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Background/Aims:Hepatocellular carcinoma (HCC), accounting for 75-85% of

primary liver cancer cases, is the third leading cause of cancer-related death

worldwide. The purpose of this research was to examine the tumor immune

microenvironment (TIME) in HCC.

Methods: We investigated the HCC TIME by integrated analysis of single-cell

and bulk-tissue sequencing data to reveal the landscape of major immune cell

types.

Results: Regulatory T(Treg) cells were found to be specifically distributed in the

TIME of HCC. Several immune checkpoints, including TNFRSF4, TIGIT and

CTLA4, were found to be uniquely overexpressed in Treg cells, and the

glycolysis/gluconeogenesis pathway was enriched in Treg cells. We also

discovered the presence of two NK-cell subsets with different cytotoxic

capacities, one in an activated state with antitumor effects and another with

an exhausted status. In addition, memory B cells in HCCwere found to exist in a

unique state, with high proliferation, low differentiation, and low activity, which

was induced by overexpression of PRAP1 and activation of the MIF-CD74 axis.

Conclusions: We revealed the TIME landscape in HCC, highlighting the

heterogeneity of major immune cell types and their potential mechanisms in

the formation of an immunosuppressive environment. Hence, blocking the

formation of the TIME could be a useful therapeutic strategy for HCC.

KEYWORDS

primary liver cancer, hepatocellular carcinoma, single cell sequencing, tumor immune
microenvironment, prognosis
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Introduction

Primary liver cancer is the sixth most commonly diagnosed

cancer and the third leading cause of cancer death worldwide

(1). Hepatocellular carcinoma (HCC), accounting for 75-85% of

primary liver cancer cases, is the largest source of cancer-related

disease burden. Specifically, approximately 70-80% of patients

with HCC are diagnosed at an advanced stage (2), when curative

therapies, including surgical resection, radiofrequency ablation,

and liver transplantation, are not feasible. In addition, as

80~90% of HCC patients have concomitant cirrhosis, and the

application of different therapeutic options might be limited

because of the patient’s overall health status. Patients with

advanced HCC typically receive multimodal therapy primarily

comprising targeted therapy and immunotherapy (3).

Most tumors are complex and develop and evolve under

robust selective pressure from their microenvironment, which

includes nutrition-related, metabolic, immunological, and

therapeutic components. Such pressure promotes the

diversification of both malignant and nonmalignant

compartments of the tumor microenvironment (TME),

resulting in a degree of intratumoral heterogeneity (ITH) that

enables aggressive disease progression and resistance to

treatment (4). Multiple studies have proven that the immune

component within the tumor, known as the tumor immune

microenvironment (TIME), which includes immune cells,

extracellular immune factors, and cell surface molecules, is

closely associated with tumor development, recurrence, and

metastasis (5, 6). The recognition of the importance of the

TIME has given rise to another treatment option—immune

checkpoint inhibitors (ICIs)—which have revolutionized

cancer therapy. Blocking antibodies targeting immune

inhibitory receptors such as CTLA-4, PD-1, and PD-L1 are by

far the most extensively utilized immunotherapeutic drugs, with

promising curative effects in a variety of cancers (7). Nivolumab,

the first anti-PD1 monoclonal antibody approved as second-line

therapy for HCC, has an objective response rate (ORR) of 15-

20% and a disease control rate (DCR) of 58-64% (8). However,

the ORR of tremelimumab (which targets CTLA-4) is only 7.2%

(9). Thus, the intricate immune microenvironment of HCC

needs to be explored, and doing so may improve the
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understanding of the effects of immunotherapy. Furthermore,

the discovery of new therapeutic targets could pave the way for

new treatments.

Different from traditional bulk RNA sequencing, single-cell

RNA sequencing (scRNA-seq) has enabled researchers to

investigate intratumoral heterogeneity at the single-cell level

(10, 11). Thanks to the application of scRNA-seq, the field of

single-cell genomics has massively expanded over the past few

years, revealing surprising new insights into tissue biology and

disease causes. Therefore, in this study, we performed a single-

cell transcriptome analysis of seven HCC tumor tissue and

paired normal tissue samples, thoroughly exploring the

components and effector functions of major immune cell types

and discovering novel biomarkers that might be employed as

new therapeutic targets.
Materials and methods

Data acquisition and preparation

The Cancer Genome Atlas (TCGA) database was used to

obtain the bulk gene expression profiles of HCC samples as well

as the corresponding clinical data. There were 374 tumor

samples and 50 paracancerous samples in the TCGA liver

hepatocellular carcinoma (LIHC) cohort. Three fibrous

lamellar carcinomas and seven mixed carcinomas in the 374

tumor samples were removed. In addition, samples from the

same patients were removed. As a result, we ended up with 360

tumor samples. The scRNA-seq count matrix was downloaded

from the GSE149614 dataset, which contains 21 samples,

including 10 primary tumor samples, 8 corresponding

peritumor liver samples, 1 metastatic lymph node sample and

2 portal vein tumor thrombus samples. Because our study

focused on the heterogeneity between tumor and normal

tissues, we selected corresponding tumor and normal samples.

Since sample HCC07T only had data for 510 cells, HCC07T and

the equivalent HCC07N sample were removed. Ultimately, a

total of seven tumor samples and corresponding peritumor

tissues were included in our study.
Single-cell analysis

The Seurat R package (12) was used for quality control (QC).

Cells were removed when (a) RNA counts were fewer than 50;

and (b) mitochondrial gene expression percentages were more

than 5%. Data normalization was performed using the

NormalizeData function in Seurat. The top 14 principal

components and the top 1500 variable genes were chosen for

the subsequent analysis. Then, cell clusters were detected by

using Seurat’s FindClusters function (resolution = 0.5) and

displayed via 2D t-distributed stochastic neighbor embedding
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(tSNE) (13). Cells from each cluster were compared to the

annotated reference dataset using the SingleR package (14).

According to the comparison results and the identified cell

markers, each cluster was annotated. To reveal the

differentiation of cell groups, we used Monocle2 (15), an R

package built for pseudotime analysis. Furthermore, we

estimated cell differentiation with online analysis via

CytoTRACE (CytoTRACE (stanford.edu)), which is a robust

approach for predicting cell differentiation with scRNA-seq data.
Functional enrichment analysis

Differentially expressed genes (DEGs) were selected by the

FindMarker function in Seurat, and genes with adjusted p values

< 0.05 were considered for subsequent analysis. Subsequently,

Gene Ontology (GO) pathway enrichment analysis was

performed utilizing clusterProfiler R packages (16). In this

study, the gene set enrichment of each cell cluster was

determined by gene set enrichment analysis (GSEA). Gene sets

and KEGG pathways were obtained from MSigDB. Then, gene

set variation analysis (GSVA) with 50 hallmark gene sets was

performed among cell clusters. Furthermore, we used the

AUCell R package to estimate the score of customized gene

sets across cell groups.
InferCNV analysis

The InferCNV R package was developed to infer the copy

number variation (CNV) of tumor cells based on the scRNA-seq

matrix. Human genetic coordinate information was downloaded

from https://data.broadinstitute.org/Trinity/CTAT/cnv/.

Hepatocytes from normal tissue were considered the reference

set, and the CNV of hepatoma cells was calculated. The final

heatmap was generated after denoising.
SCENIC analysis

The SCENIC R package (17) is designed to assess gene

regulatory networks and can guide the identification of

transcription factors (TFs) and cell states. The GENIC3

method was used to extrapolate coexpression modules between

transcription factors and candidate target genes. Each module,

i.e., each regulon, contains a TF and its target genes. The

cisTarget human motif database was utilized to enrich the

gene signature, and targets in this signature were pruned

according to the default set of cis-regulatory cues. Then, we

assessed the activity of each regulon in each cell using the

AUCell algorithm. The ComplexHeatmap and heatmap R

packages were used for visualization.
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Cell–cell communication

To study the cell group-to-cell group interactions, we

employed CellPhoneDB (18), which can be used to analyze

cell-to-cell communication at the molecular level. The

receptor–ligand pairs with p <0.05 between each cell group

were preserved, and we removed the receptor–ligand pairs

within the same cell type. Finally, the number of receptor–

ligand pairs was counted and visualized by Cytoscape.
Construction of a hepatoma cell
differentiation trajectory

To verify the significance of genes related to cancer

differentiation trajectory, we generated a hepatoma cell

differentiation trajectory using the Monocle2 R package. Using

the ConsensusClusterPlus package in R, 360 HCC samples in the

TCGA LIHC cohort were divided into 3 clusters based on their

expression of genes related to hepatoma cell evolution. Then,

Kaplan–Meier (K-M) survival curves for each cluster were

generated. Correlation analysis of clinical characteristics was

performed for the 3 clusters.
Statistical analysis

Analyses between two groups were performed utilizing the

Wilcoxon test. One-way ANOVA was used to compare three or

more groups. Generally, statistical analyses were conducted by R

studio (version 4.1.1) and GraphPad Software (version 8.0). The

significance level was set at P<0.05.
Results

Single-cell transcriptome analysis
identified cell compositions

Seven HCC samples and corresponding normal tissues were

included in our study. A total of 39,667 cells passed QC, of which

21,121 were from tumor tissues and the rest were from normal

tissues. These cells were then grouped into 36 clusters

(Figure 1A), with the top five most significant genes

highlighted and plotted on a heatmap (Figure 1B). Nine major

cell types were identified in HCC. In addition to hepatocytes,

smooth muscle cells, endothelial cells, and tissue stem cells, there

were many immune cells (PRPTC+), including T cells,

monocytes, natural killer (NK) cells, macrophages, and B cells

(Figures 1D, E). When investigating the distributions of all 9 cell

lineages, we noticed that the main cell type in tumor tissue was

hepatoma cells, while in normal tissue, it was T cells (Figure 1C).
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Interestingly, there was an extreme difference in T cells and NK

cells between intratumor and peritumor tissues. We believe that

the depletion of T cells and NK cells in tumor tissue is associated

with the formation of immunosuppression and is inextricably

linked to tumor progression. In contrast to those of T and NK

cells, the proportions of macrophages and monocytes were

increased in HCC tumor tissues (Figure 1F). Neoantigens are

tumor-specific antigens (TSAs) derived from the expression of

mutated genes in cancer cells and are not present in normal

tissues. These neoantigens may attract macrophages as well as

DCs differentiated from monocytes that can engulf and present

them, leading to the aggregation of macrophages and monocytes

in HCC tumor tissues.

Subsequently, we analyzed DEGs between tumor and

normal tissues (Table S1) and selected the top five DEGs with

the highest expression, which were SPP1, AKR1C2, AKR1B10,

AGT, and EPHX1 in tumor tissues and NKG7, KLRD1, KLRB1,

CCL5, and CST7 in normal tissues. The expression of the above

genes was then marked in each cell lineage (Figures 1G, H). The

highly expressed genes in normal tissues were mainly distributed

in T and NK cells. NKG7, KLRD1, and KLRB1 are marker genes

of T cells and NK cells, which is in line with the fact that the

proportions of T and NK cells in tumor samples were

significantly smaller than those in paracancerous tissues. In

addition, EXPH1, AKR1C2 and AKRB10 were predominantly

expressed in hepatoma cells. EPHX1 was first purified from the

liver and is engaged in a variety of physiological activities,

including lipid metabolism and detoxification of heterologous

substances (19). Furthermore, it has been demonstrated that

EPHX1 causes resistance to 5-fluorouracil in hepatoma cells and

promotes chemoresistance in leukemia (20, 21). AKR1C1 and

AKRB10 are both members of the human aldo-keto reductase

family. Multiple studies have revealed that AKR1C1 is

upregulated in various cancers, such as lung, breast and

cervical cancers, and is associated with cancer metastasis and

chemotherapy resistance (22, 23). Moreover, emerging

experiments have also identified the role of AKR1B10 in HCC

invasion and drug resistance (24). We validated that AKR1C1,

AKRB10 and EXPH1 are promising biomarkers of HCC and

potential therapeutic targets by scRNA-seq analysis.
Treg cells were enriched in HCC and had
distinct metabolic characteristics

T cells have been found to be associated with prognosis in a

variety of malignancies. During the past two decades,

immunotherapies targeting T cells, including chimeric antigen

receptor (CAR) T-cell therapy, adoptively transferred tumor-

infiltrating lymphocytes, and immune checkpoint inhibitor (ICI)

therapies, have been found to be effective in suppressing cancer

growth (25). However, T cells have high heterogeneity, and
Frontiers in Immunology 04
different subtypes play varying effector functions within the

TME. To investigate the heterogeneity of T cells, we clustered

12884 T cells into 15 subgroups, mainly four cell subtypes:

CD8+Tem, CD4+Tem, CD8+Tcm, and Treg cells (Figures 2A, B).

Among them, CD8+ Tem cells, which showed the highest

proportion, were found in normal tissues, while CD4+ Tem,

CD8+ Tcm, Treg cells were mainly found in HCC tissues

(Figures 2C, D). This difference in distribution is likely related

to the distinct functions of these T-cell subtypes: CD8+ Tem cells

mostly reside in peripheral tissues and lymphoid tissues and play

an effector role (26); CD4+ Tem cells travel to the infection site to

exert killing functions (27), while Treg cells reside in tumor

tissue and play an immunosuppressive role (28). The top three

marker genes of the four T-cell subtypes are shown in Figure 2E.

Next, we determined the expression levels of immune

checkpoints in the four T-cell subtypes (Figure 2F). Several

inhibitory checkpoints, such as TIGIT, CTLA4, TNFRSF4 and

TNFRSF9, were only overexpressed in Treg cells. Despite being a

minor component of immune cells, Treg cells can play a critical

role in the TIME network. Treg cells suppress anticancer

immunity, which hinders protective immunosurveillance of

cancer and prevents the formation of an effective antitumor

immune response, thereby promoting tumor development and

progression. The immune checkpoints mentioned above that are

only highly expressed in Treg cells can be considered potential

therapeutic targets to restore immunity against cancer cells in

HCC. Furthermore, we mapped the T cell differentiation

trajectory by utilizing the Monocle2 R package (Figures 2G,

H). Notably, Treg cells from HCC tissues were mainly found at

the beginning and end of the differentiation trajectory, while

CD8+ Tem cells were mainly found in the middle of the

differentiation trajectory. Recent research on Treg cells has

shown that targeting Treg cells in the end-stage of

differentiation is an effective strategy to stimulate antitumor

immunity (28). Strategies to deplete and control Treg cells by

modulating Treg cell differentiation and development deserves

further exploration.

In addition, the GSEA results showed that compared with

other T-cell subtypes, Treg cells showed enrichment of

metabolic pathways, such as glycolysis, gluconeogenesis,

glutathione metabolism, and starch and sucrose metabolism

(Figure 2I), indicating that Treg cells in HCC are not

metabolically inhibited and have metabolic flexibility.

Emerging studies have highlighted the critical role of

metabolism in immune cells. Treg cells can proliferate with

tumor development, maintaining their immunosuppressive

effects because of increased metabolism in the TME. Tumors

can also support Treg cell immunity by modulating metabolites,

resulting in tumor immune escape (29, 30). In recent years,

targeting metabolism has become a strategy to inhibit tumor

development, and strategies employing DCs and macrophages

have made progress (31). However, there is still much unknown
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about the connection between Treg cell metabolic pathways and

the epigenetic control of gene expression. Our research will

contribute to a better understanding of the tumor-promoting

mechanism of aberrant Treg cell metabolism, as well as its effects

on the differentiation and development processes.
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Macrophages are related to the
immunosuppressive environment in HCC

To study the interact ion network in the HCC

microenvironment, the Python-based cell–cell communication
B

C D

E F

G

H

A

FIGURE 1

Cell-type classification in HCC. (A) t-SNE plot of 36 cell clusters. (B) Heatmap of the top five marker genes in each cell cluster. (C) Cell
distribution in tumor and normal tissues. (D) Cell distribution in immune cells (PTPRC+) or nonimmune cells (PTPRC-). (E) t-SNE plot exhibiting
the cell types in HCC. The labels were automatically annotated by SingleR. (F) Bar plot of the distribution of all identified cell clusters: the
proportion of each cell in tumor and normal samples (left) and in each patient (right). (G) The top five DEGs with the highest expression in
tumor and normal tissues. (H) t-SNE plot of the top five DEGs.
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molecular analysis tool CellphoneDB was used to identify

ligand–receptor pairs in the TME. Cytoscape was used to

visualize the resulting network. Unexpectedly, except for

epithelial cells and smooth muscle cells in HCC tissues,

macrophages had the richest communication with other cell

types (Figure 3A), revealing that macrophages play a significant

role in the TME.

To assess the heterogeneity of macrophages, we clustered all

macrophages into eight subclusters (Figure 3B). The phenotypes

of clusters 1 to 8 are depicted in Figure 3B: macrophages: M

−CSF/IFNg/Pam3Cy; DCs: anti-CD40/VAF347; macrophages:
Frontiers in Immunology 06
M−CSF/IFNg; macrophages: IL−4/Dex/cntrl; monocytes:

leukotriene D4; monocytes: CD16+, monocytes; and

monocytes: CD16−. By annotating the cell sources, we

discovered that clusters 1, 2, 4, and 7 were derived from only

cancer tissues, while clusters 3 and 8 were derived from only

normal tissues. In addition, clusters 5 and 6 were derived from

both cancer and normal tissues (Figures 3C, D). Therefore,

cluster 3 was identified as a macrophage phenotype from

normal tissues and thus was employed as a control. According

to the expression of IFNg and IL-4, cluster 1 was considered

closer to M1macrophages, and cluster 4 was considered closer to
B C

D E

F G H

I

A

FIGURE 2

Treg cells were enriched in HCC and had distinct metabolic characteristics. (A) t-SNE plot of 15 subclusters of T cells and (B) four major T-cell
subtypes: CD8+ Tem, CD4+ Tem, CD8+ Tcm, and Treg cells. (C) Distribution of the four T-cell subtypes in tumor and normal samples and (D) in
each patient. (E) Top five marker genes of the four T-cell subtypes. (F) Heatmap of immune checkpoint expression in the four T-cell subtypes.
The row Z score represents the expression level. A differentiation trajectory of T cells, colored based on pseudotime (G) and cell type (H), is
shown. (I) GSEA revealed that metabolic pathways were significantly enriched (FDR < 0.05) in Treg cells.
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M2 macrophages. Although we could not accurately annotate

the mononuclear and DC subsets, their functions should not

be ignored.

As accumulating evidence has revealed a role of TREM2 in

tumor-associated macrophages (TAMs) and myeloid-derived

suppressor cells (MDSCs), we analyzed the expression of TREM2

in the eight clusters and found it to be high in cluster 1, cluster 2 and

cluster 4 (Figure 3E), which were all derived from cancer tissues.

TREM2 has been linked to poor prognosis and is a vital in inducing

immunosuppression in the TME (32–36). To further study the

clinical value of TREM2, we divided 360 HCC patients from the

TCGA LIHC cohort into two groups according to the expression

level of TREM2. Interestingly, the TREM2-overexpression group

had a significantly worse prognosis (Figure 3F), consistent with
Frontiers in Immunology 07
previous research results, suggesting that TREM2may be important

for immunosuppression in the TME.

Subsequently, the expression of immune checkpoints among

the 8 clusters was determined. Clusters 1 and 4 had higher

expression levels of LAIR1 than the other clusters (Figure 3G).

LAIR1 has been found to be associated with tumor

immunosuppression and has recently been reported to block

the LAIR1 and TGF-b signaling pathways to remodel the TME,

making PD-L1-mediated tumor eradication possible (37).Our

results also suggest that PD-L1-mediated tumor eradication

could be a potential therapeutic strategy.

GSVA showed that the adipogenesis, fatty acid metabolism

and bile acid metabolism pathways were enriched in cells from

cluster 4, while the inflammatory response and the complement
B C

D E

F G H

I

A

FIGURE 3

Macrophages are related to the immunosuppressive environment of the TME. (A) Interaction network constructed by CellPhoneDB. The size of
the circles represents the interaction count. A larger size means more interaction with other cell types. (B) t-SNE plot of the eight subtypes of
macrophages. (C) Distribution of the eight subtypes of macrophages in tumor and normal samples and (D) in each patient. (E) Violin plots of the
expression of TREM2 in the eight subtypes of macrophages. (F) Kaplan–Meier survival curve for patients in the TCGA LIHC cohort. A log rank p
value <0.05 was considered statistically significant. (G) Heatmap of immune checkpoint expression in macrophages. The row Z score represents
the expression level. (H) Differences in hallmark pathway activities scored with GSVA. The t values calculated by a linear model are shown.
(I) Heatmap of the AUC scores of the expression of transcription factors identified by SCENIC.
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and interferon (IFN) pathways, which are the hallmarks of M2-

like TAMs (as described in a previous study), were significantly

suppressed (Figure 3H). It is worth mentioning that DCs were

more significantly enriched in processes closely related to tumor

metabolism, such as epithelial-mesenchymal transition, hypoxia,

and angiogenesis.

Finally, we analyzed the expression of TFs in each subgroup.

We found that compared to other clusters, cluster 1 and cluster 4

had higher expression of KLF6, PRDM1, STAT1, JUNB, and

HES1 (Figure 3I). Researchers have reported that KLF6 plays an

essential role in immunosuppression and modulates neutrophil

maturation (38–42), while PRDM1 is a crucial epigenetic gene

associated with T-cell terminal differentiation (43, 44). In other

words, targeting PRDM1 would enable the generation of

superior antitumor T cells. Furthermore, the IRF3/STAT1

pathway was reported to be associated with M2 polarization in

a murine model of sarcoma (45). All of these findings indicate

the vital role of macrophages in immunosuppression in the

TME, as well as the potential mechanisms and TFs involved in

this process.
Two distinct NK-cell subsets with
different cytotoxic capacities in HCC

NK cells have recently been a hotspot in cancer immunology

research. We detected 3151 and 187 NK cells in peritumor and

tumor tissues, respectively, and clustered them into 11 subsets

(Figures 4A, B). As previously described, the proportion of NK

cells was dramatically decreased in tumor tissues compared to

normal tissues. NK cells can kill cancer cells without MHC

restriction and do not require preactivation by DCs or

an t ibod ie s . NK ce l l s p l ay a c r i t i c a l ro l e in the

immunosurveillance protecting against cancer (46). The

obvious decrease in NK cells in HCC suggests that cancer cells

shape an environment that inhibits NK-cell proliferation,

possibly by hypoxia or metabolic inhibition, which directly

leads to resistance to attacks from NK cells.

DEGs of NK cells were identified between tumor and normal

tissues (Figure 4C). Notably, HSP70 (including HSPA1A and

HSPA1AB), a ubiquitous molecular chaperone, was highly

expressed in tumor-derived NK cells. The major action of

HSP70 is to maintain protein homeostasis and to mediate

cytoprotective effects. Under adverse stress conditions, HSP70

can improve cell resistance to the environment and acts as a

protector against stress (47). Tumor-resident NK cells are in a

state of stress in the TME, and the antitumor effect of these NK

cells can be supported by maintenance of hemostasis induced by

upregulated HSP70. In addition, SERPINA1, which regulates

hydrolase activity, and CLU, which stabilizes proteins, were

upregulated (48, 49).

Interestingly, tumor-derived NK cells were distributed in

clusters 9 and 10, while NK cells of other clusters came from
Frontiers in Immunology 08
normal tissues (Figures 4A, B). To investigate the heterogeneity

of cluster 9 and cluster 10, we detected the expression of

activating receptors of NK cells, including CD160, NCR3,

IFNG (IFNg), and FASLG, in cluster 9, cluster 10, and normal

tissues (Figure 4D). CD160 potentiates NK-cell activation and

cytotoxicity and induces the secretion of the cytokines IFN-g, IL-
6, IL-8 and TNF-a. The FasL protein is encoded by FASLG and

is secreted by activated NK cells (50). After the ligand binds with

the corresponding receptor on cancer cells, the apoptotic system

of cancer cells is initiated. Notably, these genes were upregulated

in cells from cluster 10 and normal tissue. Thus, compared to the

cells of cluster 9, the cells of cluster 10 has more potent

cytotoxicity, and the cells from cluster 9 exhibited an

exhausted status. Compelling evidence has suggested that NK

cells become exhausted in the presence of tumors and chronic

infections, displaying low cytotoxicity and effector function (51).

NK-cell exhaustion is also observed in HCC (52), yet the exact

regulatory mechanisms have been poorly explored. Hence, we

performed a pseudotime analysis (Figure 4E). It was found that

cluster 10 cells were present at the beginning of the

differentiation trajectory, while cluster 9 cells, which

represented an exhausted NK-cell subset, existed at the end of

the trajectory. We believe that cluster 10 cells gradually

transform into cluster 9 cells with tumor infiltration and

TME formation.

Subsequently, SCENIC analysis showed that the genes

regulated by CEBPD, FOS, and JUN were significantly

activated in cluster 10 (Figure 4F). JUN/FOS can regulate NK-

cell immune activity through IF-2 (53), and CEBPD can

promote NK-cell development and immunity (54). All of these

findings confirmed the presence of two distinct NK-cell clusters

with different cytotoxic capacities in HCC and suggest that the

TME may gradually develop several mechanisms to suppress the

immunotoxicity of NK cells. We revealed candidate TFs

involved in this process, and the mechanisms of these TFs in

NK cells are worth exploring. Furthermore, these TFs may serve

as therapeutic targets.
Low activity state of memory B cells
in HCC

A total of 1395 B cells were ultimately obtained after data

processing and screening, and they were categorized into six

clusters and annotated into four subtypes: B cells, immature B

cells, memory B cells and plasma cells (Figures S1A and 5A).

Notably, we noticed that almost all immature B cells were

derived from normal tissues, while memory B cells were

derived from tumor tissues (Figures 5B, C).

Previous investigations have shown a strong infiltration of

memory B cells in HCC, suggesting a specific immune response

to the tumor (55–57). The prognostic impacts of memory B cells

in HCC remain controversial. Memory B cells have been shown
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to have tumor-killing potential, with their presence in the HCC

microenvironment indicating a good prognosis (58). However,

other studies have reported that B cells restrain the antitumor

response in several ways (59). Therefore, we conducted further

analysis of memory B-cell subsets. The DEGs of memory B-cell

subsets between tumor and normal tissues were identified

(Figure 5D). Strikingly, we observed that PRAP1 was

significantly upregulated in memory B cells derived from

cancer tissue. PRAP1 has been demonstrated to be a novel p53

target gene that promotes cancer cell resistance to chemotherapy

drugs such as 5-fluorouracil (5-FU) by cell cycle arrest to protect

cells from apoptosis and contribute to cancer cell survival (60).

In addition, PRAP1 can downregulate mitotic arrest deficient 1

(MAD1), which is a key factor in mitotic checkpoint signaling,
Frontiers in Immunology 09
leading to chromosomal instability and promoting the

occurrence of HCC (61).

Next, we compared the differentiation potential of different

tissue-derived memory B cells. Using CytoTRACE, we predicted

a higher differentiation potential for tumor-derived memory B

cells (Figures 5E, F). Similarly, a comparison of the cell cycles of

the different tissue-derived memory B cell subtypes found that a

larger proportion of tumor-derived memory B cells were in the

G2/M phase, suggesting a more robust proliferative capacity,

consistent with the low differentiation status of tumor-derived

memory B cells (Figure 5G). To investigate functional

heterogeneity, we assessed the expression of a gene set related

to memory B-cell activation to predict the functional status (62).

The results showed that there were significantly fewer memory B
B
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E

F

A

FIGURE 4

Two distinct NK-cell subsets with different cytotoxic abilities in HCC. (A) t-SNE plot of the eleven subsets of NK cells. (B) Distribution of the
eleven NK-cell subtypes in tumor and normal samples. (C) Volcano plot of the differentially expressed genes (DEGs) between tumor-derived NK
cells and normal tissue-derived NK cells. The upregulated genes (log2(fold change) >1) are colored red, while the downregulated genes (log2
(fold change) less than -1) are colored blue. Upregulated and downregulated genes are annotated. (D) Violin plots of the expression of several
activating receptors, including CD160, NCR3, IFNG (IFNg) and FASLG, in cluster 9, cluster 10 and normal tissues. (E) Differentiation trajectory of
NK cells, colored for pseudotime (right) and cell subset (left). (F) Heatmap of the AUC scores of the expression of transcription factors identified
by SCENIC.
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cells in the activated state in tumor tissues than in peritumor

tissue (p = 0.011), which may be linked to the occurrence of an

antitumor response (Figure 5H).

Given the crucial role of the crosstalk between the TME and

cancer cells in tumorigenesis and progression, we compared

receptor–ligand pairs between cancer cells and memory B cells.

In particular, we discovered that macrophage migration

inhibitory factor (MIF), which interacts with CD74+CXCR4+

and CD74+CD44+, was specifically expressed in tumor samples

(Figure 5I). MIF has been confirmed to contribute to a variety of

facets of tumor growth, including cell proliferation,

differentiation, and angiogenesis. MIF can bind to its receptor

CD74 in the TME, which is present on TAMs, DCs, Treg cells,

and MDSCs, facilitating immunological escape and cancer

growth (63, 64). For the first time, our study found that MIF

may inhibit memory B-cell activity in HCC and that inhibiting

the MIF-CD74 axis may be a new treatment strategy.
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Hypermetabolism and
immunosuppression in hepatoma cells

Hepatoma cells are derived from hepatocytes, so we

compared CNV between hepatoma cells and normal

hepatocytes. InferCNV analysis showed obvious CNV in

hepatoma cells (Figure S2A). Meanwhile, hepatoma cells

expressed high levels of APOA2, APOA1, AMBP, TTR,

APOH, and ASGR1, which is consistent with what was

previously observed by Sun Y et al. in HCC (Figure S2B) (65).

Furthermore, hepatoma cells originating from the same patient

tended to cluster together (Figure 6A), which indicated that

there was significant heterogeneity between cancer cells across

different patients. Heterogeneity is likely to lead to different

responses to the same treatment among patients. In addition,

multiple cancer cell subsets were discovered in the same lesion,

revealing the existence of different tumor cell subtypes within
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FIGURE 5

Low activity state of memory B cells in HCC. (A) t-SNE plot of the four B-cell subtypes in HCC. (B) Distribution of the four B-cell subtypes in
tumor and normal samples and (C) in each patient. (D) Volcano plot of the DEGs between tumor-derived memory B cells and normal tissue-
derived memory B cells. The upregulated genes (log2(fold change) >1) are colored red, while the downregulated genes (log2(fold change) less
than -1) are colored blue. Upregulated and downregulated genes are annotated. (E and F) Differentiation status of different tissue-derived
memory B cells as determined using CytoTRACE. A higher score indicates a lower degree of differentiation. (G) Pie charts of the proportions of
cells in each stage of the cell cycle in different tissue-derived memory B cells. (H) Bar plot of the activated memory B-cell signature scores of
memory B cells in tumor and normal samples. The signature scores were calculated based on the expression of activated memory B-cell-
related genes, including CD86, AICDA, DHR59, EBI3, TBX21, KLF10, ZEB2, TFEC, ZBTB32, YBX3, CXCR3, ITGAX, and SIGLEC6. (I) Receptor–
ligand pairs between hepatocytes and memory B cells.
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tumor tissue (Figure S2C). Different subtypes of tumor cells

exhibit differences in immune characteristics, growth rate, and

invasive ability, resulting in different sensitivities to

antitumor drugs.

The DEGs between hepatoma cells and hepatocytes were

detected by scRNA-seq data analysis, which can avoid the

interference of other cells in the TME (Table S2 and

Figure 6B). Strikingly, members of the metallothionein family,

including MT1M, MT1H, MT1G, MT1F, MT1E, MT1X, and

MT1A, were significantly downregulated in cancer cells.

Metallothionein, a low-molecular-weight metal-binding

protein, plays key roles in a range of biological processes in

the human body, including participating in metal ion

homeostasis and detoxification, regulating cell growth and

proliferation, modulating immune inflammatory responses,
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and protecting the body from DNA damage and oxidative

stress (66). Accumulating studies have shown the vital

functions of MT1 proteins in tumor growth, invasion, and

immune escape in kidney, breast, lung, and ovarian cancers

(67). Recent studies have shown decreased MT1 expression in

HCC (68). Promoter methylation can lead to significant

repression of MT1G and MT1M expression. Moreover, MT1G

and MT1M promoter methylation was found to be associated

with an increased incidence of vascular invasion or metastasis

(69). Therefore, MT1 proteins can serve as biomarkers of HCC,

and these findings may lead to the development of new and

effective therapeutic modalities if the mechanism and function of

MT1 proteins in the development of HCC can be elucidated.

GO enrichment analysis revealed that the upregulated DEGs

were mainly enriched in metabolism-related terms, such as
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FIGURE 6

Hypermetabolism and immunosuppression in hepatoma Cells. (A) Cancer cell distribution across all tumor samples. (B) Volcano plot of the
DEGs between tumor-derived hepatoma cells and normal tissue-derived hepatocytes. The upregulated genes (log2(fold change) >0.5) are
colored red, while the downregulated genes (log2(fold change) less than 0.5) are colored blue. (C) Gene Ontology analysis of the DEGs. The
upregulated and downregulated DEGs are annotated. FDR <0.05 was considered significantly enriched. (D) Differences in hallmark pathway
activities scored with GSVA. The t values calculated by a linear model are shown. (E) Differentiation trajectory of cancer cells colored for
pseudotime. (F) TCGA LIHC patients were clustered into 3 clusters by ConsensusClusterPlus based on the expression of genes related to the
cancer cell evolution states. (G) Kaplan–Meier survival curves for the patients in the 3 clusters. A log rank p value < 0.05 was considered
statistically significant. (H) Heatmap of the AUC scores of the expression of transcription factors identified by SCENIC.
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ribonucleotide metabolic processes, purine nucleotide metabolic

processes, precursor metabolites, and energy production

(Figure 6C). This result indicates the presence of a

hypermetabolic state in hepatoma cells. Tumor initiation and

progression require metabolic reprogramming of cancer cells to

alter their metabolic pathways to meet the biological needs of

metabolism and biosynthesis. Therefore, high metabolism is a

distinctive feature of tumor cells and promotes proliferation and

invasion. However, immune functions were found to be

suppressed in cancer cells. This is in accordance with our

previous analysis showing that the microenvironment of HCC

is immune-suppressed. The GSVA results were generally in line

with the GO enrichment analysis results (Figure 6D), and we

observed that the inflammatory response, as well as the

interferon a-response and interferon g-response pathways,

were significantly repressed in cancer cells. The Mtorc1 and

MYC signaling pathways, which lead to high metabolism and

proliferation of cancer cells, were considerably enriched.

Enrichment of the G2/M checkpoint and DNA repair

pathways indicated the presence of considerable DNA damage

in cancer cells. SCENIC analysis showed that heat shock factor 1

(HSF1), which maintains proteostasis in response to stress

environments by inducing the expression of heat shock

proteins, was significantly upregulated in cancer cells

(Figure 6H). Recent studies have demonstrated the roles of

HSF1 in tumorigenesis, such as inhibiting apoptosis,

reprogramming metabolism, and regulating the TME (70, 71).

In addition, DDIT3, a stress-induced TF, controls genes involved

in cell cycle arrest and/or apoptosis as its primary function. A

recent study discovered the role of DDIT3 in balancing

glycolysis and oxidative phosphorylation during glutamine

deprivation in cancer cells (72). Both of the above TFs

involved in stress regulation have been found to be

overexpressed in hepatoma cells and to be associated with

poor prognosis (Figure S2D). In the HCC TME, DDIT3 and

HSP1 may together regulate apoptosis and metabolism to

promote tumor cell proliferation and tumor progression.

Therefore, HSF1 and DDIT3 can serve as biomarkers of

clinical prognosis and promising drug targets.

Cancer cells have multiple subgroups with varying degrees of

differentiation that can exhibit differences in various aspects. To

stratify HCC patients based on the degree of differentiation of cells

and provide precise treatment recommendations, we generated a

cancer cell differentiation trajectory using the Monocle2 R package

(Figure 6E). Markers of HCC stem cells, including CD44, EPCAM,

and THYI (CD90), were expressed at the beginning of the cancer

cell differentiation trajectory (Figure S2E). DEGs were selected

based on the different cancer cell differentiation states, which

influence tumor cell differentiation and progression, as well as

patient prognosis (Table S3). Therefore, we divided TCGA LIHC

patients into 3 clusters based on these DEGs using

ConsensusClusterPlus (Figure 6F). The K–M analysis illustrated

that the patients in the cluster 2 group had considerably shorter OS
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than those in the cluster 1 and cluster 3 groups (p<0.05)

(Figure 6G). When we analyzed the clinical features of the three

clusters, we found that grade, T stage, and stage were significantly

different among the patients in the three groups (Figure S2F). The

cluster 2 group had a larger number of patients with advanced stage

disease and tumor hypofractionation, indicating that cancer cells

with varying degrees of differentiation have diverse invasive

capacities that influence cancer progression.
Discussion

There remains a lack of treatment for HCC patients in the

terminal stage who have missed the chance for surgery. Only a few

patients can benefit from immunotherapy targeting immune

inhibitory receptors of T cells, and some of them may develop

drug resistance and stop responding to therapy. The TIME is the

most dominant component of the TME and is critical for cancer

progression as well as drug resistance. Immunosuppression is a

characteristic of cancer, and crosstalk between cancer cells and

immune cells ultimately leads to an environment that leaves

patients with a weakened defense and often a worse prognosis

(73). Because the TIME consists of a variety of immune cells and

cytokines that frequently interact with each other, targeting one type

of immune cell may lead to a series of changes in other

microenvironments and relevant pathways. Combination

therapies targeting several immune cells may thus be particularly

effective in cancer treatment. Recent research has shown that the

anti-tumor effects of Regorafenib, a multi-targeted tyrosine kinase

inhibitor, are highly depended on its anti-tumor angiogenesis and

anti-immunosuppressive properties, such as decrease of the TAM

infiltration and enhancement of NK-cell cytolytic activity (74).

Current research on the HCC TIME mainly focuses on T cells

and macrophages, with few studies assessing the TIME as a whole.

In this study, we investigated the TIME of HCC using single-cell

sequencing and revealed the landscape of major immune cell types.

The distribution and pathways of major cell subsets were analyzed,

and some potential TIME-regulating mechanisms were discovered.

The results of this study improve our understanding of the

mechanisms of TIME formation and provide new ideas

for immunotherapy.

Since the HCC TIME includes multiple immune cells and

cytokines, we analyzed the predominant immune cell types in this

study. We discovered a large number of Treg cells enriched in

cancer tissue. Treg cells, the key component of immune

homeostasis, maintain self-tolerance and suppress anticancer

immunity. The presence of Treg cells is linked to tumor

progression, aggressiveness, and metastasis. Their regulatory

functions involve a wide range of immune cells other than T

cells, including macrophages, DCs, neutrophils, NK cells, and

innate lymphocytes. In addition to the typical expression of

CD25, CD4, and FOXP3, Treg cells express a number of

chemokine receptors and surface molecules, such as CTLA4, PD-
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1, and TIGIT, which are linked to anti-tumor immunity and may

make them a direct target for ICI therapy. T-cell exhaustion, which

is connected to tumor immune evasion, can be brought on by the

overexpression of co-inhibitory receptors such CTLA4 and PD-1

(75). It has been reported that anti-CTLA4 and anti-PD1

monoclonal antibodies can deplete Treg cells and achieve clinical

benefit. However, no other Treg cell-targeting therapies have been

clinically proven to be effective, largely due to the difficulties

associated with selectively targeting Treg cells (76). Our study

revealed that, in addition to CTLA4, Treg cells uniquely

overexpressed several immune checkpoints. Targeting these

checkpoints may selectively deplete Treg cells, enabling precision

immunotherapy. In addition, the glycolysis/gluconeogenesis

pathway was enriched in Treg cells. Tumor cell metabolism is

mainly dependent on glycolysis, which results in a high-lactate

environment. Cancer cells can reprogram the metabolic pathways

of Treg cells by communicating with them to induce adaptation to a

high-lactate environment. Effector T cells are suppressed, while

Treg cells are capable of surviving and proliferating within the TME;

these Treg cells in turn support the formation of the TME,

promoting immune escape of tumor cells and triggering tumor

progression. Thus, altering the glycolytic pathway of Treg cells may

induce activation of the entire immune system.

We also identified the presence of two NK-cell subsets with

different activation statuses, one in an activated state with cancer-

killing activity and another with exhaustion. The differentiation

trajectory of NK cells in HCC was plotted using pseudotime

analysis. The results showed a gradual depletion of NK-cell

activity during TME formation. Recently, individuals with

metastatic melanoma, NSCLC, and other tumor types have

benefited significantly from ICIs. Strong T-cell anti-tumor

immune responses are the basis of ICIs. Blocking NK cell-specific

checkpoint receptors to reverse TME-induced NK cell exhaustion

can revive NK cells’ direct cytotoxic activity against tumors and

further initiate and enhance T cell-mediated adaptive anti-tumor

immunity, according to a growing body of evidence (77). NK cell-

based therapies are an effective complement to T cell therapy.

Studies have found that combinations of anti-NKG2A monoclonal

antibodies with anti-PD-1 monoclonal antibodies have showed

promising outcomes in treating patients with advanced solid

tumors (78). In this study, we observed the gradual functional

depletion of NK-cell during the formation of TME by scRNA-seq

analysis, and hindering this process is a new strategy for

immunotherapy. In addition, the key TFs involved in this process

was revealed, reversing the decreased expression of these TFs may

restore the activity of NK cells.

Furthermore, memory B cells are enriched in tumor tissue,

as observed by Tang B et al (56). However, the prognostic

impacts of memory B cells in HCC remain controversial (58,

59). For the first time, our research found that memory B cells

from HCC are in a unique state, with high proliferation, low

differentiation, and low activity. Memory B cells are driven into

this state by not only their own high expression of PRAP1 but
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also the influences of cancer cells via the MIF-CD74 axis.

Currently, a detailed assessment of memory B cells in HCC

has not been carried out, and our study suggests that the unique

functional state and precise regulation of memory B cells may

produce a good prognosis for patients.

Macrophages are at the center of cell–cell communication in the

HCC TIME, and the prevailing perspective is that TAMs can be

classified into M1-like (proinflammatory) and M2-like (anti-

inflammatory) phenotypes. Our study suggests that the simple

classification of M1-like and M2-like TAMs does not account for

the complexity of TAMs. Some TAM subsets feature both M1-like

and M2-like characteristics, and these subsets cannot be

distinguished using conventional M1 and/or M2 macrophage

markers. However, we discovered that TREM2 is uniquely

expressed in tumor-derived DCs and macrophage subsets.

Mounting evidence has revealed an immunosuppressive role of

TREM2 in cancer (79, 80). TREM2 overexpression was associated

with worse prognosis in the TCGA LIHC cohort. In addition, we

revealed altered pathways and immune checkpoints in TAMs,

which may provide new ideas for TAM-related immunotherapy.

Finally, using pseudotime analysis, we generated a hepatoma

cell differentiation trajectory. For the first time, patients in the

TCGA LIHC cohort were clustered into three distinct clusters based

on their expression of differentiation-related genes. Notably, cluster

2 patients showed worse prognosis. Cancer cells in different

differentiation stages exhibit differences in growth rate and

invasive ability, resulting in different sensitivities to antitumor

drugs. Therefore, individualized and precise treatment based on

genetic testing will achieve increased clinical benefits.

In this study, we revealed the landscape of the TIME in

HCC, highlighting the heterogeneity of major immune cell types

and their potential mechanisms in the formation of an

immunosuppressive environment. In summary, our research

provides a novel theoretical basis for modulating the TIME in

HCC and will aid the development of new immunotherapies.
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t-SNE plot of the six subclusters of B cells

SUPPLEMENTARY FIGURE 2

(A) CNV heatmaps with hierarchical clustering from the InferCNV analysis.
The reference cells are normal tissue-derived hepatocytes, and the test

cells are tumor-derived hepatoma cells. (B) t-SNE plot of the six markers
of HCC, APOA2, APOA1, AMBP, TTR, APOH, and ASGR1. (C) t-SNE plot of

the twenty subclusters of hepatoma cells. (D) Kaplan–Meier survival
analysis of patients in the TCGA cohort. (E) Differentiation trajectory of

cancer cells colored based on gene expression. (F) The proportions of

patients with different T stages, stages, and grades in each cluster. A p
value <0.05 was considered statistically significant.
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DEGs between tumor and normal tissues identified by Seurat’s
FindClusters function
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DEGs between hepatoma cells and normal hepatocytes
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References

1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA
Cancer J Clin (2021) 71(3):209–49. doi: 10.3322/caac.21660

2. Hepatocellular carcinoma. Nat Rev Dis Primers (2021) 7(1):7. doi: 10.1038/
s41572-021-00245-6

3. Zhang T, Merle P, Wang H, Zhao H, Kudo M. Combination therapy for
advanced hepatocellular carcinoma: do we see the light at the end of the tunnel.
Hepatobiliary Surg Nutr (2021) 10(2):180–92. doi: 10.21037/hbsn-2021-7

4. Vitale I, Shema E, Loi S, Galluzzi L. Intratumoral heterogeneity in cancer
progression and response to immunotherapy. Nat Med (2021) 27(2):212–24. doi:
10.1038/s41591-021-01233-9

5. Ciner AT, Jones K, Muschel RJ, Brodt P. The unique immune
microenvironment of liver metastases: Challenges and opportunities. Semin
Cancer Biol (2021) 71:143–56. doi: 10.1016/j.semcancer.2020.06.003

6. Fu T, Dai LJ, Wu SY, Xiao Y, Ma D, Jiang YZ, et al. Spatial architecture of the
immune microenvironment orchestrates tumor immunity and therapeutic
response. J Hematol Oncol (2021) 14(1):98. doi: 10.1186/s13045-021-01103-4

7. Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the
treatment of cancer: Clinical impact and mechanisms of response and resistance.
Annu Rev Pathol (2021) 16:223–49. doi: 10.1146/annurev-pathol-042020-042741

8. Kudo M, Matilla A, Santoro A, Melero I, Gracián AC, Acosta-Rivera M, et al.
CheckMate 040 cohort 5: A phase I/II study of nivolumab in patients with
advanced hepatocellular carcinoma and child-pugh b cirrhosis. J Hepatol (2021)
75(3):600–9. doi: 10.1016/j.jhep.2021.04.047

9. Kelley RK, Sangro B, Harris W, Ikeda M, Okusaka T, Kang YK, et al. Safety,
efficacy, and pharmacodynamics of tremelimumab plus durvalumab for patients
with unresectable hepatocellular carcinoma: Randomized expansion of a phase I/II
study. J Clin Oncol (2021) 39:2991–3001. doi: 10.1200/JCO.20.03555

10. Papalexi E, Satija R. Single-cell RNA sequencing to explore immune cell
heterogeneity. Nat Rev Immunol (2018) 18:35–45. doi: 10.1038/nri.2017.76

11. Ramachandran P, Matchett KP, Dobie R, Wilson-Kanamori JR, Henderson
NC. Single-cell technologies in hepatology: new insights into liver biology and
disease pathogenesis. Nat Rev Gastroenterol Hepatol (2020) 17:457–72. doi:
10.1038/s41575-020-0304-x

12. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell
transcriptomic data across different conditions, technologies, and species. Nat
Biotechnol (2018) 36:411–20. doi: 10.1038/nbt.4096

13. Narayan A, Berger B, Cho H. Assessing single-cell transcriptomic variability
through density-preserving data visualization. Nat Biotechnol (2021) 39:765–74.
doi: 10.1038/s41587-020-00801-7

14. Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, et al. Reference-based
analysis of lung single-cell sequencing reveals a transitional profibrotic
macrophage. Nat Immunol (2019) 20:163–72. doi: 10.1038/s41590-018-0276-y

15. Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, et al. Reversed graph
embedding resolves complex single-cell trajectories. Nat Methods (2017) 14:979–
82. doi: 10.1038/nmeth.4402

16. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an r package for comparing
biological themes among gene clusters. OMICS (2012) 16:284–7. doi: 10.1089/
omi.2011.0118

17. Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H,
Hulselmans G, et al. SCENIC: single-cell regulatory network inference and
clustering. Nat Methods (2017) 14:1083–6. doi: 10.1038/nmeth.4463
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2022.950536/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2022.950536/full#supplementary-material
https://doi.org/10.3322/caac.21660
https://doi.org/10.1038/s41572-021-00245-6
https://doi.org/10.1038/s41572-021-00245-6
https://doi.org/10.21037/hbsn-2021-7
https://doi.org/10.1038/s41591-021-01233-9
https://doi.org/10.1016/j.semcancer.2020.06.003
https://doi.org/10.1186/s13045-021-01103-4
https://doi.org/10.1146/annurev-pathol-042020-042741
https://doi.org/10.1016/j.jhep.2021.04.047
https://doi.org/10.1200/JCO.20.03555
https://doi.org/10.1038/nri.2017.76
https://doi.org/10.1038/s41575-020-0304-x
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1038/s41587-020-00801-7
https://doi.org/10.1038/s41590-018-0276-y
https://doi.org/10.1038/nmeth.4402
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.3389/fimmu.2022.950536
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Bai et al. 10.3389/fimmu.2022.950536
18. Vento-Tormo R, Efremova M, Botting RA, Turco MY, Vento-Tormo M,
Meyer KB, et al. Single-cell reconstruction of the early maternal-fetal interface in
humans. Nature (2018) 563:347–53. doi: 10.1038/s41586-018-0698-6
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