC is not by producing
excitotoxic lesions of pain processing regions.

4. Discussion

Bilateral insula administration of PDC for 6 weeks produced
sustained increases in mechanical and heat sensitivity, increased
aversion to noxious stimulation, and, most notably, a significant
reduction in hind paw IENFD. To our knowledge, this is the first
demonstration of an entirely “top-down” pathogenic mechanism
by which increased CNS excitatory tone not only increased pain
behavior but also altered the density and length of peripheral
nerve fibers. Importantly, these effects do not appear to be the
result of glutamate-induced excitotoxicity. Histological evaluation
revealed intact insula and ACC cytoarchitecture after PDC
administration. Moreover, previous studies suggest that lesioning
the insula leads to decreased pain behavior,2,3,10 not increased
pain as was observed here. These findings offer preliminary
support for our hypothesis that insular hyperactivity may be
a casual factor in the development of small fiber pathology in FM.

Considerable debate exists regarding the relative contribution
of central and peripheral nervous system factors in the de-
velopment and maintenance of chronic pain. Here, a tonic
elevation of endogenous glutamate in rats produced a behavioral
and anatomical phenotype consistent with that observed in
humans with FM. Patients with FM demonstrate diffuse
mechanical and thermal hyperalgesia21,24,45 and increased
affective reactions to painful and innocuous sensory stim-
uli.19,29,46 Multiple studies have also shown small fiber pathology
in FM. Reduced peripheral nerve fiber density and other
morphological and physiological abnormalities were identified in
the skin5,14,16,20,35,36,38,43,48,54 and corneal tissue47 of patients
with FM, as well as reports of abnormal evoked potentials.22,54

It remains unclear, however, whether peripheral nerve pathol-
ogy causes pain in FM or whether it is an epiphenomenon of
centralized dysregulation. Patients with FM respond poorly to
peripherally directed interventions.29 Small fiber pathology is
found in a diverse spectrum of diseases not typically associated
with pain,13,34,42,57 and it is only observed in a subset of patients
with FM.36,43 Intraepidermal nerve fiber morphological changes,
aswell as the clinical phenotype in FM, are distinct comparedwith
that observed in patients with classic, painful small fiber
neuropathology.16 Moreover, recent work in diabetic neuropathy
suggests little to no association between small fiber pathology
and pain.7,18,51,52 Taken together, these data argue that small
fiber pathology is a nonspecific finding unlikely to drive the diffuse
pain and polysensory hypersensitivity seen in FM. Furthermore, it
is even more unlikely that these peripheral findings could account
for the fatigue and sleep, cognitive, and mood problems that are
cardinal features of FM.

Functional neuroimaging reveals augmented nociceptive
activity and excitatory neurotransmission in the FM brain,
particularly within the insula, that is associated with clinical and
evoked pain intensity.12,24–27,31,41Wehypothesize that small fiber
pathology in FM is a consequence of this CNS hyperactivity and
represents a functional reorganization of the peripheral nervous
system. Within this framework, the nervous system attempts to
regain homeostasis after increased central excitability and pain by
reducing peripheral nerve fiber density in an effort reduce afferent
sensory input. An alternative hypothesis is that insular hyperac-
tivity leads to major dysautonomia that in turn can cause small-
diameter nerve loss.

This pilot study has limitations. Findings are based on a small
number of male animals and require replication in a larger sample
that includes females. The effect of PDCadministration on sleep and
cognitive function, as well as brain functional connectivity, was not
evaluated. The duration of PDC-induced effects after the cessation
of infusion and their response to antinociceptive treatment remain to
be investigated. Last, morphological and molecular alterations in
peripheral nerves after PDC were not assessed.

In summary, bilateral insular PDC administration produced
a persistent increase in pain behaviors and a decrease in
peripheral nerve fibers in rat. This study demonstrates that
reverse translating one important feature of centralized pain in
human chronic pain populations—increased excitatory tone in
a pronociceptive brain region—appears sufficient to produce the
small fiber pathology observed in FM and may represent a new
animal model of FM.15
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