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Abstract: The low-density-lipoprotein receptor (LDLr) removes low-density lipoprotein (LDL), an
endovascular transporter that carries cholesterol from the bloodstream to peripheral tissues. The
maintenance of cholesterol content in the brain, which is important to protect brain function, is affected
by LDLr. LDLr co-localizes with the insulin receptor and complements the internalization of LDL. In
LDLr deficiency, LDL blood levels and insulin resistance increase, leading to abnormal cholesterol
control and cognitive deficits in atherosclerosis. Defects in brain cholesterol metabolism lead to
neuroinflammation and blood–brain-barrier (BBB) degradation. Moreover, interactions between
endoplasmic reticulum stress (ER stress) and mitochondria are induced by ox-LDL accumulation,
apolipoprotein E (ApoE) regulates the levels of amyloid beta (Aβ) in the brain, and hypoxia is
induced by apoptosis induced by the LDLr defect. This review summarizes the association between
neurodegenerative brain disease and typical cognitive deficits.

Keywords: cholesterol metabolism; LDLr; insulin receptor; SREBP; blood–brain-barrier (BBB) breakdown;
neuroinflammation; ER stress; mitochondria; apoptosis; lectin-like oxidized LDL receptor-1 (LOX-1)

1. Introduction

Low-density-lipoprotein receptor (LDLr) is involved in the regulation of blood choles-
terol. LDLr internalizes cholesterol-containing LDL ligands, and insulin receptor (IR)
maintains glycemic homeostasis. Although the exact mechanism is not completely clear,
diabetes is associated with dyslipidemia. Diabetes is also characterized by abnormalities
ranging from IR to absolute deficiency of insulin (type 1 diabetes) or abnormalities in the
receptor protein itself post-transcription/translation/translation (type 2 diabetes). The
LDL-clearing activity of LDLr depends on the interaction between insulin and IR [1].

Insulin has been reported to stimulate LDLr expression, an IR-dependent signaling
event [2]. The inactivation of IR and LDLr prevents the removal of extracellular LDL and
promotes hyperproteinemia through intravascular LDL deposition. In insulin-deficient type
1 diabetes and insulin-resistant type 2 diabetes, IR inactivation leads to LDLr inactivation,
which increases the severity of atherosclerotic complications due to the inability to remove
vascular LDL.

Cholesterol in the brain builds up the membrane surfaces of large numbers of axon
dendrites and synapses, including post-synaptic spines and pre-synaptic vesicles [3–5]. The
brain comprises neurons and glial cells, which build up a large amount of membrane and
occupy a high area and volume; thus, the cholesterol requirement is very high. Cholesterol
metabolism is important in neurons and glial cells, which should cooperate for brain
development and function, and LDLr, which interacts with IR, plays an important role in
cholesterol synthesis and turnover regulation [6]. Cholesterol depletion in neurons impairs
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synaptic vesicle exocytosis, nerve activity, and neurotransmission, leading to dendritic
spine and synaptic degeneration [7–9]. Furthermore, defects in cholesterol metabolism lead
to structural and functional central nervous system (CNS) diseases such as Huntington’s,
Alzheimer’s, and Parkinson’s diseases [10–12].

The hippocampus of an LDLr−/− rodent model fed a high-cholesterol diet showed
a higher neuroinflammatory response and impaired blood–brain-barrier (BBB) trans-
port [13–15]. This affected the proliferation of hippocampal progenitors. Additionally,
the neuroinflammatory process increases the production of ROS, which is detrimental to
neurons [16]. Mitochondria are prone to oxidative damage, and inflammation can further
contribute to mitochondrial dysfunction [17] and GSH-dependent antioxidant system dam-
age. Several studies have reported an association between high dietary exposure to fat or
cholesterol and oxidative stress in the rat and rat brain [18,19].

It is necessary to prove the correlation between diseases such as hypercholesterolemia,
which are caused due to LDLr defects, with respect to brain metabolic physiology.
Therefore, this review aims to provide a detailed overview of LDLr-defect-mediated
metabolism disorders.

2. Cholesterol Regulation of LDLr

LDLr is a cell membrane glycoprotein that LDL, a cholesterol transporter, binds and
internalizes. LDLr is a key receptor for maintaining cholesterol homeostasis by removing
LDL through endocytosis, and is essential for lipoprotein and lipid metabolism. [20–25].

When cholesterol accumulates or decreases, the endoplasmic reticulum (ER) detects
the level of membrane cholesterol and activates the cholesterol regulatory system (Figure 1),
the sterol regulatory element-binding protein (SREBP) pathway, to maintain cholesterol
homeostasis. When the intracellular cholesterol level is low, SREBP forms a complex with
the polytopic membrane protein SREBP cleavage-activating protein (Scap) in the form
of vesicles coated with coat protein complex II (COPII) in the ER, and the vesicles are
then transported to the Golgi. Upon transporting the Scap/SREBP complex, SREBP is
proteolytically degraded into an active fragment, which activates genes involved in choles-
terol synthesis and absorption [26,27]. SREBP2 is activated by a reduction in intracellular
cholesterol and induction of genes such as proprotein convertase subtilisin/kexin type
9 (PCSK9) and LDLr, leading to the endocytosis of 3-hydroxy-3-methylglutaryl coenzyme
A reductase (HMGCR) LDL [27–29]. On the other hand, when the cholesterol level is high,
the Scap/SREBP complex binds to Insig-1 or Insig-2, another polytopic membrane protein,
and the coating of the Scap/SREBP complex is blocked by COPII and maintained in the ER.
By preventing SREBP from moving to the Golgi [30–32], the transcription of target gene
decreases cholesterol synthesis and absorption [28].

LDLr relies on ARH, a low-density-lipoprotein receptor adapter protein, for LDL inter-
nalization. ARH is mediated via S-nitrosylation by nitric oxide, and LDL is absorbed into
the LDLr. In ARH−/− cells, LDLr activity is inhibited due to ARH loss via LDLr endocytosis
failure by the induction of LDLr redistribution into the plasma membrane [33–37]. PCSK9
can degrade LDLr internalized in lysosomes and protect cells from excessive LDL uptake
and cholesterol accumulation [38]. HMGCR activates the acetyl-CoA pathway, producing
cholesterol as the final product [39].
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biological activities [49–51], resulting in increased glucose transport and the maintenance 
of adequate blood glucose levels [52]. 
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In LDL exposure, autophagosome formation is suppressed via PI3K/Akt/mTOR ac-
tivation, a key autophagy regulator in HUVECs, similar to the insulin pathway, and LC3 
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dicating endocytosis from the cell membrane to cytosol, opposite to GLUT1’s translocation 
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Figure 1. Interaction of low-density-lipoprotein receptor (LDLr) and insulin receptor (IR). The process
of the expression of LDLr and endocytosed downstream molecules to regulate cholesterol homeostasis
and the association of co-localized IR.

3. Interaction of LDLr and IR

LDLr, a transmembrane glycoprotein, is involved in regulating blood cholesterol by
binding and internalizing LDL containing cholesterol [40–43]. LDLr removes cholesterol-
containing LDL particles [41,44], and IR maintains glycemic homeostasis [45–47]. On the
other hand, although the exact mechanism is not completely clear, diabetes is associated
with dyslipidemia [48]. Diabetes mellitus is characterized by metabolic abnormalities due
to insufficient insulin production due to loss of beta cells (type 1 diabetes) or abnormalities
in the insulin receptor protein itself (type 2 diabetes). Insulin is known to regulate several
biological activities [49–51], resulting in increased glucose transport and the maintenance
of adequate blood glucose levels [52].

LDLr and IR co-localization in organelles has been observed via electron microscopy.
Increased insulin levels increase the LDL uptake of HepG2 cells via LDLr due to the
disruption of the LDLr–IR co-localized complex; they further promote the internalization
of extracellular LDL particles by directly regulating insulin-mediated LDLr function [53,54].
We have demonstrated the co-localization of LDLr and IR by reducing the expression of
LDLr and IR-related proteins via LDLr-specific siRNA treatment [1].

In LDL exposure, autophagosome formation is suppressed via PI3K/Akt/mTOR
activation, a key autophagy regulator in HUVECs, similar to the insulin pathway, and
LC3 and p62 expression in the lipidized form of the autophagosome decreases. After
LDL treatment, LDLr and IR expression increases in the cytosol rather than the membrane,
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indicating endocytosis from the cell membrane to cytosol, opposite to GLUT1’s translocation
from the cell cytosol to membrane [55,56].

The impairment of IR function is associated with abnormal glucose metabolism leading
to impaired glucose tolerance or diabetes, a condition of obesity and insulin resistance [57].
Insulin resistance is also associated with intravascular LDL accumulation due to poor
clearance by functionally impaired LDLr. Insulin resistance results in decreased expression
levels of insulin and IGF receptors, which promote neurite growth, synapse formation, and
neuronal survival in the brains of Alzheimer’s patients [58]. The intraventricular injection
of streptozotocin, which induces diabetes in rats, or the depletion of neuronal IR results in
cognitive decline [59–63].

4. Cholesterol Metabolism in the Brain

Cholesterol is a structural component of the membrane that acts as a buffer for changes
in the fluidity of cell lipid membranes and is involved in membrane-intrinsic proteins and
cell signal transduction [64,65]. Despite these important functions, high cholesterol levels
can be toxic to cells. An overload of total cellular cholesterol in the plasma membrane
triggers its migration to the ER, resulting in the depletion of calcium stores, leading to cell
death [66,67]. Additionally, a loss of membrane fluidity due to increased cholesterol levels
can lead to dysfunction of the integral membrane protein and damage to the membrane
domain, resulting in the disruption of signaling events [68].

Consequently, sterol-sensing proteins that regulate cholesterol homeostasis, sterol
synthesis and degradation by regulatory mechanisms, and LDLr are also involved [69].
The brain is the most cholesterol-rich organ in the human body and contains 25% choles-
terol [70,71]. Cholesterol homeostasis may influence neuroinflammatory expression for
PCSK9 and neuronal receptors. PCSK9, which can regulate the cholesterol receptor LDLr
and apolipoprotein E (ApoE), maintains a certain concentration of cholesterol in the human
cerebrospinal fluid under normal conditions [72,73]. Under increased BBB permeability in
disease states, PCSK9 crosses the BBB and induces LDLr degradation in the brain [74,75].

High levels of LDL-C have been observed in stroke patients with mutations in LDLr-
related genes. Sequencing has been performed in stroke patients with LDLr, apolipoprotein
B (ApoB), and PCSK9 gene targets, and the familial hypercholesterolemia pathogenic gene
may indicate atherosclerotic phenotypes such as increased carotid intima–media thickness
and ischemic attacks [76–79].

5. BBB Breakdown

The BBB is formed and maintained by cerebral capillaries, pericytes surrounding
the capillaries, and endothelial cells surrounding astrocyte ends that surround these two
layers. The BBB, composed of adherens junctions (AJs) and tight junctions (TJs), selectively
regulates the transport of molecules and cells in and out of the brain, thereby regulating the
brain microenvironment [80,81]. It is composed of TJs comprising transmembrane proteins
such as occludin and claudins and AJs comprising VE-cadherin, which plays an important
role in maintaining brain endothelial junctions. The BBB maintains the homeostasis of
neurovascular units, including blood vessels and nerve cells [82].

Many studies have demonstrated the potential for BBB disruption to alter brain re-
gions and dissociation states, allowing neurotoxic plasma components, blood cells, and
pathogens to enter the brain and cause neuroinflammation [83,84]. LDLr−/− mice exposed
to a high-cholesterol diet and accompanied by a decreased gene expression of claudin-5
and occludin and increased BBB permeability to stimulate neuroinflammation and cog-
nition are more susceptible to the disorder, and BBB disruption is associated with brain
changes due to hypercholesterolemia [75]. In LDLr−/− mice fed a high-cholesterol diet,
aquaporin-4 (AQP-4) expression increases [85,86], occludin and claudin-5 gene expression
decreases, BBB permeability increases, and GFAP-derived neuroinflammation increases in
the hippocampus [75].
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6. Neuroinflammation

LDLr is important for regulating LDL homeostasis. LDL is oxidized, producing oxLDL.
Although LDL-C levels decrease in the sera of patients with rheumatoid arthritis, a chronic
inflammatory disease, high levels of oxLDL [87] produce cytokines such as TNF-a and
IL-6 [88,89]. After cerebral I/R injury, the downregulation of LDLr expression in neurons,
astrocytes, and oligodendrocytes [90] leads to neurological deficits, infarction, and edema
in the CNS. Additionally, LDLr KO activates pattern recognition receptors (PRRs) present
in innate immune cells with damage-associated molecular patterns (DAMPs) generated
in damaged cells or tissues (Figure 2) [91], and in the middle cerebral artery occlusion
(MCAO) model under ischemic conditions. Additionally, LDL accumulation was proven to
be inflammatory by inducing TLR activation via pathogen-associated molecular patterns
(PAMPs) [92,93], and oxLDL, acting as a DAMP and PAMP, forms the NLRP3 inflammasome
complex [94,95]. The complex induces gasdermin D (GSDMD)-mediated lytic apoptosis (py-
roptosis) by increasing the levels of active caspase-1. Pyroptosis, a programmed cell death
process, is mediated by a pore formed by the binding of GSDMD N-terminal fragments
cleaved by active caspase-1 to the plasma membrane, inducing the release of inflammatory
cytokines such as IL-1β and IL-18, leading to neuronal pyroptosis [96–100]. Additionally,
interleukin-10 (IL-10), an anti-inflammatory cytokine, inhibits the activity of inflammatory
cytokines by inhibiting TLR induction [93].
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The blockade of NLRP3 delays neuronal pyroptosis in LDLr−/− mice and cultured
LDLr−/− neurons after experimental stroke [91]. Oxidative stress and mitochondrial DNA
(mtDNA) damage have been observed in atherosclerotic plaques in LDLr−/− mice, and
the number of atherosclerotic plaques increase due to an additional deficiency of Ogg1
promoting NLRP3 inflammasome activation in LDLr−/− mice. The mitochondria and
mtDNA, which are sites for reactive oxygen species (ROS) production, are vulnerable to
oxidative stress due to a lack of protective histones. Ogg1, a glycosylase responsible for
the cleavage of 7,8-dihydro-8-oxo-2’-deoxyguanosine, a byproduct of ROS, and AMPK, an
upstream regulator, are targets of miR-33, a proatherogenic microRNA. As a result, the
levels of Ogg1 and AMPK decrease in atherosclerotic plaques [101].

LDLr overexpression is associated with inflammation relief. Lipopolysaccharides
(LPS), which are made up of lipids and polysaccharides, can cause inflammation. They
have the highest binding affinity for high-density lipoprotein (HDL), and HDL-binding LPS
is redistributed to LDL and VLDL [102]. Pathogen lipids such as LPS are integrated and
transduced into lipoprotein particles such as HDL, LDL, and VLDL, triggering an immune-
inflammatory response through Toll-like receptors (TLRs). TLRs are mammalian PRRs that
recognize structural pathogen-associated molecular patterns shared by microorganisms
in innate immunity. The inhibition of PCSK9, which promotes the degradation of LDLr
lysosomes, increases the ability of LDLr to remove pathogenic lipids, thereby reducing the
inflammatory response [103,104].

7. Interaction between ER Stress and Mitochondria

LDLr deficiency can lead to cognitive impairment due to interactions between ER stress
and mitochondria. In particular, the brain is vulnerable to oxidative damage and apoptosis
induction by abnormal calcium and ATP levels due to its high energy metabolism rate, high
oxygen consumption, and high ratio of polyunsaturated fatty acids [105–110]. Oxidative
stress is attracting attention as a cause of several neurodegenerative diseases [111–113].

LDL is oxidized to oxLDL, which is taken up by lectin-like oxidized low-density-
lipoprotein-1 receptors (Figure 3). OxLDL increases lectin-like oxidized LDL receptor-
1 (LOX-1) expression in macrophages, leading to macrophage migration and foam cell
differentiation, leading to deposition into endothelial cells [114,115]. OxLDL uptake induces
Ca2+ overload, which further induces mitochondrial dysfunction, leading to cytochrome
c release, the apoptosis of endothelial cells, and the suppression of antioxidant activity,
generating ROS that can activate NF-κB [116–122].

Abnormally folded proteins in the ER lumen are increased in atherosclerosis resulting
from cholesterol accumulation. The three major ER-stress sensor proteins of the UPR
that remove these abnormally folded proteins are inositol-requiring enzyme 1 (IRE1),
activating transcription factor 6 (ATF6) and protein kinase RNA-like ER kinase (PERK).
In the steady state, the three sensor proteins remain inactive due to their binding to the
ER chaperone, glucose response protein-78 (BiP/GRP78). Stress releases BiP from the ER
sensor and induces the phosphorylation and dimerization of IRE1 and PERK in cancers,
whereby active PERK promotes the phosphorylation of eukaryotic initiation factor 2α
(eIF2α) and inhibits protein translation by the activation of activating transcription factor
4 (ATF4) [123,124], and X-box binding protein 1 (XBP1) expression is achieved through
ATF6 activation [125]. However, prolonged cellular stress induces CHOP expression, and
a CHOP-mediated imbalance in the Bcl-2 family activates proapoptotic proteins in the
mitochondrial membrane, inducing the release of cytochrome c, leading to subsequent
mitochondrion-dependent apoptosis [126,127].
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In pathological conditions such as ischemia and reperfusion, the depolarization of the
mitochondrial membrane potential increases, causing Ca2+ overload in the outer membrane
and Ca2+ conduction through the calcium uniporter (MCU), which is locally present in the
inner mitochondrial membrane. Increased Ca2+ is produced due to a bidirectional inter-
action with ROS [128–131]. The mitochondrial outer membrane channel is formed by the
opening of the mitochondrial permeability transition pore (mPTP), which induces mitochon-
drial membrane permeability and the insertion of proapoptotic BH3-domain-containing
proteins such as Bcl-2-associated X protein (Bax). In addition, due to the depletion of cardi-
olipin, a lipid constituting the inner membrane of mitochondria, cytochrome c is released
from the inner membrane of mitochondria into the cytoplasm [132,133]. Cytochrome c
forms an apoptosome and induces apoptosis by forming a complex with apoptosis-protease
activating factor 1, which is required for the proteolysis of caspase-9 and caspase-3 [134,135].
In the mitochondria, ROS are formed as a byproduct of oxidative phosphorylation that
induces ATP production. Imbalances in ROS, ATP, and Ca2+ that appear in mitochondrial
dysfunction increase the expression of antioxidant enzymes, such as superoxide dismu-
tase (SOD), glutathione (GSH), and glutathione peroxidase (GPx), and the Bcl-2-mediated
apoptosis mechanism [136]. Furthermore, oxidative stress also affects endothelial cells.

Hypercholesterolemia-induced LDLr−/− mice have shown a decreased activity of
mitochondrial complex I and II in the cerebral cortex; decreased GSH; an approximately
40% increase in complexes formed via thiobarbituric acid’s reaction with malondialdehyde
(MDA), a product of lipid peroxidation; and enzymes related to peroxide removal. An
imbalance in phosphorus GPx/glutathione reductase activity results in mitochondrial
dysfunction and oxidative stress, leading to cognitive impairment [137,138]. In 14-month-
old LDLr−/− mice, antioxidant imbalance and glutathione metabolism increase due to
brain oxidative stress because of lipid peroxidation, and the acetylcholinesterase activity,
which degrades the neurotransmitter acetylcholine, also increases [139]. The memory
deficit observed in LDLr−/− mice is not related to Aβ-level changes in the prefrontal cortex
and hippocampus; however, Bcl-2 expression and caspase-3 activation decrease, while Bax
expression increases.
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8. ApoE

Low-density-lipoprotein receptor (LDLR) and apolipoprotein E (ApoE) are responsible
for the transport of cholesterol-rich lipoproteins (Figure 4). Deficiencies in LDLR and ApoE
are associated with increased plasma total cholesterol and, consequently, a higher risk
of hypercholesterolemia, atherosclerosis, and coronary artery disease [140–142]. ApoE is
mainly produced by astrocytes and is a protein that plays a role in lipid transport in the
CNS [143]. Unlike the LDLR-binding molecule ApoB100, small fat-soluble molecules such
as ApoE can cross the BBB-forming membrane and affect BBB stability [144]. ApoE was
found to co-localize with amyloid plaque [145,146]. ApoE exists in three isoforms: ApoE2,
ApoE3, and ApoE4. ApoE4 induces brain damage as traumatic brain injury (TBI) [147],
Alzheimer’s disease [148], and conditions leading to impaired cognition [149] do.
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LDLR is an important receptor for ApoE in the central nervous system. [10.1016/
j.nbd.2004.01.015] (accessed on 26 July 2022) Amyloid beta (Aβ), known to cause Alzheimer’s
disease, is hypothesized to accumulate in the brain as plaques and is regulated by recep-
tors for ApoE [150–152]. LDLr is expressed in astrocytes and induces the uptake of ApoE
and Aβ [153]. It prevents Aβ deposition by reducing ApoE levels in LDLr-overexpressing
mice [154]. LDLr is associated with the major central nervous system ApoE receptor
regulating amyloid deposition in a distinct mouse model of β-amyloidosis. The acute
intraventricular injection of aggregated Aβ(1–40) peptides was used to show increased
susceptibility to Aβ-induced neurotoxicity, with intrahippocampal oxidative stress, neuroin-
flammation, nerve membrane damage, memory deficits, and increased blood–brain-barrier
permeability [155].

ApoE also affects the immune response, and in mice, ApoE KO increased the expression
of Toll-like receptor 4 (TLR4) and LOX-1, suggesting the formation of foam cells and



Int. J. Mol. Sci. 2022, 23, 8384 9 of 15

promoting the onset of arteriosclerosis [156]. Additionally, ApoE promotes phagocytosis
by binding to triggering receptor expressed on myeloid cells 2 (TREM2) in microglia [157].
LDLr−/− mice exhibit reduced numbers of synaptophysin-immunoreactive presynaptic
boutons in hippocampus CA1 compared to LDLr+/+ mice, resulting in hippocampus-
dependent memory function impairment [0].

9. Conclusions

Our analysis revealed that LDLr defects might lead to IR interactions, BBB breakdown,
neuroinflammatory responses, interactions between ER stress and mitochondria, and
hypoxia. There are various cells in the brain that make up a complex cellular network. Each
cell exhibits a lipid membrane structure as an essential element for cell maintenance and
signal transduction, and lipids are then delivered by LDL, which is regulated by LDLr.

However, studies on LDLr defects have mainly been conducted in the liver, which is the
main organ for lipid synthesis; thus, there is a lack of studies on changes in hormones such
as cortisol, insulin, and leptin secreted into the brain signaling system and the mechanism
of LDLr regulation specifically for brain cells.

In conclusion, this review summarizes the relationship between LDLr defects and brain
metabolism. Further detailed studies are required to elucidate the mechanisms involved
in LDLr.
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